SPARC Stimulates Neuronal Differentiation of Medulloblastoma Cells via the Notch1/STAT3 Pathway

Praveen Bhoopathi1, Chandramu Chetty1, Ranadheer Dontula1, Meena Gujrati2, Dzung H. Dinh3, Jasti S. Rao1,3, and Sajani S. Lakka1

Abstract

Secreted protein acidic and rich in cysteine (SPARC) participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell–matrix interactions. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we show that adenoviral-mediated overexpression of SPARC cDNA (Ad-DsRed-SP) elevated the expression of the neuronal markers NeuN, nestin, neurofilament, and MAP-2 in medulloblastoma cells and induced neuron-like differentiation. SPARC overexpression decreased STAT3 phosphorylation; constitutive expression of STAT3 reversed SPARC-mediated expression of neuronal markers. We also show that Notch signaling is suppressed in the presence of SPARC, as well as the Notch effector basic helix-loop-helix (bHLH) transcription factor hairy and enhancer of split 1 (HES1). Notch signaling was found to be responsible for the decreased STAT3 phosphorylation in response to SPARC expression. Furthermore, expression of SPARC decreased the production of interleukin 6 (IL-6) and supplemented IL-6–abrogated, SPARC-mediated suppression of Notch signaling and expression of neuronal markers. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed increased immunoreactivity for the neuronal markers and a decrease in Notch1 expression and phosphorylation of STAT3. Taken together, our results suggest that SPARC induces expression of neuronal markers in medulloblastoma cells through its inhibitory effect on IL-6–regulated suppression of Notch pathway–mediated STAT3 signaling, thus giving further support to the potential use of SPARC as a therapeutic candidate for medulloblastoma treatment. Findings show that SPARC-induced neuronal differentiation can sensitize medulloblastoma cells for therapy. Cancer Res; 71(14); 4908–19. ©2011 AACR.

Introduction

Medulloblastoma is a malignant tumor of the cerebellum. The median age at diagnosis is 5 years, with the age range extending into young adulthood. Primary management consists of surgical resection followed by radiation therapy and chemotherapy. Current therapies have serious short-term and long-term adverse effects, including neurocognitive deficits, endocrinopathies, sterility, and the risk of developing second- or third-year adverse effects, including neurocognitive deficits, endocrinopathies, sterility, and the risk of developing second- or third-long-term adverse effects, including neurocognitive deficits, endocrinopathies, sterility, and the risk of developing second- or third-

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

P. Bhoopathi and C. Chetty contributed equally.

Corresponding Author: Sajani S. Lakka, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois

doi: 10.1158/0008-5472.CAN-10-3395

©2011 American Association for Cancer Research.
Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM40) is a 32-kDa calcium-binding glycoprotein that affects a wide variety of cellular processes, including counter-adhesion, extracellular matrix remodeling (7), cell migration (8), and angiogenesis (7, 9). In adult tissues, expression of SPARC is highest in tissues undergoing active matrix remodeling, where it is hypothesized to function as a negative regulator of growth factor activity and has been shown to possess antiadhesive and antiproliferative properties (10–12). SPARC is also thought to play a critical role in epithelial differentiation (13), parietal endoderm differentiation, cardiomyogenesis in embryoid bodies (14), and differentiation of myoblasts (15). In addition, SPARC was shown to play a role in neural and/or glial differentiation (16). Furthermore, previous studies have shown that Daoy and D283 medulloblastoma cells are arrested along the neuronal differentiation pathway (17).

In a recent study, we established that SPARC expression induced apoptosis and regressed preestablished tumor growth in medulloblastoma cells (18). In the present study, we first investigated the effect of endogenous expression of SPARC by using adenoviral-mediated delivery of SPARC full-length cDNA on the expression of neuronal markers in medulloblastoma cells in vitro and in vivo. Furthermore, we show the role of Notch1/STAT3 in SPARC-induced neuronal marker expression in human medulloblastoma cell lines. These data define a new role for SPARC as an inducer of neuronal differentiation and could lead to a favorable course of treatment of medulloblastoma patients and it may sensitize tumors for therapy.

Materials and Methods

Cell cultures

We used the Daoy (HTB-186), D283 Med (HTB-185), UW228, D425 cell lines and primary medulloblastoma cells (H2405 and H2411) for this study. Daoy and D283 cells were authenticated by DNA profile, using the short tandem repeat (STR), cytogenetic analysis, and isoenzymes and obtained from American Type Culture Collection (ATCC). D425, H2405, and H2411 cells were kindly provided by Dr. Darell D. Bigner (Duke University) (19, 20). At the third or fourth passage, cells were frozen and these frozen stocks were used for further experimental studies up to the tenth passage to obtain consistent results. Daoy cells were cultured in Advanced-MEM, and D283, D425, H2405, and H2411 were cultured in Improved-MEM (Zn Option) and UW228 cells were cultured in RPMI-1640. All of these media were supplemented with 10% FBS, 2 mmol/L l-glutamine, 2 mmol/L sodium pyruvate, 100 units/mL penicillin, and 100 μg/mL streptomycin. Cells were maintained in a humidified atmosphere containing 5% CO2 at 37°C.

Antibodies and reagents

Antibodies against SPARC, STAT3, phosphorylated STAT3 (pSTAT3; Tyr705), pSTAT3 (Ser727), Notch1, Notch2, Notch3, hairy and enhancer of split 1 (HES1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Santa Cruz Biotechnology), nestin, mitogen-activated protein 2 (MAP-2), neurofilament (NF; Novus Biologicals), NeuN (Millipore), NeuN (Invitrogen Corporation), MAP-2 (Bethyl Laboratories, Inc.), neutralizing interleukin 6 (IL-6) antibody (Bovision), Calcium Green-2-AM (Invitrogen), and N-(3,5-difluorophenyl)acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT; Sigma), paraflin-embedded human medulloblastoma tumor sections (a kind gift from Dr. Dan Fults, Comprehensive Care for Brain and Spine Disorders, Salt Lake City, UT) were used in this study. All other reagents were of analytic reagent grade or better.

Adenovirus construction and adenoviral infection

We constructed adenoviral vectors carrying full-length human SPARC cDNA (Ad-DsRed-SP) and an empty vector (Ad-DsRed) using Adeno-X ViraTrak Expression System-2 (Clontech Laboratories) as described previously (21). The generation, amplification, and titer of the adenovirus were conducted according to previously described procedures (21). Infection with recombinant viruses was accomplished by exposing cells to adenovirus in serum-free cell culture medium for 1 hour followed by the addition of serum-containing medium. Cells were then incubated for various time periods as detailed in the following experiments.

Immunoblotting

Immunoblot analysis was conducted as described previously (22). Briefly, cells were infected with mock, 100 multiplicity of infection (MOI) of Ad-DsRed, or various MOI of Ad-DsRed-SP and incubated for 36 hours at 37°C. Cell lysates were prepared and equal amounts of protein was resolved on SDS-PAGE gel and transferred on to polyvinylidene difluoride membrane. Next, the blot was blocked and probed overnight with primary antibody at 4°C followed by horseradish peroxidase (HRP) conjugated secondary antibody for 1 hour, and signals were detected using enhanced chemiluminescence reagent.

Transfection with plasmids

Plasmid-expressing constitutively active STAT3 (pSTAT3-C) was obtained from Addgene Inc. (plasmid 8722). Plasmids expressing IL-6 and HES1 were obtained from Origene Technologies. All transfection experiments were conducted with FuGeneHD (Roche) transfection reagent according to the manufacturer’s protocol.

Intracellular Ca2+ monitoring

Daoy/D283 cell were plated in 96-well plates and infected with mock, 100 MOI of Ad-DsRed or 100 MOI of Ad-DsRed-SP for 36 hours and measured intracellular Ca2+ concentration as described previously (23). The Calcium Green-2-AM fluorescence was expressed as (Fmax − Fmin)/Fmin, where Fmax was the maximum and Fmin the minimum fluorescence measured in each well.

Immunofluorescence and immunohistochemical analyses

We used a previously described protocol with minor changes (24). Briefly, the cells were infected with adenovirus.
as above for 36 hours. Cells were fixed, permeabilized, blocked, and incubated with primary antibody overnight at 4 °C, followed by fluorescein isothiocyanate–conjugated secondary antibody for 1 hour. Finally, cells were mounted with Vectashield mounting medium (Vector Labs). The results were documented using fluorescence microscope. For immunohistochemical analysis, tissue sections (4–5 μm thick) were deparaffinized, rehydrated, washed with PBS, permeabilized, and incubated overnight with primary antibodies. Tissue sections were then incubated with HRP-conjugated secondary antibodies, followed by 3,3′-diaminobenzidine peroxidase substrate (Sigma) solution, and then counterstained with hematoxylin and mounted. The images were processed as described previously (24).

Intracranial tumor model

The animal experiments were carried out as described previously by us (24). D425 (1 × 10^7 cells/10 μL PBS) cells were stereotactically implanted. After 14 days of tumor cell implantation, the animals were randomized into 3 groups (10 mice/group). Each mouse received 3 intratumoral injections on days 15, 17, and 19 with PBS, Ad-DsRed [5 × 10^7 plaque forming units (PFU)] or Ad-DsRed-SP (5 × 10^6 PFU) in 10 μL of volume. Animals were monitored for up to 90 days, which is when we arbitrarily terminated the experiment. Mice brains were fixed in 10% buffered formalin and embedded in paraffin. Tissue sections (5 μm thick) were obtained from the paraffin blocks and stained with hematoxylin and eosin (H&E) by using standard histologic techniques. Tissue sections were also subjected to immunostaining as described above.

Statistical analysis

All the data are expressed as mean ± SD. Statistical analysis was conducted using the Student’s t test or a one-way ANOVA. P < 0.05 was considered significant.

Results

SPARC induces neuronal differentiation of medulloblastoma cells

We observed very low or minimal staining for SPARC in human medulloblastoma tissue samples compared with normal cerebellum (Fig. 1A). Dual immunoassay of these tissue samples for neuronal markers and SPARC indicated that very few cells stained positive for neuronal makers and that SPARC-expressing tumor cells stained positive for NeuN and nestin neuronal markers (Fig. 1B and C). Furthermore, previous studies have shown that Daoy and D283 medulloblastoma cells are arrested along the neuronal differentiation pathway (17). We therefore determined whether SPARC induced the expression of neuronal markers in Daoy, D283, UW228, and D425 medulloblastoma cell lines as well as H2405 and H2411 primary medulloblastoma cells in vitro and in vivo. To examine the effect of SPARC expression on neuronal differentiation, we used an adenoviral vector–expressing SPARC cDNA (Ad-DsRed-SP) in above cell lines. Medulloblastoma cells infected with Ad-DsRed-SP showed obvious neurite extensions and classic neuronal features, such as shrinkage of the cell body, and these cells were distinguished by highly refractive cell bodies with neuron-like processes terminating in structures that resembled growth cones (Fig. 2A; Supplementary Fig. S1). In contrast, few if any empty vector (Ad-DsRed)-infected cells differentiated into neurons under the same conditions (Fig. 2A). These findings suggest that the medulloblastoma cells treated with Ad-DsRed-SP might have differentiated into neuron-like cells. To further characterize this neuronal induction phenomenon, we examined neuronal marker expression by immunoblot and immunocytochemical analyses. The cells that exhibited contracted cell bodies and processes showed clear staining for the neuronal-specific markers NeuN, nestin, MAP-2, and NF. In contrast, the flat, unresponsive medulloblastoma cells remained unstained (Fig. 2B). The percentage of cells positively reactive for NeuN, nestin, MAP-2, and NF was 52% ± 2.5%, 55% ± 2.3%, 56% ± 3.8%, and 53% ± 2.4%, respectively. Immunoblotting was conducted to confirm these results, and the protein analysis showed a marked correlation with the results of the immunocytochemical analysis (Fig. 2C; Supplementary Fig. S2). SPARC expression induced a statistically significant increase (P < 0.05) of up to 4-fold in the protein expression levels of all the markers as compared with empty vector-treated cells in medulloblastoma cell lines. Similar to adenoviral-mediated expression of SPARC cDNA, recombinant human SPARC protein (rhSPARC) induced neuron-like cell morphology and expression of neuronal markers in medulloblastoma cell lines (Supplementary Fig. S3).

Activity-dependent changes in neuronal processes such as synaptic plasticity and neuronal survival are mediated in large part through elevations in intracellular calcium levels. In many cases, this involves stimulation of calcium influx, particularly via voltage-operated L-type channels or receptor-operated N-methyl-D-aspartate channels (25). To test the neuronal nature of the differentiated cells from Daoy/D283 treated with Ad-DsRed-SP, we examined the changes in intracellular free Ca²⁺ concentration, [Ca²⁺]ᵢ, in response to depolarization of membrane potential with superfusion of high KCl (100 mmol/L), using Calcium Green-2-AM. Figure 3A shows that intense fluorescence in Ad-DsRed-SP-infected cells compared with mock and Ad-DsRed–infected Daoy/D283 cells. We next conducted dual-wavelength excitation fluorimetry using in Calcium Green-2-AM–loaded cells. High KCl bathing solution for 60 seconds increased [Ca²⁺]ᵢ in differentiated neuronal cells (Fig. 3B). In contrast, cells treated with mock and Ad-DsRed had no changes in [Ca²⁺]ᵢ, by membrane depolarization with high KCl.

SPARC expression decreases STAT3 signaling

STAT3 signaling has been shown to regulate cell fate determination, renewal, and differentiation in various cells (26). We evaluated whether suppression of STAT3 cell signaling machinery could modulate the neuronal fate of SPARC-expressing medulloblastoma cells. To elucidate the effects of SPARC overexpression on STAT3 signaling, cells were infected with Ad-DsRed-SP for 36 hours and homogenized in lysis buffer. Then, lysates were immunoblotted with antibodies...
against pSTAT3. Densitometric analysis revealed that the STAT3 phosphorylation was reduced significantly (70.5% in Daoy cells and 67% in D283 cells) as compared with the mock or empty vector-infected cells (Fig. 4A). Furthermore, SPARC expression in primary medulloblastoma cells (H2405 and H2411), D425, and UW228 cells also suppressed STAT3 phosphorylation (Supplementary Fig. S2). We therefore speculated that suppression of STAT3 influenced the differentiation fate of the medulloblastoma cells.
of neural stem cells. To confirm this notion, we transfected cells with plasmid-expressing pSTAT3-C along with Ad-DsRed-SP infection and total cell lysates. After inoculation, cells were homogenized in lysis buffer and immunoblotted with antibodies against MAP-2, NF, NeuN, and nestin. As illustrated in Figure 4B, transfection with plasmid-expressing STAT3-C induced STAT3 phosphorylation in Ad-DsRed-SP–treated cells comparable with that of the mock and empty vector-transfected cells. Densitometric analysis indicated that pSTAT3-C transfection reversed SPARC-induced MAP-2, NF, NeuN, and nestin neuronal markers by up to 50% (P < 0.05) in Ad-DsRed-SP–infected cells. Furthermore, STAT3 siRNA transfection decreased STAT3 levels in Daoy/D283 cells and induced neuronal markers (Supplementary Fig. S4). These results clearly indicate the role of STAT3 inhibition in the differentiation of medulloblastoma cells. Taken together, these data suggested that STAT3 regulates the expression of neuronal markers.

SPARC induces expression of neuronal markers by blocking Notch signaling

Blockade of Notch signaling, a condition known to induce neuronal differentiation, represses inhibitory basic helix-loop-helix transcription factor-1, HES1 expression (27). It was shown
that STAT3 is activated in the presence of active Notch, as well as the Notch effectors HES1 and HES5 (28). We therefore examined the effects of Ad-DsRed-SP infection on the expression of Notch family members (Notch1 and 2) and HES1 in medulloblastoma cells. Immunoblot analysis revealed that Notch1 and Notch2 were suppressed in a dose-dependent manner reaching about 75% inhibition in Daoy and 70% inhibition in D283 cells at 100 MOI Ad-DsRed-SP infection when compared with mock or Ad-DsRed controls (Fig. 5A). Similarly, HES1 was inhibited by 68% in Daoy and 65% in D283 (P < 0.05) cells infected with Ad-DsRed-SP as compared with mock or Ad-DsRed controls (Fig. 5A). Similarly, SPARC overexpression in the primary medulloblastoma cells (H2405 and H2411), D425, and UW228 cell lines lead to decreased Notch1 and HES1 expression (Supplementary Fig. S2). Because we observed that STAT3 inhibition contributes to the expression of neuronal markers in SPARC-overexpressed cells, we therefore used HES1 cDNA to determine whether HES1 expression is necessary for STAT3-mediated induction of neuronal markers in SPARC-overexpressed cells.

Effects of SPARC siRNA on Notch expression

To confirm that SPARC can induce neurogenesis in medulloblastoma cells via Notch1-mediated HES1 signaling, we examined the effects of SPARC siRNA (SP-siRNA) on the expression of Notch family members and neuronal markers in medulloblastoma cells. Figure 5C indicates that infection with an adenoviral vector encoding SP-siRNA decreased SPARC levels as compared with mock or control siRNA–treated cells. Along with SPARC reduction, there was induction of Notch1, HES1 expression, and STAT3 phosphorylation and suppression of the expression of NeuN and MAP-2 neuronal markers in SP-siRNA–treated cells (Fig. 5C). Blocking Notch1 using a known γ-secretase inhibitor DAPT (29) in SP-siRNA–treated cells suppressed HES1 and STAT3 phosphorylation and induced the expression of neuronal markers (Fig. 5C). Taken together, these results suggest that SPARC-induced neuronal differentiation by blocking Notch-mediated STAT3 phosphorylation.

IL-6 regulates Notch-mediated modulation of neuronal markers in SPARC-overexpressed medulloblastoma cells

Previous studies show that SPARC expression attenuated IL-6 secretion (30) and that IL-6 upregulates Notch signaling...
Therefore, we examined the role of IL-6 in SPARC-induced Notch signaling and expression of neuronal markers. Immunoblot analysis for IL-6 expression indicates that SPARC overexpression decreased IL-6 in a dose-dependent manner in Daoy, D283, D425, and UW228 cell lines and primary medulloblastoma cells (H2405 and H2411; Fig. 6A; Supplementary Fig. S2). To better understand the role of IL-6-mediated effects on neuronal markers in SPARC-expressed cells, we overexpressed IL-6 in SPARC-overexpressed medulloblastoma cells. Figure 6B indicated that Notch1 expression increased by 65% and 60% in IL-6 and SPARC-overexpressed cells as compared with only SPARC-overexpressed medulloblastoma cells. Consequently, the expression of neuronal markers MAP-2, NF, and NeuN
was also decreased by about 65%, 63%, and 60%, respectively, in cells overexpressed with IL-6 and SPARC compared with only SPARC-overexpressed cells (Fig. 6B; P < 0.05), suggesting that SPARC-mediated suppression of IL-6 leads to suppression of Notch1 expression, which, in turn, leads to induction of neuronal markers. To confirm the role of IL-6 in Notch signaling–mediated expression of neuronal markers in SPARC-expressed cells, we...
conducted parallel experiments using SP-siRNA. Figure 6C indicates that SP-siRNA suppressed SPARC levels when compared with mock or control siRNA–treated cells. Suppression of SPARC using SP-siRNA–induced IL-6 and Notch1 expression by 2- to 3-fold compared with control siRNA–treated cells. Consequently, the expression of neuronal markers MAP-2, NeuN, and NF was decreased by 60% to 70% in SP-siRNA–treated cells. To further confirm that IL-6 mediates Notch1
suppression, which, in turn, regulates the expression of neuronal markers in SPARC-modulated cells, we blocked IL-6 activity by using neutralizing antibodies and determined the levels of Notch1 and neuronal markers. IL-6–neutralizing antibody suppressed Notch1 and induced the expression of neuronal markers in SP-siRNA–treated cells (Fig. 6C), suggesting that SPARC-mediated effects on Notch1 regulation are mediated by IL-6.

In summary, these results suggest that the inhibitory effect of SPARC on IL-6 leads to Notch-mediated expression of neuronal markers in SPARC-overexpressed cells.

SPARC-mediated expression of neuronal markers in vivo

We have previously shown that SPARC expression inhibits medulloblastoma tumor growth in vivo in an intracranial model (18). The present findings raise the question of whether the effects of SPARC on tumor growth inhibition are related to the effect of SPARC on neuronal differentiation in vivo. Immunohistochemical analysis was conducted on established tumors from mice implanted with D425 medulloblastoma cells and treated with mock, Ad-DsRed, or Ad-DsRed-SP with antibodies specific to detect neuronal markers of human origin. The results show a clear increase in the expression of neuronal markers MAP-2, NeuN, nestin, and NF in tumor sections from Ad-DsRed-SP–treated mice as compared with sections from mock and Ad-DsRed–treated animals, thereby suggesting that SPARC expression induced the expression of neuronal markers in vivo (Fig. 7). To determine whether SPARC regulates Notch and STAT3 phosphorylation in vivo, phosphorylation of STAT3 and Notch1 expression was measured by immunohistochemical analysis. Consistent with the in vitro results, a decrease in cleaved Notch1 and phosphorylation of STAT3 was found in Ad-DsRed-SP–treated tumors (Fig. 7).

Discussion

Medulloblastoma show a tremendous clinical heterogeneity, and the degree of neuronal tumor cell differentiation influences patient outcome (4). Several studies show that SPARC induces differentiation; however, no studies have shown the functional mechanism by which SPARC induces neuronal differentiation in tumor cells. In the present study, we show that SPARC expression, using an adenoviral vector–expressing SPARC cDNA (Ad-DsRed-SP), induced neuronal differentiation in medulloblastoma tumor cells. Furthermore, we show the molecular mechanisms that govern SPARC-induced neuronal markers and discuss the potential clinical impact of SPARC on medulloblastoma tumor genesis.

SPARC expression induced the expression of neuronal markers in medulloblastoma in vitro as shown by immunoblotting and immunocytochemical analysis. Moreover, Ca$^{2+}$ response by high K$^+$ proved functionally mature neuron activity in neuronal cells, differentiated from Ad-DsRed-SP–infected medulloblastoma cells. We have also shown that the neuronal differentiation ability of Ad-DsRed-SP depends on STAT3 regulation. The function of STAT3 in differentiation has been investigated extensively. Extracellular stimulus and the cellular context activate the phosphorylation of STAT3. Increasing evidence indicates that STAT3 can maintain the propagation and pluripotency of embryonic stem cells (32). Suppression of STAT3 directly induced neurogenesis in neural stem cells (33). STAT3 activation has also been reported to be sufficient to maintain the undifferentiated state of mouse embryonic stem cells (28, 34).

Our results further emphasize the potential clinical importance of Notch signaling in medulloblastoma. A recent series of experiments showed an oncogenic role for Notch signaling in medulloblastoma and the maintenance of medulloblastoma stem cells. The Notch pathway also plays an important role in inhibition of differentiation in many systems, including the
hematopoietic system (35). Notch blockade suppressed expression of the pathway target HES1 and caused cell-cycle exit, apoptosis, and differentiation in medulloblastoma cell lines (6). In addition, expression of the Notch pathway target gene HES1 in medulloblastomas was associated with significantly shorter patient survival (36). It was shown that STAT3 is activated in the presence of active Notch, as well as the Notch effectors HES1 and HES5 (28). Furthermore, suppression of endogenous HES1 expression reduces growth factor induction of STAT3 phosphorylation (28). We therefore tested the effect of SPARC on Notch/HES1-mediated regulation of STAT3 phosphorylation. HES1 overexpression induced STAT3 phosphorylation and suppressed expression of neuronal markers, suggesting that HES1/STAT3 axis plays a role in SPARC-induced neuronal markers. As consistent with our immunoblot analysis, morphologic and immunocytochemical analysis also suggest that HES1 overexpression suppressed neuron-like morphologic changes and neuronal marker expression. Our study clearly shows that HES1 overexpression induced STAT3 phosphorylation of SPARC-overexpressed cells.

We next investigated how SPARC modulates IL-6 signaling in medulloblastoma cells. SPARC had a negative regulatory role on levels of IL-6sR, an IL-6 agonist implicated in IL-6 trans-signaling (37). IL-6 is a multifunctional cytokine that has also been implicated in tumorigenesis (38). Cytokines of the IL-6 family were suggested to block neuronal markers expression of cerebral cortical precursor (39). Our study shows that SPARC expression decreased IL-6 expression. In addition, we also show that overexpressing IL-6 blocked SPARC-mediated inhibition of Notch1 expression and neuronal markers expression. Conversely, we also show that SP-siRNA induced IL-6 and Notch expression. Furthermore, we show that blocking IL-6 signaling in SPARC-suppressed cells induced Notch1 expression and neuronal differentiation. These findings suggest that SPARC negatively regulates IL-6 signaling leading to the suppression of Notch1 signaling, resulting in neuronal differentiation of medulloblastoma cells.

Immunohistochemistry showed that cells expressing SPARC express high levels of neural markers in the tumor sections of mice treated with Ad-DelRed-SP. This change in histologic appearance was also associated with a change in the size of xenograft tumors that formed in the immunodeficient mice (18), suggesting that SPARC enhanced the expression of neuronal markers in medulloblastoma cells. Our observation can be placed within the larger context of recent progress in cancer treatment involving differentiation. In many cell lines and primary cultures derived from hematologic malignancies, the malignant phenotype can be abrogated by inducing differentiation (40). Cyclospamine, a plant-derived teratogen that targets the SHH pathway, inhibits SHH-dependent gene expression in medulloblastoma in vitro and is able to cause cell-cycle arrest consistent with the initiation of neuronal differentiation and loss of neuronal stem cell-like character (41).

In summary, we have previously shown that SPARC expression causes tumor growth inhibition (41). Furthermore, we show that SPARC induced neuronal differentiation, which could render these tumors to be more susceptible to chemo- and radiotherapy. Previous studies show that SPARC enhances apoptosis in therapy-refractory MIP101 colon cancer cells exposed to chemotherapy by activating the extrinsic pathway of apoptosis while further enhancing the effect of chemotherapy through the intrinsic pathway (42). The effect of radiotherapy in combination with SPARC is the focus of the ongoing research in our laboratory. There are some medically relevant implications from our in vitro and in vivo data. First, SPARC expression can play a role in the clinical outcome of medulloblastoma patients by increasing the number of nonproliferative cells that have differentiated into neurons. Second, pharmacologic interventions aimed at the mechanisms of medulloblastoma differentiation outlined in this study might be therapeutically relevant. Third, our results raise the question whether SPARC also plays a role in the differentiation of other tumor types such as colorectal cancer or ovarian cancer in which SPARC has been identified as a potential therapeutic target. Finally, neuronal differentiation of these cells can sensitize tumors for therapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgements

The authors thank Shellee Abraham for technical assistance and Diana Meister and Sushma Jasti for manuscript review. The authors also thank Prof. J.E. Dannell, Jr., for providing constitutively active STAT3 (Addgene plasmid #8722); Dr. Darell D. Bigner, Duke University Medical Center, for providing D425, H2405, and H2411 medulloblastoma cells; Dr. Ali-Osman, Duke University Medical Center, for providing UW228 cells; and Dr. Dan Fults, Comprehensive Care for Brain and Spine Disorders, Salt Lake City, UT, for providing paraffin-embedded human medulloblastoma tumor sections.

Grant Support

This research was supported by National Cancer Institute grant CA132853 (to S.S. Lakka). Contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 15, 2010; revised May 6, 2011; accepted May 17, 2011; published OnlineFirst May 25, 2011.

References

35. Kallen KJ. The role of transsignaling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta 2002;1592:323– 43.
SPARC Stimulates Neuronal Differentiation of Medulloblastoma Cells via the Notch1/STAT3 Pathway

Praveen Bhoopathi, Chandramu Chetty, Ranadheer Dontula, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-10-3395

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2011/05/25/0008-5472.CAN-10-3395.DC1

Cited articles
This article cites 42 articles, 14 of which you can access for free at: http://cancerres.aacrjournals.org/content/71/14/4908.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/71/14/4908.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.