Highlights from Recent Cancer Literature

Immunoregulatory Molecule B7-H1 (CD274) Contributes to Skin Carcinogenesis

In Vivo Programming of Tumor Antigen-Specific T Lymphocytes from Pluripotent Stem Cells to Promote Cancer Immunosurveillance

Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis

VEGF and c-Met Blockade Amplify Angiogenesis Inhibition inPancreatic Islet Cancer

Podoplanin-Positive Fibroblasts Enhance Lung Adenocarcinoma Tumor Formation: Podoplanin in Fibroblast Functions for Tumor Progression

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias

Memory Type 2 Helper T Cells Induce Long-Lasting Antitumor Immunity by Activating Natural Killer Cells

Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis

VEGF and c-Met Blockade Amplify Angiogenesis Inhibition in Pancreatic Islet Cancer

Podoplanin-Positive Fibroblasts Enhance Lung Adenocarcinoma Tumor Formation: Podoplanin in Fibroblast Functions for Tumor Progression

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias

Memory Type 2 Helper T Cells Induce Long-Lasting Antitumor Immunity by Activating Natural Killer Cells

Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis

VEGF and c-Met Blockade Amplify Angiogenesis Inhibition in Pancreatic Islet Cancer

Podoplanin-Positive Fibroblasts Enhance Lung Adenocarcinoma Tumor Formation: Podoplanin in Fibroblast Functions for Tumor Progression

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias

Memory Type 2 Helper T Cells Induce Long-Lasting Antitumor Immunity by Activating Natural Killer Cells

Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis
4799

CD8^+ T Cells Regulate Bone Tumor Burden Independent of Osteoclast Resorption
Kaihua Zhang, Seokho Kim, Viviana Cremasco, Angela C. Hirbe, Deborah V. Novack, Katherine Weilbaecher, and Roberta Faccio

Précis: This is the first report analyzing the relative contribution of osteoclasts and immune cells in development of bone metastases.

4809

Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors
Stephen R. Mattarollo, Sherene Loi, Helene Duret, Yuting Ma, Laurence Zitvogel, and Mark J. Smyth

Précis: This study adds to growing evidence that the therapeutic efficacy of cytotoxic chemotherapy relies upon antitumor contributions of the innate and adaptive immune systems.

4821

Human Tumor Cells Killed by Anthracyclines Induce a Tumor-Specific Immune Response
Jitka Fucikova, Petra Kralkova, Anna Fialova, Tomas Brtnicky, Lukas Rob, Jirina Bartunkova, and Radek Špíšek

Précis: Findings define the qualities of 'immunogenic' cancer cell deaths that chemotherapy drugs may need to trigger in order to elicit efficacious clinical responses, with implications for the design of effective regimens of immunochemotherapy.

4834

Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction
Munjal M. Acharya, Lori-Ann Christie, Mary L. Lan, Erich Giedzinski, John R. Fike, Susanna Rosi, and Charles L. Limoli

Précis: Cognitive dysfunction is a common and serious side-effect of radiotherapy in brain cancer patients which the findings of this study suggest might be reversed by stem cell transplantation.

4846

Engagement of I-Branching β-1, 6-N-Acetylglucosaminyltransferase 2 in Breast Cancer Metastasis and TGF-β Signaling
Haijun Zhang, Fanyan Meng, Sherwin Wu, Bas Kreike, Seema Sethi, Wei Chen, Fred R. Miller, and Gueojun Wu

Précis: Findings reveal that breast cancer metastasis driven by TGF-β signaling relies upon the activity of a novel glycosyltransferase, identifying a tractable therapeutic target to the development of broad-acting treatments for advanced disease.

4857

The MeI/Elf4 Transcription Factor Fine Tunes the DNA Damage Response
Goro Sashida, Narae Bae, Silvana Di Giandomenico, Takashi Asai, Nadia Gurvich, Elena Bazzoli, Yan Liu, Gang Huang, Xinyang Zhao, Silvia Menendez, and Stephen D. Nimer

Précis: This mechanistic study shows how a member of the ETS transcription family fine tunes the DNA damage response that is orchestrated by the central regulatory kinase ATM, with implications for understanding cancer susceptibility and chemotherapeutic responses.

4866

CCI-779 Inhibits Cell-Cycle G2–M Progression and Invasion of Castration-Resistant Prostate Cancer via Attenuation of UBE2C Transcription and mRNA Stability
Hongyan Wang, Chaupeng Zhang, Anna Borick, Dayong Wu, Ming Chiu, Jennifer Thomas-Ahner, Zhong Chen, Hongyan Chen, Steven K. Clinton, Kenneth K. Chan, and Qianben Wang

Précis: This study of the mechanism of action of an mTOR inhibitor defines an androgen receptor target gene that may be a critical driver of advanced prostate cancers.

4877

Two Novel Determinants of Etoposide Resistance in Small Cell Lung Cancer
Malcolm H. Lawson, Natalie M. Cummings, Doris M. Rassl, Roslin Russell, James D. Brenton, Robert C. Rintoul, and Gillian Murphy

Précis: The identification of two new genes that mediate resistance to etoposide chemotherapy may offer rational strategies to prevent or relieve chemoresistance that causes the demise of patients suffering relapse.

4888

Notch Signaling in CD66^+ Cells Drives the Progression of Human Cervical Cancers
Jeevisha Bajaj, Tessy Thomas Maliekal, Eric Vivien, Chitra Pattabiraman, Sweta Srivastava, H. Krishnamurthy, V. Giri, Deepa Subramanyam, and Sudhir Krishna

Précis: This study presents a powerful mechanistic rationale to inhibit Notch signaling as a generalized therapeutic strategy to treat metastatic cancers.
PREVENTION AND EPIDEMIOLOGY

4898
Prediagnostic Serum Levels of Cytokines and Other Immune Markers and Risk of Non-Hodgkin Lymphoma
Mark P. Purdue, Qing Lan, Rachel Bagui, William G. Hocking, Dalsu Baris, Douglas J. Reding, and Nathaniel Rothman
Précis: This prospective study identifies elevations in serologic markers associated with future risk of non-Hodgkin lymphoma.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

4908
SPARC Stimulates Neuronal Differentiation of Medulloblastoma Cells via the Notch1/STAT3 Pathway
Praveen Bhoopathi, Chandramu Chetty, Ranadheer Dontula, Meena Gujrati, Dzung H. Dinh, Jasti S. Rao, and Sajani S. Lakka
Précis: This study suggests a differentiation-inducing strategy to increase therapeutic responses in a commonly deadly form of pediatric brain cancer.

4920
Insights into ALK-Driven Cancers Revealed through Development of Novel ALK Tyrosine Kinase Inhibitors
Christine M. Lovly, Johannes M. Heuckmann, Elisa de Stanchina, Heidi Chen, Roman K. Thomas, Chris Liang, and William Pao
Précis: Acquired resistance arising in ALK-fusion positive cancers to a first generation ALK tyrosine kinase inhibitor in clinical trials might be addressed by a novel, more potent, and specific second generation inhibitor.

4932
Caveolin-1 Upregulation Mediates Suppression of Primary Breast Tumor Growth and Brain Metastases by Stat3 Inhibition
Wen-Tai Chiu, Hsu-Te Lee, Feng-Ju Huang, Kenneth D. Aldape, Jun Yao, Patricia S. Steeg, Cheng-Yang Chou, Zhihmin Lu, Keping Xie, and Suyun Huang
Précis: The mediator of brain metastasis identified in this study is likely a core modifier node of many cancer signaling pathways, since it functions in controlling the formation of plasma membrane lipid rafts that organize many cell surface adhesion and signaling complexes.

4944
Poly(ADP-Ribose) Polymerase Inhibition Synergizes with 5-Fluorodeoxyuridine but not 5-Fluorouracil in Ovarian Cancer Cells
Amelia M. Huehls, Jill M. Wagner, Catherine J. Huntoon, Liyi Geng, Charles Erlichman, Anand G. Patel, Scott H. Kaufmann, and Larry M. Karnitz
Précis: An analysis of the checkpoint and DNA repair pathway responses activated by floxuridine reveals how to combine these existing chemotherapeutic agents with PARP inhibitors to achieve the best therapeutic efficacy.

4955
Sorafenib Enhances Pemetrexed Cytotoxicity through an Autophagy-Dependent Mechanism in Cancer Cells
Précis: This study defines a novel combination of clinically approved drugs that may prove to be highly effective in the treatment of many types of solid tumors, prompting immediate clinical attention.

4968
Effect of ON 01910.Na, an Anticancer Mitotic Inhibitor, on Cell-Cycle Progression Correlates with RanGAP1 Hyperphosphorylation
Irina A. Oussenko, James F. Holland, E. Premkumar Reddy, and Takao Ohnuma
Précis: This drug mechanism study offers evidence of a new therapeutic pathway that can achieve pathobiological selectivity for cancer cells.

4977
Small-Molecule Anticancer Compounds Selectively Target the Hemopexin Domain of Matrix Metalloproteinase-9
Antoine Dufour, Nicole S. Sampson, Jian Li, Cem Kuscu, Robert C. Rizzo, Jennifer L. DeLeon, Jizu Zhi, Nadia Jaber, Eric Liu, Stanley Zucker, and Jian Cao
Précis: Although early MMP inhibitors moved into clinical development were not successful, the central importance of MMPs in cancer invasion and metastasis has driven the development of later generation inhibitors that offer considerable therapeutic potential.
Positive Feedback Loop Between PI3K-Akt-mTORC1 Signaling and the Lipogenic Pathway Boosts Akt Signaling: Induction of the Lipogenic Pathway by a Melanoma Antigen
Yoshio Yamauchi, Keiko Furukawa, Kazunori Hamamura, and Koichi Furukawa

Précis: This study suggests a mechanistic explanation for why cancer cells synthesize high levels of cholesterol and fatty acids, which by promoting formation of plasma membrane lipid rafts can reinforce signaling events that sustain cancer cell survival.

Suppression of Apoptosis by PIF1 Helicase in Human Tumor Cells
Mary E. Gagou, Anil Ganesh, Ruth Thompson, Geraldine Phear, Cyril Sanders, and Mark Meuth

Précis: Findings define the function of a DNA helicase that is crucial for the viability of cancer cells under DNA replication stress, with potential implications for how to increase cancer chemosensitivity.

Notch Signaling Activated by Replication Stress–Induced Expression of Midkine Drives Epithelial–Mesenchymal Transition and Chemoresistance in Pancreatic Cancer
Cenap Güngör, Hilke Zander, Katharina E. Effenberger, Yogesh K. Vashist, Tatyana Kalinina, Jakob R. Izbicki, Emre Yekebas, and Maximilian Bockhorn

Précis: Findings suggest that overexpression of the growth factor Midkine plays a role in the inherent chemoresistance of pancreatic cancer cells, suggesting that depleting this factor might heighten their sensitivity to chemotherapy.

STAT3 Plays a Critical Role in KRAS-Induced Pancreatic Tumorigenesis
Ryan R. Corcoran, Gianmarco Contino, Vikram Deshpande, Alexandros Tzatsos, Claudius Conrad, Cyril H. Benes, David E. Levy, Jeffrey Settleman, Jeffrey A. Engelman, and Nabeel Bardeesy

Précis: Findings show that JAK2-STAT3 signaling is required for pancreatic cancer initiation, progression, and maintenance, and that this pathway predicts the response to JAK2 inhibitors in clinical development.

Dissecting the Oncogenic and Tumorigenic Potential of Differentiated Human Induced Pluripotent Stem Cells and Human Embryonic Stem Cells
Zhumur Ghosh, Mei Huang, Shijun Hu, Kitchener D. Wilson, Devaveena Dey, and Joseph C. Wu

Précis: Differentiation of pluripotent stem cell derivatives may not limit all their oncogenic properties, implying the need for additional testing prior to use in regenerative therapy.

Ex Vivo Graft Purging and Expansion of Autologous Blood Progenitor Cell Products from Patients with Multiple Myeloma

Précis: The study describes a novel ex vivo purging strategy to improve the quality of autologous peripheral blood progenitor cell transplant used to treat patients with myeloma.

Myeloid Suppressor Cells Regulate the Lung Environment—Letter
Momir Bosiljic, Melissa J. Hamilton, Judit P. Banath, Nancy E. LePard, Denise C. McDougal, Jessica X. Jia, Gerald Krystal, and Kevin L. Bennewith

Myeloid Suppressor Cells Regulate the Lung Environment—Response
Hannah H. Yan, Michael Pickup, Yanli Pang, Agnieszka E. Gorska, Jessica X. Jia, Harold L. Moses, and Li Yang

Correction: Hsp27 Promotes Insulin-Like Growth Factor-I Survival Signaling in Prostate Cancer via p90Rsk-Dependent Phosphorylation and Inactivation of BAD

CORRECTION
ABOUT THE COVER

Tumor antigen-reactive CTLs by programming iPS cells infiltrated into tumor tissue. Tumor antigen TCR gene-transduced iPS cells were adoptively transferred into C57BL/6 mice, which were subjected to challenge with E. G7 tumor cells. On day 35 after tumor challenge, tumor tissues were examined for tumor-reactive T-cell infiltration by immunohistological staining. Tumor antigen-specific CTLs (red) infiltrated into lymphoma tissue (green). For details, see the article by Lei and colleagues on page 4742 of this issue.
71 (14)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/71/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>