BREAKING ADVANCES

4327 | **Highlights from Recent Cancer Literature**

4352 | **Genome-Wide “Pleiotropy Scan” Identifies HNF1A Region as a Novel Pancreatic Cancer Susceptibility Locus**
Brandon L. Pierce and Habibul Ahsan

Précis: Genetic polymorphisms in a homeobox transcription factor implicated in diabetes, cholesterol levels, and inflammation are linked here to pancreatic cancer susceptibility.

MEETING REPORT

4338 | **Tumor Immunology: Basic and Clinical Advances**
Pamela L. Beatty, Sandra Cascio, and Eric Lutz

4366 | **Metformin, Independent of AMPK, Induces mTOR Inhibition and Cell-Cycle Arrest through REDD1**
Isaam Ben Sahra, Claire Regazzetti, Guillaume Robert, Kathiane Laurent, Yannick Le Marchand-Brustel, Patrick Aubeger, Jean-François Tanti, Sophie Giorgetti-Peraldi, and Frédéric Bost

Précis: Findings suggest a mechanistic basis for understanding the anticancer effects of metformin, a widely prescribed diabetes drug.

PRIORITY REPORTS

4344 | **Luminal Expression of PIK3CA Mutant H1047R in the Mammary Gland Induces Heterogeneous Tumors**
Dominique S. Meyer, Heike Brinkhaus, Urs Müller, Matthias Müller, Robert D. Cardiff, and Mohamed Bentires-Alj

4373 | **Physical Association of HDAC1 and HDAC2 with p63 Mediates Transcriptional Repression and Tumor Maintenance in Squamous Cell Carcinoma**
Matthew R. Ramsey, Lei He, Nicole Forster, Benjamin Ory, and Leif W. Ellisen

Précis: Findings identify an association between the transcription factor p63 and histone deacetylases in squamous cell carcinoma, raising the possibility of therapeutic intervention with HDAC inhibitors.
MICROENVIRONMENT AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4380</td>
<td>HER2 Overexpression Elicits a Proinflammatory IL-6 Autocrine Signaling Loop That Is Critical for Tumorigenesis</td>
<td>Zachary C. Hartman, Xiao-Yi Yang, Oliver Glass, Gangjun Lei, Takuya Osada, Sandeep S. Dave, Michael A. Morse, Timothy M. Clay, and Herbert K. Lyerly</td>
</tr>
</tbody>
</table>

Précis: HER2 activation in breast cancer is typically thought to act through tumor cell autonomous effects, but this is not the case, as revealed by these findings that HER2 activation also supports the inflammatory tumor microenvironment that is essential to license tumor cell growth.

MOLECULAR AND CELLULAR PATHOBIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4392</td>
<td>Blocking EphB1 Receptor Forward Signaling in Spinal Cord Relieves Bone Cancer Pain and Rescues Analgesic Effect of Morphine Treatment in Rodents</td>
<td>Su Liu, Wen-Tao Liu, Yue-Peng Liu, Hai-Long Dong, Mark Henkemeyer, Li-Ze Xiong, and Xue-Jun Song</td>
</tr>
</tbody>
</table>

Précis: This study reveals a mechanistic basis for the pathogenesis of bone cancer pain and suggests potential therapeutic strategy to improve the analgesic effects of morphine in this setting.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4403</td>
<td>Anaplastic Thyroid Cancers Harbor Novel Oncogenic Mutations of the ALK Gene</td>
<td>Avaniyapuram Kannan Murugan and Mingzhao Xing</td>
</tr>
</tbody>
</table>

Précis: Findings reveal oncogenic mutations in the ALK kinase in anaplastic thyroid cancer, a deadly endocrine cancer, which suggest new strategies for therapeutic management with ALK kinase inhibitors presently in clinical development.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4412</td>
<td>HDAC4-Regulated STAT1 Activation Mediates Platinum Resistance in Ovarian Cancer</td>
<td>Euan A. Stroch, Albonduri Alfradl, Nona Rama, Christoph Dutler, James B. Studd, Roshan Agarwal, Tankut G. Guney, Charlie Gourley, Bryan T. Hennessy, Gordon B. Mills, Antoneollo Mai, Robert Brown, Roberto Dina, and Hani Gabra</td>
</tr>
</tbody>
</table>

Précis: Through an intrapatient analysis of acquired platinum resistance, this study reveals a new strategy to blunt or deter resistance and improve treatment outcomes.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4432</td>
<td>Tumor Galectin-1 Mediates Tumor Growth and Metastasis through Regulation of T-Cell Apoptosis</td>
<td>Alice Bahn, Jing Zhang, Hongbin Cao, Donna M. Bouley, Shirley Kwok, Christina Kong, Amato J. Giaccia, Albert C. Koong, and Quynh-Thu Le</td>
</tr>
</tbody>
</table>

Précis: Findings establish that galectin-1 secreted by tumors rather than the host is more important to cancer progression, and that the key function of this molecule among its roles in cancer is to promote immune escape.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4443</td>
<td>Blocking EphB1 Receptor Forward Signaling in Spinal Cord Relieves Bone Cancer Pain and Rescues Analgesic Effect of Morphine Treatment in Rodents</td>
<td>Su Liu, Wen-Tao Liu, Yue-Peng Liu, Hai-Long Dong, Mark Henkemeyer, Li-Ze Xiong, and Xue-Jun Song</td>
</tr>
</tbody>
</table>

Précis: MUC1 glycoprotein is essential for the growth and progression of pancreatic cancer via activation of the MAPK signaling pathway, blocking of which impedes cancer cell proliferation.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4454</td>
<td>Tumor Galectin-1 Mediates Tumor Growth and Metastasis through Regulation of T-Cell Apoptosis</td>
<td>Alice Bahn, Jing Zhang, Hongbin Cao, Donna M. Bouley, Shirley Kwok, Christina Kong, Amato J. Giaccia, Albert C. Koong, and Quynh-Thu Le</td>
</tr>
</tbody>
</table>

Précis: Using a newly devised, cost-effective sequencing method, this study identifies miRNAs that are deregulated in breast cancer and assesses the potential of miRNAs as prognostic and diagnostic markers.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4463</td>
<td>Hedgehog-Producing Cancer Cells Respond to and Require Autocrine Hedgehog Activity</td>
<td>Samer Singh, Zhijiang Wang, Dennis Liang Fei, Kendall E. Black, John A. Goetz, Robert Tokhunts, Camilla Giambelli, Jezabel Rodriguez-Blanco, Jun Long, Ethan Lee, Karoline J. Briel, Pablo A. Bejarano, Ethan Dimitrovsky, Anthony J. Capobianco, and David J. Robbins</td>
</tr>
</tbody>
</table>

Précis: Findings question the presently accepted view that autocrine signaling has no role in Hedgehog-dependent cancers.
Splicing Factor hnRNP A2/B1 Regulates Tumor Suppressor Gene Splicing and Is an Oncogenic Driver in Glioblastoma
Regina Golan-Gerstl, Michal Cohen, Asaf Shilo, Sung-Suk Suh, Arianna Bakăcs, Luigi Coppola, and Rotem Karni

Précis: Increasing evidence points to a critical role for dysregulated patterns of alternate splicing in tumorigenesis, here illustrated by the definition of an RNA splicing factor and its key targets that drive the formation of aggressive brain tumors.

Nicotinamide Blocks Proliferation and Induces Apoptosis of Chronic Lymphocytic Leukemia Cells through Activation of the p53/miR-34a/SIRT1 Tumor Suppressor Network
Valentina Audrito, Tiziana Vaisitti, Davide Rossi, Daniela Gottardi, Giovanni D’Arena, Luca Laurenti, Gianluca Gaidano, Fabio Malavasi, and Silvia Deaglio

Précis: Findings suggest a mechanistic rationale to combine vitamin B3 with DNA-damaging chemotherapeutics to improve therapeutic responses in chronic lymphocytic leukemia.

PREVENTION AND EPIDEMIOLOGY

A Low Carbohydrate, High Protein Diet Slows Tumor Growth and Prevents Cancer Initiation
Victor W. Ho, Kelvin Leung, Anderson Hsu, Beryl Luk, June Lai, Sung Yuan Shen, Andrew I. Minchinton, Dawn Waterhouse, Marcel B. Bally, Wendy Lin, Brad H. Nelson, Laura M. Sly, and Gerald Krystal

Précis: Striking preclinical findings offer a dramatic illustration of how reducing dietary carbohydrates can reduce cancer incidence, slow tumor growth, and cooperate with growth restrictive or anti-inflammatory agents to block cancer development.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

MET-Independent Lung Cancer Cells Evading EGFR Kinase Inhibitors Are Therapeutically Susceptible to BH3 Mimetic Agents
Weiwien Fan, Zhe Tang, Lihong Yin, Bei Morrison, Said Haifez-Khayyata, Pingfu Fu, Honglian Huang, Rakesh Bagai, Shan Jiang, Adam Kresak, Scott Howell, Amit Vasanji, Chris A. Flask, Balazs Halmos, Henry Koon, and Patrick C. Ma

Précis: Findings provide a rationale for lung cancer clinical trials to combine BH3 mimetic drugs and receptor tyrosine kinase inhibitors, based on understanding of how early resistance to the latter drugs emerge.
High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vγ9Vδ2 T-Cell Chemotaxis and Cytotoxicity In Vivo
Ismahène Benzaid, Hannu Mönkkönen, Verena Stresing, Edith Bonnellye, Jonathan Green, Jukka Mönkkönen, Jean-Louis Touraine, and Philippe Clézardin

Précis: An approved osteoporosis drug might be repositioned in cancer patients to promote chemotaxis of Vγ9Vδ2 T cells to tumors and trigger their destruction.

Combination of PI3K/mTOR Inhibitors: Antitumor Activity and Molecular Correlates
Marco Mazzoletti, Francesca Bortolin, Laura Brunelli, Roberta Pastorelli, Silvana Di Giandomenico, Eugenio Erba, Paolo Ubezio, and Massimo Broggini

Précis: Combining allosteric and catalytic inhibitors of the PI3K/mTOR pathway is much more efficacious than single drug treatment.

Overcoming Trastuzumab Resistance in Breast Cancer by Targeting Dysregulated Glucose Metabolism
Yuhua Zhao, Hao Liu, Zixing Liu, Yan Ding, Susan P. LeDouxs, Glenn L. Wilson, Richard Voellmy, Yifeng Lin, Wensheng Lin, Rita Nahta, Bolin Liu, Oystein Fodstad, Jieqiong Chen, Yun Wu, Janet E. Price, and Ming Tan

Précis: Resistance to ErbB2/HER2-based therapy for breast cancer occurs widely, necessitating strategies to restore therapeutic responses in this disease.

RECQL1 and WRN Proteins Are Potential Therapeutic Targets in Head and Neck Squamous Cell Carcinoma
Akihito Arai, Tokuhiro Chano, Kazunobu Futami, Yasuhiro Furuchi, Kaichiro Ikebuchi, Takuma Inui, Hidetoshi Okabe, and Hitoshi Okabe

Précis: This study provides preclinical proof-of-concept for two RECQ DNA helicases as novel therapeutic targets to treat aggressive head and neck cancers that are rising rapidly in incidence.

Analysis of Mitosis and Antimitotic Drug Responses in Tumors by In Vivo Microscopy and Single-Cell Pharmacodynamics
James D. Orth, Rainer H. Kohler, Floris Foijer, Peter K. Sorger, Ralph Weissleder, and Timothy J. Mitchison

Précis: This is the first study to use high resolution in vivo microscopy to follow the phenotypic effects of a cancer drug in single tumor cells within the context of the tumor microenvironment.

In Vivo Persistence, Tumor Localization, and Antitumor Activity of CAR-Engineered T Cells Is Enhanced by Costimulatory Signaling through CD137 (4-1BB)
De-Gang Song, Qunrui Ye, Carmine Carpenito, Mathilde Poussin, Li-Ping Wang, Chunyan Ji, Mariangela Figini, Carl H. June, George Coukos, and Daniel J. Powell Jr.

Précis: Findings suggest a strategy to increase the efficacy of T-cell–based cancer immunotherapies being tested in the clinic which utilize chimeric antigen receptors.

Tumor Suppressors miR-22 Determines p53-Dependent Cellular Fate through Post-transcriptional Regulation of p21
Naoto Tsuchiya, Masashi Izumiya, Hiroko Ogata-Kawata, Koji Okamoto, Yuko Fujimara, Makiko Nakai, Atsushi Okabe, Aaron J. Schetter, Elise D. Bowman, Yutaka Midorikawa, Yasuyuki Sugiyama, Hiroyuki Aburatan, Curtis C. Harris, and Hitoshi Nakagama

Précis: This study identifies a microRNA that acts as an intrinsic molecular switch in determining p53-dependent apoptosis.

HIF Induces Human Embryonic Stem Cell Markers in Cancer Cells

Précis: This study reveals a general mechanism by which hypoxic regions in tumors may impose a selection for cancer stem cell development and aggressive chemotherapy-resistant malignancies.

Targeted Methylation of Two Tumor Suppressor Genes Is Sufficient to Transform Mesenchymal Stem Cells into Cancer Stem/Initiating Cells
I-Wen Teng, Pei-Chi Hou, Kuan-Der Lee, Pei-Yi Chu, Kun-Tu Yeh, Victor X. Jin, Min-Jen Tseng, Shaw-Jenq Tsai, Yu-Sun Chang, Chi-Sheng Wu, H. Sunny Sun, Kuen-daw Tsai, Long-Bin Jeng, Kenneth P. Nephew, De-Gang Song, Qunrui Ye, Carmine Carpenito, Mathilde Poussin, Li-Ping Wang, Chunyan Ji, Mariangela Figini, Carl H. June, George Coukos, and Daniel J. Powell Jr.

Précis: This study provides the first direct demonstration that hypermethylation of a specific tumor suppressor gene is sufficient to fully transform a somatic stem cell into a cancer initiating/stem cell.
c-Myc Regulates RNA Splicing of the A-Raf Kinase and Its Activation of the ERK Pathway

Jens Rauch, Kim Moran-Jones, Valerie Albrecht, Thomas Schwarzl, Keith Hunter, Olivier Gires, and Walter Kolch

Précis: Findings prompt a new paradigm to understand how Myc coordinates diverse cell functions, through its ability to directly affect patterns of alternate RNA splicing for central signaling components.

Perinatal or Adult Nf1 Inactivation Using Tamoxifen-Inducible PlpCre Each Cause Neurofibroma Formation

Debra A. Mayes, Tilat A. Rizvi, Jose A. Cancelas, Nathan T. Kolanski, Georgianne M. Ciraulo, Anat O. Stemmer-Rachamimov, and Nancy Ratner

Précis: This study of a pediatric human tumor suppressor gene illustrates that acute inactivation of a critical tumor suppressor gene can rapidly stimulate tumor growth even in adults.

Susceptible Stages in Schwann Cells for NF1-Associated Plexiform Neurofibroma Development

Lu Q. Le, Chiachi Liu, Tracey Shipman, Zhiguo Chen, Ueli Suter, and Luis F. Parada

Précis: This study identifies a specific period in which Schwann cell precursors show enhanced susceptibility to formation of neurofibroma, with implication for developing novel therapeutic approaches.

Stromal Niche Cells Protect Early Leukemic FLT3-ITD⁺ Progenitor Cells against First-Generation FLT3 Tyrosine Kinase Inhibitors

Amanda Parmar, Stefanie Marz, Sally Rushton, Christina Holzwarth, Katarina Lind, Sabine Kayser, Konstanze Döhner, Christian Peschel, Robert A.J. Oostendorp, and Katharina S. Götte

Précis: Leukemic stem/progenitor cells can not be readily eradicated by FLT3 kinase inhibition in acute myeloid leukemia, due to robust protection of these cells by the bone marrow stromal microenvironment.
ABOUT THE COVER

Low carbohydrate, high protein diets slow/prevent cancer. Mice fed low carbohydrate (Carbs), high protein diets have lower insulin (Ins) and blood glucose levels than mice on Western-like diets. If these mice are injected with tumor cells or are genetically predisposed to mammary tumors, the growth rate or incidence, respectively, of their tumors is significantly reduced. Moreover, these low Carb, high protein diets reduce tumor growth in an additive fashion when combined with the mTOR inhibitor CCI-779 or the COX-2 inhibitor Celebrex. For details, see the article by Ho and colleagues on page 4484 of this issue.
Cancer Research

71 (13)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/13

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.