Immunoregulatory Molecule B7-H1 (CD274) Contributes to Skin Carcinogenesis

Yujia Cao, Lu Zhang, Pacharee Ritprajak, Fumihiko Tsushima, Pompan Youngnak-Piboonratanakit, Yosuke Kamimura, Masaaki Hashiguchi, and Miyuki Azuma

Abstract

B7-H1 (CD274), a member of the B7 family of coinhibitory molecules, is often induced in human tumors and its expression is closely correlated with a poor prognosis or higher malignancy grade. Tumor-associated B7-H1 is implicated in mechanisms of immune escape. Under inflammatory conditions, B7-H1 is also inducible in normal epithelial cells, but little is known about its involvement in the conversion of normal cells to tumor cells. We recently found that skin-specific expression of B7-H1 accelerates chemically induced carcinogenesis of squamous cell carcinoma (SCC), despite impaired skin inflammatory responses, in B7-H1 transgenic (B7-H1tg) mice. B7-H1tg-derived keratinocytes (KC) and SCCs exhibited a marked reduction of E-cadherin, and B7-H1tg–originated SCCs showed elevated expression of the transcription factors Slug and Twist, suggesting that B7-H1 overexpression in KCs promotes the epithelial–mesenchymal transition and accelerates carcinogenesis. This review discusses the diverse functions of B7-H1 in carcinogenesis and cancer progression, and considers future directions for developing cancer therapy targeting B7-H1.

Introduction

Antigen-specific T-cell responses are controlled by various cosignaling molecules that are responsible for T-cell activation and regulation (1, 2). In particular, 2 coinhibitory receptors, CTLA-4 (CD152) and PD-1 (CD279), act to induce and maintain peripheral tolerance. Two ligands of PD-1, B7-H1 (PD-L1, CD274) and B7-DC (PD-L2, CD273), have been identified. However, their functions are controversial, and both costimulatory and coinhibitory functions in T-cell responses have been reported (1, 2). Nevertheless, most reports strongly suggest that B7-H1 works as a dominant ligand in PD-1–dependent immune suppression. Ligation of PD-1 suppresses effector T-cell function by inhibiting cell proliferation and the production of cytokines such as interleukin 2 (IL-2) and IFN-γ, and by inducing apoptosis or exhaustion.

B7-H1 is expressed on various types of lymphoid cells and is further upregulated upon cell activation. B7-H1 is also found in cells of nonlymphoid tissues, including pancreatic islet cells; smooth muscle cells; endothelial cells in the heart and liver; epithelial cells in the cornea, colon, and skin; and trophoblasts in the placenta, where its expression is induced by inflammatory cytokines such as IFN-γ at local disease sites. Studies using B7-H1–deficient mice or treatment with antagonistic anti-B7-H1 monoclonal antibody (mAb) have suggested that tissue-associated B7-H1 interacts with PD-1 on effector/pathogenic T cells, resulting in T-cell regulation in allotransplantation and autoimmunity. These results suggest that nonlymphoid tissue-associated B7-H1 is involved in the maintenance and induction of peripheral tolerance at local disease sites.

The skin and type II mucosal surfaces, including those of the oral mucosa, cornea, and vagina, are covered by stratified squamous epithelial cells known as keratinocytes (KC), which are important for protection against foreign pathogens and internal and external stimuli (3). Various epithelial stimuli induce KC activation and initiate early local inflammatory responses. Antigen-specific responses are then primed and amplified in secondary lymphoid organs, resulting in the recruitment of effector T cells and subsequent inflammatory responses at the local sites. Persistent inflammation on skin or mucosal surfaces may induce abnormal proliferation and apoptosis of KCs, and, in some cases, atypical changes that promote carcinogenesis. We previously reported that B7-H1 is induced on KCs of the oral mucosa and skin in patients with lichen planus, a chronic inflammatory mucocutaneous disease characterized by massive T-cell infiltration under the epithelium (4), and on KCs of hapten-painted skin in a murine model of contact hypersensitivity (5, 6). The addition of IFN-γ upregulated the level of B7-H1 on cultured KCs, and B7-H1–expressing KCs directed inhibited the proliferative

Authors’ Affiliations: Departments of 1Molecular Immunology and 2Oral and Maxillo-facial Surgery, Tokyo Medical and Dental University, Tokyo, Japan; and Departments of 3Oral Medicine and 4Microbiology and Immunology, Chulalongkorn University, Bangkok, Thailand

Note: M. Hashiguchi is in the Department of Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan

Corresponding Author: Miyuki Azuma, Department of Molecular Immunology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Phone and Fax: 03-5803-5935; E-mail: miyuki.mim@tmd.ac.jp

doi: 10.1158/0008-5472.CAN-11-0527

©2011 American Association for Cancer Research.

www.aacrjournals.org
response and IFN-γ production by cutaneous effector T cells
(5, 6). These findings suggest the involvement of B7-H1 in the
regulation of local inflammatory responses.

B7-H1 is also expressed in various human solid tumors,
including squamous cell carcinomas (SCC) of the lung, esophagus,
and head and neck; other types of carcinomas of the colon,
avoaries, bladder, and breast; melanomas; and gliomas. Human SCC cell lines also express various levels of B7-H1, and
its expression is further upregulated in responses to the
common inflammatory cytokines IFN-γ, TNF-α, and IL-1
(5, 7). Tumor-associated B7-H1 has been shown to suppress
T-cell effector functions such as cytotoxic activity, prolifera-
tion, and cytokine production, and to deplete T cells in tumor
microenvironments (7–9). Furthermore, clinicopathologic
analyses showed that B7-H1 expression in solid tumors was
associated with poor survival, a higher malignancy grade, large
tumor size, greater metastasis, a higher recurrence rate, and
fewer tumor-infiltrating CD8+ T cells. In ovarian and esoph-
geal cancers and renal cell carcinomas, B7-H1 status has been
shown to be independent of prognostic factors. The absence
of PD-1 or the blockade of PD-1 or B7-H1 in mice accelerated
tumor eradication and inhibited tumor metastasis (7–9).
Overall, tumor-associated B7-H1 appears to greatly contribute
to tumor escape from immune surveillance.

Key Findings

We initially predicted that B7-H1–mediated immune regu-
ation would have an influence on carcinogenesis because
inflammatory mediators, growth factors, and inflammatory
cells have been extensively implicated in tumor promotion,
invasion, angiogenesis, and metastasis. Based on the afore-
mentioned concept of inflammation-related carcinogenesis,
we hypothesized that B7-H1 that is induced on normal
epithelial cells in inflammatory conditions may control the
transformation of normal cells to malignant cells. Surprisingly,
we obtained the opposite result. B7-H1 transgenic (B7-H1tg)
mice, in which epidermal KCs overexpress B7-H1 (6, 10),
exhibited markedly increased tumor formation in a methyl-
cholanthrene (MCA)-induced skin tumor model (10). B7-H1tg
mice showed no skin or type II mucosal abnormalities without
stimulation. The intradermal injection of an MCA/olive oil
eмуlsion induced an initial inflammatory response character-
ized by a rapid proliferation of KCs, abundant infiltration of
cells, and production of proinflammatory cytokines such as
IL-1, IFN-γ, TNF-α, and IL-6. These inflammatory responses
were clearly impaired in B7-H1tg mice, and the anti-inflamma-
tory cytokine IL-10 was inversely enhanced, showing the
inhibitory role of KC-associated B7-H1 in skin inflammatory
responses. Skin inflammatory responses induced by topical
12-O-tetradecanoylphorbol-13-acetate (TPA) painting were
also reduced in B7-H1tg skin, and this reduction was reversed
by the blockade of B7-H1 or PD-1 using antagonistic mAbs
(10). These results indicate that KC-associated B7-H1 lessens
skin inflammatory responses in a B7-H1–PD-1 pathway-
dependent manner.

Of interest, we found atypical changes consisting of dis-
turbed alignment and chromatin condensation in the basal
cells of B7-H1tg skin. This manifestation was observed at an
eyar time point before the recruitment of inflammatory cells.
Thus, these changes may be caused by intrinsic changes in
B7-H1tg KCs. In support of this finding, the incidence of
edermal tumor formation (e.g., SCCs and basal cell tumors)
at 7 weeks after MCA injection was markedly increased, by
~3-fold, in B7-H1tg mice compared with control mice. At this
time point, the tumor cell colonies were very small, and no
infiltration of T lymphocytes was seen in the tumor environ-
ment. An extended observation时间 revealed that the survival
rate at 28 weeks after MCA injection was 3-fold less in B7-H1tg
mice compared with control mice. Thus, the differences in the
tumor incidence at 7 weeks and the final survival rate at
28 weeks were almost identical, suggesting that the poor
survival in B7-H1tg mice was attributable to an accelerated
rate of tumor formation.

Our findings of early atypical changes in B7-H1tg basal cells
and accelerated SCC formation in B7-H1tg mice prompted us
to focus on molecules involved in the epithelial–mesenchymal
transition (EMT). Proinflammatory mediators and/or the
Snail family of transcriptional repressors downregulate
E-cadherin and upregulate N-cadherin, resulting in the pro-
motion of EMT. The accelerated EMT promotes malignant
transformation. We found that E-cadherin expression was
costitutively downregulated in B7-H1tg KCs, and that the
impaired expression was persistent even after cell transforma-
tion. The expression levels of the transcription factors Slug
and Twist, which promote EMT, were markedly increased after
SCC conversion occurred, but these levels were preferentially
upregulated in B7-H1tg–derived SCCs (10). These results
suggest that B7-H1 overexpression in KCs regulates EMT
and promotes skin carcinogenesis by downregulating
E-cadherin expression.

Implications

It is not yet understood how B7-H1 induction regulates
EMT. The overexpression of B7-H1 may influence some sig-
aling machinery within a cell and cause phenotypic changes
before malignant conversion occurs. This process would seem
to be PD-1 independent. Inflammatory mediators such as IL-1,
cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and TGF-
β and its related signaling pathways have been shown to
contribute to the modulation of E-cadherin in SCCs (11–13). In
a murine model of SCCs, upregulation of the transcription
factors Snail and Slug was mediated by activation of the
mitogen-activated protein kinase (MAPK)/extracellular sig-
nal-regulated kinase (ERK) signaling cascade (14), and the
activation of this pathway is required for transcriptional
repression of E-cadherin (15, 16).

Several signaling molecules related to the upregulation
of B7-H1 have been reported. In a human lung tumor cell line,
IFN-γ upregulated B7-H1 by initiating interferon regulatory
factor-1 (IRF-1), a transcription factor with 2 binding sites
on the B7-H1 promoter, via the Janus kinase (JAK)/signal
transducers and activators or transcription (STAT) pathway
(17). The mitogen-activated protein kinase (MEK)/ERK
and MyD88/TRAF6 pathways are involved in IFN-γ and

Toll-like receptor (TLR)-mediated expression of B7-H1 in multiple myeloma (18), and TLR4 induces B7-H1 through the MAPK pathways in bladder cancer cells (19). In breast cancer, the expression of B7-H1 is associated with the proliferation marker Ki-67 and cell-cycle progression (20). In the mouse mastocytoma cell line P815, B7-H1–mediated reverse signaling was shown to induce resistance to apoptosis (21). B7-H1 expression increased post-transcriptionally in human glioma after the loss of tumor suppressor gene PTEN and activation of the phosphatidylinositol-3-OH kinase (PI3K)/AKT/mTOR pathway (22). In human lymphomas, MEK/ERK, STAT3, and PI3K, which may play central roles in NPM/ALK-mediated oncogenesis, are differentially involved in B7-H1 expression; for example, activated STAT3 appears to bind to the B7-H1 promoter (23, 24). Consistently, STAT3 activation has been shown to be critical for induction of B7-H1 in human monocyte-derived tolerogenic dendritic cells (25). The ERK/PI3K and ERK/MAPK pathways differentially regulate B7-H1 expression in human dendritic cells (26). The aforementioned signaling molecules and transcription factors (IRF-1, Ki67, PI3K, AKT, mTOR, MEK, MAPK, ERK, and STAT3) have also been shown to be involved in carcinogenesis by regulating the proliferation/cell cycle, apoptosis/survival, and adhesion/migration. Thus, it is possible that B7-H1–inducing signals influence proteins related to EMT and carcinogenesis. Future studies are required to identify the exact link between signals for B7-H1 induction and E-cadherin repression, as well as the mechanisms of regulation of B7-H1 expression by complex interactions between environmental factors and intracellular signaling.

Figure 1. Proposed mechanisms of the involvement of B7-H1 in carcinogenesis and cancer progression. A and B, in healthy skin, B7-H1 is transiently induced by inflammatory stimuli, and the induced B7-H1 regulates inflammation. KC-associated B7-H1 causes a negative feedback loop for maintaining homeostasis. C, continuous or repeated stimulation may cause intrinsic changes within a cell that is expressing B7-H1 at high levels. B7-H1–inducing signals may influence EMT- or carcinogenesis-related molecules, resulting in cancerous changes in a cell. D, once malignant conversion occurs, tumor-associated B7-H1 may play key roles in immune escape. The direct involvement of B7-H1–expressing tumors in tumor invasion and metastasis formation will be examined in future studies.
pathways at both the transcriptional and post-transcriptional levels.

Future Directions

In healthy tissues, B7-H1 is transiently induced by inflammatory stimuli, and the induced B7-H1 functions as an anti-inflammatory molecule to calm the inflammation. B7-H1 and IFN-γ, which is a key factor in inducing B7-H1, are connected by a regulatory feedback loop (Fig. 1A and B). However, continuous or repeated stimulation may cause intrinsic changes within a cell that is expressing B7-H1 (Fig. 1C), thus promoting carcinogenesis. Once malignant conversion occurs, tumor-associated B7-H1 may play key roles in immune escape (Fig. 1D). The direct involvement of B7-H1-expressing tumors in tumor invasion and metastasis formation will be examined in future studies. In our B7-H1tg mice models, we observed dysregulation of E-cadherin expression, but not PTEN, Cyclin D1, and Bcl-2 expression, between wild-type and B7-H1tg-derived SCCs. Signaling molecules involved in B7-H1 expression may differ among tissue types and between humans and mice. Our experimental approach has certain limitations. In comparison with mouse tumor models, human tumor development requires a much longer period of time for malignant conversion and tumor progression to occur. During this period, B7-H1 expression and B7-H1-mediated signaling in each tissue are differentially affected by various factors in humans. The results we obtained using transgenic expression of B7-H1 may not exactly reflect endogenous B7-H1 expression, because the level of transgenic expression is much higher than that of endogenous expression. Nevertheless, our findings will help to elucidate the induction and role of B7-H1 in malignant cells. Future simultaneous analyses of EMT-related proteins and B7-H1 protein expression at the invasive front of human tumors may reveal the clinical relevance of our findings.

Ongoing clinical trials are assessing the usefulness of agents that block interactions between PD-1 and B7-H1 as anticancer drugs (27, 28). An evaluation report for a phase I trial of a humanized monoclonal anti-PD-1 Ab (MDX-1106) involving 39 patients with advanced treatment-refractory solid tumors showed that immune-related adverse effects, which were often experienced with anti-CTLA-4 (CD152) Ab treatment, were relatively mild, and the treatment resulted in 1 complete response (colorectal cancer) and 2 partial responses (melanoma and renal cell carcinoma) (28). Furthermore, the efficacy of treatment seemed to correlate with tumor cell surface B7-H1 expression. Promising results were also obtained in a similar phase I trial involving 106 patients with metastatic solid tumors, and phase II and phase III trials are now under evaluation. A clinical trial of B7-H1 blockade by humanized anti-B7-H1 mAb (MGX-1105) in patients with advanced or recurrent solid tumors (ClinicalTrials.gov Identifier: NCT00729664) is also underway. These anticancer agents may effectively inhibit B7-H1-PD-1 interactions between PD-1-expressing T cells and B7-H1-expressing tumors or antigen-presenting cells. However, this strategy does not influence intratumoral signaling by B7-H1. The active regulation of B7-H1 expression may be required to prevent B7-H1-induced changes in cells and thereby reduce cellular malignancy. This would necessitate additional therapeutic strategies, such as the use of signaling inhibitors for B7-H1 expression or RNA interference targeting B7-H1. Further studies are needed to fully understand the roles of B7-H1 in carcinogenesis and tumor progression.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

Japan Society for the Promotion of Science (M. Hashiguchi and M. Azuma), and Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (M. Azuma).

Received February 14, 2011; revised March 30, 2011; accepted March 30, 2011; published OnlineFirst July 5, 2011.

References

Immunoregulatory Molecule B7-H1 (CD274) Contributes to Skin Carcinogenesis

Yujia Cao, Lu Zhang, Pacharee Ritprajak, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-0527

Cited articles
This article cites 28 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/14/4737.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/71/14/4737.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.