BREAKING ADVANCES

4735
Highlights from Recent Cancer Literature

REVIEW

4737
Immunoregulatory Molecule B7-H1 (CD274) Contributes to Skin Carcinogenesis
Yujia Cao, Lu Zhang, Pacharee Ritprajak, Fumihiko Tsushima, Pornpan Youngnak-Piboonratanakit, Yosuke Kamimura, Masaaki Hashiguchi, and Miyuki Azuma

PRIORITY REPORT

4742
In Vivo Programming of Tumor Antigen-Specific T Lymphocytes from Pluripotent Stem Cells to Promote Cancer Immunosurveillance
Fengyang Lei, Baohua Zhao, Rizwanul Haque, Xiaofang Xiong, Lynn Budgeon, Neil D. Christensen, Yuzhang Wu, and Jianxun Song

MICROENVIRONMENT AND IMMUNOLOGY

4748
Preconditioned Endothelial Progenitor Cells Reduce Formation of Melanoma Metastases through SPARC-Driven Cell–Cell Interactions and Endocytosis
Florence Defresne, Caroline Bouzin, Marie Grandjean, Marc Dieu, Martine Raes, Antonis K. Hatzopoulos, Christian Kupatt, and Olivier Feron

VEGF and c-Met Blockade Amplify Angiogenesis Inhibition in Pancreatic Islet Cancer
Weon-Kyoo You, Barbara Sennino, Casey W. Williamson, Beverly Falcon, Hiroya Hashizume, Li-Chin Yao, Dana T. Aftab, and Donald M. McDonald

Précis: Cancer cell–targeted therapeutic agents may achieve efficacy in part by also attacking the tumor microenvironment, as illustrated by this study revealing the antiangiogenesis benefits of MET inhibitors in promoting blood vessel regression, in addition to direct effects against tumor cells themselves.

Podoplanin-Positive Fibroblasts Enhance Lung Adenocarcinoma Tumor Formation: Podoplanin in Fibroblast Functions for Tumor Progression
Ayuko Hoshino, Genichiro Ishii, Takashi Ito, Kazuhiro Aoyagi, Yoichi Ohtaki, Kanji Nagai, Hiroki Sasaki, and Atsushi Ochiai

Précis: Findings define a fibroblast cell type in the perivascular tumor microenvironment that creates a specific niche for tumor progression, suggesting new strategies to block tumor invasion and metastasis.

IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias
Ana Silva, Angelo B.A. Laranjeira, Leila R. Martins, Bruno A. Cardoso, Jocelyne Demengeot, J. Andrés Yunes, Benedict Seddon, and João T. Barata

Précis: Blocking IL-7 may constitute an effective therapeutic strategy to improve treatment of an aggressive form of T-cell leukemia.

Memory Type 2 Helper T Cells Induce Long-Lasting Antitumor Immunity by Activating Natural Killer Cells
Masayuki Kitajima, Toshihiro Ito, Damon J. Tumes, Yusuke Endo, Atsushi Onodera, Kahoko Hashimoto, Shinichiro Motohashi, Masakatsu Yamashita, Takashi Nishimura, Steven F. Ziegler, and Toshinori Nakayama

Précis: Cancer immunotherapies that recruit an IL4-dependent class of memory T helper cells that can activate antitumor natural killer cells may achieve more potent and durable clinical outcomes.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Precis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4799</td>
<td>CD8⁺ T Cells Regulate Bone Tumor Burden Independent of Osteoclast Resorption**</td>
<td>Kaihua Zhang, Seokho Kim, Viviana Cremasco, Angela C. Hirbe, Deborah V. Novack, Katherine Weilbaecher, and Roberta Faccio</td>
<td>Precis: This is the first report analyzing the relative contribution of osteoclasts and immune cells in development of bone metastases.</td>
</tr>
<tr>
<td>4809</td>
<td>Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors</td>
<td>Stephen R. Mattarollo, Sherene Loi, Helene Duret, Yuting Ma, Laurence Zitvogel, and Mark J. Smyth</td>
<td>Precis: This study adds to growing evidence that the therapeutic efficacy of cytotoxic chemotherapy relies upon antitumor contributions of the innate and adaptive immune systems.</td>
</tr>
<tr>
<td>4821</td>
<td>Human Tumor Cells Killed by Anthracyclines Induce a Tumor-Specific Immune Response</td>
<td>Jitka Fucikova, Petra Kralkova, Anna Fialova, Tomas Brtnicky, Lukas Rob, Jirina Bartunkova, and Radek Špíšek</td>
<td>Precis: Findings define the qualities of 'immunogenic' cancer cell deaths that chemotherapeutic drugs may need to trigger in order to elicit efficacious clinical responses, with implications for the design of effective regimens of immunochemotherapy.</td>
</tr>
<tr>
<td>4834</td>
<td>Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction</td>
<td>Munjal M. Acharya, Lori-Ann Christie, Mary L. Lan, Erich Giedzinski, John R. Fike, Susanna Rosi, and Charles L. Limoli</td>
<td>Precis: Cognitive dysfunction is a common and serious side-effect of radiotherapy in brain cancer patients which the findings of this study suggest might be reversed by stem cell transplantation.</td>
</tr>
<tr>
<td>4846</td>
<td>Engagement of I-Branching β-1, 6-N-Acetylglucosaminyltransferase 2 in Breast Cancer Metastasis and TGF-β Signaling</td>
<td>Haijun Zhang, Fanyan Meng, Sherwin Wu, Bas Kreike, Seema Sethi, Wei Chen, Fred R. Miller, and Gueojun Wu</td>
<td>Precis: Findings reveal that breast cancer metastasis driven by TGF-β signaling relies upon the activity of a novel glycosyltransferase, identifying a tractable therapeutic target to the development of broad-acting treatments for advanced disease.</td>
</tr>
<tr>
<td>4857</td>
<td>The MeI/ELF4 Transcription Factor Fine Tunes the DNA Damage Response</td>
<td>Goro Sashida, Narae Bac, Silvana Di Giandomenico, Takashi Asai, Nadia Gurvich, Elena Bazzoli, Yan Liu, Gang Huang, Xinyang Zhao, Silvia Menendez, and Stephen D. Nimer</td>
<td>Precis: This mechanistic study shows how a member of the ETS transcription family fine tunes the DNA damage response that is orchestrated by the central regulatory kinase ATM, with implications for understanding cancer susceptibility and chemotherapeutic responses.</td>
</tr>
<tr>
<td>4866</td>
<td>CCI-779 Inhibits Cell-Cycle G2–M Progression and Invasion of Castration-Resistant Prostate Cancer via Attenuation of UBE2C Transcription and mRNA Stability</td>
<td>Hongyan Wang, Chunpeng Zhang, Anna Borick, Dayong Wu, Ming Chiu, Jennifer Thomas-Ahner, Zhong Chen, Hongyan Chen, Steven K. Clinton, Kenneth K. Chan, and Qianben Wang</td>
<td>Precis: This study of the mechanism of action of an mTOR inhibitor defines an androgen receptor target gene that may be a critical driver of advanced prostate cancers.</td>
</tr>
<tr>
<td>4877</td>
<td>Two Novel Determinants of Etoposide Resistance in Small Cell Lung Cancer</td>
<td>Malcolm H. Lawson, Natalie M. Cummings, Doris M. Rassl, Roslin Russell, James D. Brenton, Robert C. Rintoul, and Gillian Murphy</td>
<td>Precis: The identification of two new genes that mediate resistance to etoposide chemotherapy may offer rational strategies to prevent or relieve chemoresistance that causes the demise of patients suffering relapse.</td>
</tr>
<tr>
<td>4887</td>
<td>Notch Signaling in CD66⁺ Cells Drives the Progression of Human Cervical Cancers</td>
<td>Jeevisha Bajaj, Tessy Thomas Maliekal, Eric Vivien, Chitra Pattabiraman, Sweta Srivastava, H. Krishnamurthy, V. Giri, Deepa Subramaniam, and Sudhir Krishna</td>
<td>Precis: This study presents a powerful mechanistic rationale to inhibit Notch signaling as a generalized therapeutic strategy to treat metastatic cancers.</td>
</tr>
</tbody>
</table>
PREVENTION AND EPIDEMIOLOGY

Prediagnostic Serum Levels of Cytokines and Other Immune Markers and Risk of Non-Hodgkin Lymphoma
Mark P. Purdue, Qing Lan, Rachel Bagni, William G. Hocking, Dalsu Baris, Douglas J. Reding, and Nathaniel Rothman

Precis: This prospective study identifies elevations in serologic markers associated with future risk of non-Hodgkin lymphoma.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

SPARC Stimulates Neuronal Differentiation of Medulloblastoma Cells via the Notch1/STAT3 Pathway
Praveen Bhoopathi, Chandramu Chetty, Ranadheer Dontula, Meena Gujrati, Dzung H. Dinh, Jasti S. Rao, and Sajani S. Lakka

Precis: This study suggests a differentiation-inducing strategy to increase therapeutic responses in a commonly deadly form of pediatric brain cancer.

Insights into ALK-Driven Cancers Revealed through Development of Novel ALK Tyrosine Kinase Inhibitors
Christine M. Lovly, Johannes M. Heuckmann, Elisa de Stanchina, Heidi Chen, Roman K. Thomas, Chris Liang, and William Pao

Precis: Acquired resistance arising in ALK-fusion positive cancers to a first generation ALK tyrosine kinase inhibitor in clinical trials might be addressed by a novel, more potent, and specific second generation inhibitor.

Caveolin-1 Upregulation Mediates Suppression of Primary Breast Tumor Growth and Brain Metastases by Stat3 Inhibition
Wen-Tai Chiu, Hsueh-Te Lee, Feng-Ju Huang, Kenneth D. Aldape, Jun Yao, Patricia S. Steeg, Cheng-Yang Chou, Zhimin Lu, Keping Xie, and Suyun Huang

Precis: The mediator of brain metastasis identified in this study is likely a core modifier node of many cancer signaling pathways, since it functions in controlling the formation of plasma membrane lipid rafts that organize many cell surface adhesion and signaling complexes.

Poly(ADP-Ribose) Polymerase Inhibition Synergizes with 5-Fluorodeoxyuridine but not 5-Fluorouracil in Ovarian Cancer Cells
Amelia M. Huehls, Jill M. Wagner, Catherine J. Huntoon, Liyi Geng, Charles Erlichman, Anand G. Patel, Scott H. Kaufmann, and Larry M. Karnitz

Precis: An analysis of the checkpoint and DNA repair pathway responses activated by floxuridine reveals how to combine these existing chemotherapeutic agents with PARP inhibitors to achieve the best therapeutic efficacy.

Sorafenib Enhances Pemetrexed Cytotoxicity through an Autophagy-Dependent Mechanism in Cancer Cells

Precis: This study defines a novel combination of clinically approved drugs that may prove to be highly effective in the treatment of many types of solid tumors, prompting immediate clinical attention.

Effect of ON 01910.Na, an Anticancer Mitotic Inhibitor, on Cell-Cycle Progression Correlates with RanGAP1 Hyperphosphorylation
Irina A. Oussenko, James F. Holland, E. Premkumar Reddy, and Takao Ohnuma

Precis: This drug mechanism study offers evidence of a new therapeutic pathway that can achieve pathobiological selectivity for cancer cells.

Small-Molecule Anticancer Compounds Selectively Target the Hemopexin Domain of Matrix Metalloproteinase-9
Antoine Dufour, Nicole S. Sampson, Jian Li, Cem Kuscu, Robert C. Rizzo, Jennifer L. DeLeon, Jiziu Zhi, Nadia Jaber, Eric Liu, Stanley Zucker, and Jian Cao

Precis: Although early MMP inhibitors moved into clinical development were not successful, the central importance of MMPs in cancer invasion and metastasis has driven the development of later generation inhibitors that offer considerable therapeutic potential.
Positive Feedback Loop Between PI3K-Akt-mTORC1 Signaling and the Lipogenic Pathway Boosts Akt Signaling: Induction of the Lipogenic Pathway by a Melanoma Antigen
Yoshio Yamauchi, Keiko Furukawa, Kazunori Hamamura, and Koichi Furukawa

Precise: This study suggests a mechanistic explanation for why cancer cells synthesize high levels of cholesterol and fatty acids, which by promoting formation of plasma membrane lipid rafts can reinforce signaling events that sustain cancer cell survival.

Suppression of Apoptosis by PIF1 Helicase in Human Tumor Cells
Mary E. Gagou, Anil Ganesh, Ruth Thompson, Geraldine Phear, Cyril Sanders, and Mark Meuth

Precise: Findings define the function of a DNA helicase that is crucial for the viability of cancer cells under DNA replication stress, with potential implications for how to increase cancer chemosensitivity.

Notch Signaling Activated by Replication Stress–Induced Expression of Midkine Drives Epithelial–Mesenchymal Transition and Chemoresistance in Pancreatic Cancer
Cenap Gungör, Hlke Zander, Katharina E. Effenberger, Yogesh K. Vashist, Tatyana Kalinina, Jakob R. Izbicki, Emre Yekebas, and Maximilian Bockhorn

Precise: Findings suggest that overexpression of the growth factor Midkine plays a role in the inherent chemoresistance of pancreatic cancer cells, suggesting that depleting this factor might heighten their sensitivity to chemotherapy.

STAT3 Plays a Critical Role in KRAS-Induced Pancreatic Tumorigenesis
Ryan B. Corcoran, Gianmarco Contino, Vikram Deshpande, Alexandros Tzatsos, Claudius Conrad, Cyril H. Benes, David E. Levy, Jeffrey Settlement, Jeffrey A. Engelman, and Nabeel Bardeesy

Precise: Findings show that JAK2-STAT3 signaling is required for pancreatic cancer initiation, progression, and maintenance, and that this pathway predicts the response to JAK2 inhibitors in clinical development.

LETTERS TO THE EDITOR

Myeloid Suppressor Cells Regulate the Lung Environment—Letter
Momir Bosiljic, Melissa J. Hamilton, Judit P. Banath, Nancy E. LePard, Denise C. McDougal, Jessica X. Jia, Gerald Krystal, and Kevin L. Bennewith

Myeloid Suppressor Cells Regulate the Lung Environment—Response
Hannah H. Yan, Michael Pickup, Yanli Pang, Agnieszka E. Gorska, Zhaoyang Li, Anna Chytil, Yipeng Geng, Jerome W. Gray, Harold L. Moses, and Li Yang

Correction: Hsp27 Promotes Insulin-Like Growth Factor-I Survival Signaling in Prostate Cancer via p90Rsk-Dependent Phosphorylation and Inactivation of BAD

CORRECTION
ABOUT THE COVER

Tumor antigen-reactive CTLs by programming iPSCs infiltrated into tumor tissue. Tumor antigen TCR gene-transduced iPSCs were adoptively transferred into C57BL/6 mice, which were subjected to challenge with E. G7 tumor cells. On day 35 after tumor challenge, tumor tissues were examined for tumor-reactive T-cell infiltration by immunohistological staining. Tumor antigen-specific CTLs (red) infiltrated into lymphoma tissue (green). For details, see the article by Lei and colleagues on page 4742 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/14

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.