Contents

BREAKING ADVANCES

5055 | Highlights from Recent Cancer Literature

REVIEWS

5057 | Hedgehog Fights Back: Mechanisms of Acquired Resistance against Smoothened Antagonists
Ciara Metcalfe and Frederic J. de Sauvage

5062 | Chemotherapeutic Resistance: Surviving Stressful Situations
Luke A. Gilbert and Michael T. Hemann

PRIORITY REPORTS

5067 | Combinatorial Treatments That Overcome PDGFRβ-Driven Resistance of Melanoma Cells to V600E BRAF Inhibition
Hubing Shi, Xiangju Kong, Antoni Ribas, and Roger S. Lo

5075 | Mechanical Stiffness Grades Metastatic Potential in Patient Tumor Cells and in Cancer Cell Lines

CLINICAL STUDIES

5081 | Keap1 Mutations and Nrf2 Pathway Activation in Epithelial Ovarian Cancer
Panagiotis A. Konstantinopoulos, Dimitrios Spentzos, Elena Fountzilas, Nancy Francoeur, Srisowmya Sanisetty, Alexandros P. Grammatikos, Jonathan L. Hecht, and Stephen A. Cannistra

INTEGRATED SYSTEMS AND TECHNOLOGIES

5090 | Tumor Microenvironment–Derived Proteins Dominate the Plasma Proteome Response during Breast Cancer Induction and Progression
Sharon J. Pitteri, Karen S. Kelly-Spratt, Kay E. Girley, Jacob Kennedy, Tina Busald Buson, Alice Chin, Hong Wang, Qing Zhang, Chee-Hong Wong, Lewis A. Chodosh, Peter S. Nelson, Samir M. Hanash, and Christopher J. Kemp

MICROENVIRONMENT AND IMMUNOLOGY

5101 | Myeloid-Derived Suppressor Cell Inhibition of the IFN Response in Tumor-Bearing Mice

Précis: Findings reveal a key molecular determinant of resistance to platinum-based chemotherapy and poor clinical outcome in patients with epithelial ovarian cancers.

Précis: Findings illustrate the great importance of the interplay between clinical and laboratory-based research in responding rapidly to the inevitable problem of acquired resistance arising in the development of any new targeted treatment for cancer.

Précis: This study illustrates the great importance of the interplay between clinical and laboratory-based research in responding rapidly to the inevitable problem of acquired resistance arising in the development of any new targeted treatment for cancer.

Précis: Dynamic interactions between tumor cells and their host microenvironment are reflected by changes in the plasma proteome, offering new opportunities for cancer diagnosis.

Précis: Findings provide the first demonstration of the power law relation between the stiffness and the invasiveness of cancer cells and show that mechanical phenotypes, which are directly impacted by the state and architecture of the cytoskeleton, can be used to grade the metastatic potential of cell populations.

Précis: Myeloid derived suppressor cells blunt immune cell responsiveness to interferons by producing reactive nitrogen species, which attenuates interferon signaling in immune cells of tumor-bearing animals.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5123</td>
<td>Systemic Cancer Therapy with a Small Molecule Agonist of Toll-like Receptor 7 Can Be Improved by Circumventing TLR Tolerance</td>
<td>Carole Bourquin, Christian Hotz, Daniel Noerenberg, Andreas Voelkl, Simon Heidegger, Laurin C. Roetzer, Bettina Storch, Nadja Sandholzer, Cornelia Wurzenberger, David Anz, and Stefan Endres</td>
</tr>
<tr>
<td>5134</td>
<td>Antibody-Dependent Cell Cytotoxicity Synapses Form in Mice during Tumor-Specific Antibody Immunotherapy</td>
<td>Pascale Hubert, Adèle Heitzmann, Sophie Viel, André Nicolas, Xavier Sastré-Garau, Pablo Oppezzo, Otto Pritsch, Eduardo Osinaga, and Sebastian Amigorena</td>
</tr>
<tr>
<td>5144</td>
<td>Inhibition of miR-193a Expression by Max and RXRα Activates K-Ras and PLAU to Mediate Distinct Aspects of Cellular Transformation</td>
<td>Dimitrios Iliopoulos, Asaf Rotem, and Kevin Struhl</td>
</tr>
<tr>
<td>5175</td>
<td>Genetic Variation in an miRNA-1827 Binding Site in MYCL1 Alters Susceptibility to Small-Cell Lung Cancer</td>
<td>Fang Xiong, Chen Wu, Jiang Chang, Dianke Yu, Binghe Xu, Peng Yuan, Kan Zhai, Jian Xu, Wen Tan, and Dongxin Lin</td>
</tr>
<tr>
<td>5182</td>
<td>Combining Betulinic Acid and Mithramycin A Effectively Suppresses Pancreatic Cancer by Inhibiting Proliferation, Invasion, and Angiogenesis</td>
<td>Yong Gao, Zhiliang Jia, Xiangyu Kong, Qiang Li, David Z. Chang, Daoyan Wei, Xiangdong Le, Shengdong Huang, Liwei Wang, Suyun Huang, and Keping Xie</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5194</td>
<td>BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis</td>
<td>Yu-Chen Lee, Chien-Jui Cheng, Mehmet A. Bilen, Jing-Fang Lu, Robert L. Satcher, Li-Yuan Yu-Lee, Gary E. Gallick, Sankar N. Maity, and Sue-Hwa Lin</td>
</tr>
<tr>
<td>5204</td>
<td>Akt-Dependent Glucose Metabolism Promotes Mcl-1 Synthesis to Maintain Cell Survival and Resistance to Bcl-2 Inhibition</td>
<td>Jonathan L. Coloff, Andrew N. Macintyre, Amanda G. Nichols, Tingyu Liu, Catherine A. Gallo, David R. Plas, and Jeffrey C. Rathmell</td>
</tr>
<tr>
<td>5214</td>
<td>MicroRNA Replacement Therapy for miR-145 and miR-33a Is Efficacious in a Model of Colon Carcinoma</td>
<td>Ahmed Fawzy Ibrahim, Ulrike Weirauch, Maren Thomas, Arnold Grünweller, Roland K. Hartmann, and Achim Aigner</td>
</tr>
<tr>
<td>5225</td>
<td>Combined Gene Expression Profiling and RNAi Screening in Clear Cell Renal Cell Carcinoma Identify PLK1 and Other Therapeutic Kinase Targets</td>
<td>Yan Ding, Dan Huang, Zhongla Zhang, Josh Smith, David Petillo, Brendan D. Looyenga, Kristin Feenstra, Jeffrey P. MacKeigan, Kyle A. Furge, and Bin T. Teh</td>
</tr>
<tr>
<td>5235</td>
<td>Exosome Targeting of Tumor Antigens Expressed by Cancer Vaccines Can Improve Antigen Immunogenicity and Therapeutic Efficacy</td>
<td>Ryan B. Bounttree, Stefanie J. Mandl, James M. Nachtwey, Katie Dalpozzo, Lisa Do, John R. Lombardo, Peter L. Schoonmaker, Kay Brinkmann, Ulrike Dirmeier, Reiner Lues, and Alain Delcaux</td>
</tr>
<tr>
<td>5245</td>
<td>Retinoic Acid Enhances TRAIL-Induced Apoptosis in Cancer Cells by Upregulating TRAIL Receptor 1 Expression</td>
<td>Latha Dhandapani, Ping Yue, Suresh S. Ramalingam, Fadlo R. Khuri, and Shi-Yong Sun</td>
</tr>
<tr>
<td>5255</td>
<td>A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a Spectrum of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients</td>
<td>Ralph Tiedt, Elisa Degenkolbe, Pascal Furet, Brent A. Appleton, Sabrina Wagner, Joseph Schoepfer, Emily Buck, David A. Rudy, John E. Monahan, Michael D. Jones, Jutta Blank, Dorothea Haasen, Peter Drueckes, Markus Wartmann, Clive McCarthy, William R. Sellers, and Francesco Hofmann</td>
</tr>
<tr>
<td>5265</td>
<td>Overcoming Hypoxia-Induced Apoptotic Resistance through Combinatorial Inhibition of GSK-3β and CDK1</td>
<td>Patrick A. Mayes, Nathan G. Dolloff, Colin J. Daniel, J. Judy Liu, Lori S. Hart, Kageaki Kuribayashi, Joshua E. Allen, David L.H. Jee, Jay F. Dorsey, Yingqi Y. Liu, David T. Dicker, J. Martin Brown, Emma E. Furth, Peter S. Klein, Rosalie C. Sears, and Wafik S. El-Deiry</td>
</tr>
</tbody>
</table>
Interleukin-1α Mediates the Antiproliferative Effects of 1,25-Dihydroxyvitamin D3 in Prostate Progenitor/Stem Cells
Sophia L. Maund, Wendy W. Barclay, Laura D. Hover, Linara S. Axanova, Guangchao Sui, Jason D. Hipp, James C. Fleet, Andrew Thorburn, and Scott D. Cramer

 précis: Supporting applications of vitamin D as a chemopreventative agent for prostate cancer, this study shows that the metabolically active form of vitamin D can induce differentiation and senescence of prostate progenitor/stem cells and that its antiproliferative effects rely upon interleukin-1 alpha.

PTEN Positively Regulates UVB-Induced DNA Damage Repair
Mei Ming, Li Feng, Christopher R. Shea, Keyoumars Soltani, Baozhong Zhao, Weinfong Han, Robert C. Smart, Carol S. Trempus, and Yu-Ying He

 précis: Findings explain how failure to repair DNA damage caused by UVB sunlight radiation can cause skin carcinogenesis, due to inactivation of the tumor suppressor PTEN that destroys its key gatekeeper function in supporting DNA repair in the skin.

IL-8 Signaling Plays a Critical Role in the Epithelial–Mesenchymal Transition of Human Carcinoma Cells
Romaine J. Fernando, Marianne D. Castillo, Mary Litzinger, Duane H. Hamilton, and Claudia Palena

 précis: Findings elucidate the role of epithelial-to-mesenchymal transition in the modulation of the tumor microenvironment, suggesting that IL-8 signaling blockades might be very effective at targeting invasive tumor cells.

ABCB5 Identifies a Therapy-Refractory Tumor Cell Population in Colorectal Cancer Patients
Brian J. Wilson, Tobias Schatton, Qian Zhan, Martin Gasser, Jie Ma, Karim R. Saab, Robin Schanche, Ana-Maria Waaga-Gasser, Jason S. Gold, Qin Huang, George F. Murphy, Markus H. Frank, and Natasha Y. Frank

 précis: Findings point to the need to eradicate a particular tumor cell population to improve outcomes in colorectal cancer therapy.

Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two Distinct Phenotypes That Are Preferentially Migratory or Proliferative
Adrian Biddle, Xiao Liang, Luke Gammon, Bilal Fazil, Lisa J. Harper, Helena Emich, Daniela Elena Costea, and Ian C. Mackenzie

 précis: Findings suggest that cancer stem cells can switch their phenotype between two states that can either drive tumor cell proliferation or metastatic dissemination, implying a need for therapeutic approaches that are able to eradicate cancer stem cells in both states.

ADP-Ribosylarginine Hydrolase Regulates Cell Proliferation and Tumorigenesis
Jiro Kato, Jianfeng Zhu, Chengyu Liu, Mario Stylianou, Victoria Hoffmann, Martin J. Lizak, Connie G. Glasgow, and Joel Moss

 précis: Findings point to an important role for posttranslational protein modification by ADP-ribosylation in supporting cell proliferation and tumorigenesis.

Sequential Activation of Snail1 and N-Myc Modulates Sonic Hedgehog–Induced Transformation of Neural Cells
Leah E. Colvin Wanshura, Katherine E. Galvin, Hong Ye, Martin E. Fernandez-Zapico, and Cynthia Wetmore

 précis: N-Myc activation by a key target of the Sonic Hedgehog signaling pathway may be an essential step information of an aggressive class of pediatric brain tumors, with implications for therapeutic targeting strategies.

Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche
Cristina Grange, Marta Tapparo, Federica Collino, Loriane Vitillo, Christian Damasco, Maria Chiara Deregibus, Ciro Tetta, Benedetta Bussolati, and Giovanni Camussi

 précis: Cancer stem cells may promote metastatic progression by secreting a class of microvesicles known as exosomes that can transfer proangiogenic RNAs to endothelial cells and directly stimulate angiogenesis.
LETTERS TO THE EDITOR

5357 MicroRNA Expression and Outcome in Resected NSCLC—Letter
Shun-ichiro Kageyama, Yusuke Takagi, Takeshi Sawada, Natsuko Kageyama-Yahara, and Masahiko Shibuya

5358 MicroRNA Expression and Outcome in Resected NSCLC—Response
Johannes Voortman, Aaron J. Schetter, Curtis C. Harris, and Giuseppe Giaccone

CORRECTIONS

5360 Correction: Effects of Carbon Ion Beam on Putative Colon Cancer Stem Cells and Its Comparison with X-rays

5361 Correction: A Requirement of STAT3 DNA Binding Precludes Th-1 Immunostimulatory Gene Expression by NF-κB in Tumors

ABOUT THE COVER

The search for biomarkers of cancer has focused on the tumor cells themselves. Pitteri and colleagues, using an unbiased and in depth proteomic analysis of plasma from a model of Her2/neu driven breast cancer, have identified the signaling between the tumor cells and microenvironment as a primary source of biomarkers. Shown are tumor cells embedded within extensive extracellular collagen matrix stained with trichrome blue. For details, see the article by Pitteri and colleagues on page 5090 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/15

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/71/15.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.