Highlights from Recent Cancer Literature

Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression
Francesca Aguilo, Ming-Ming Zhou, and Martin J. Walsh

B-Myb, Cancer, Senescence, and MicroRNAs
Ivan Martinez and Daniel DiMaio

Indirubins Decrease Glioma Invasion by Blocking Migratory Phenotypes in Both the Tumor and Stromal Endothelial Cell Compartments
Shant P. Williams, Michal O. Nowicki, Fang Liu, Rachael Press, Jakub Godlewski, Mahmoud Abdel-Rasoul, Balveen Kaur, Soledad A. Fernandez, E. Antonio Chiocca, and Sean E. Lawler

TMPRSS2–ERG-Mediated Feed-Forward Regulation of Wild-Type ERG in Human Prostate Cancers
Ram-Shankar Mani, Matthew K. Iyer, Qi Cao, J. Chad Brenner, Lei Wang, Aparna Ghosh, Xuhong Cao, Robert J. Lonigro, Scott A. Tomlins, Sooryanarayana Varambally, and Arul M. Chinnaiyan

IL-18 Induces PD-1–Dependent Immunosuppression in Cancer

Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models
Profound Coordinated Alterations of Intratumoral NK Cell Phenotype and Function in Lung Carcinoma
Sophia Platonova, Julien Cherfils-Vicini, Diane Damotte, Lucile Crozet, Vincent Vieillard, Pierre Validire, Pascale André, Marie-Caroline Dieu-Nosjean, Marco Alifano, Jean-François Régnard, Wolf-Herman Fridman, Catherine Sainté-Fridman, and Isabelle Cremer

Précis: The tissue microenvironment in human lung carcinomas suppresses the tumoricidal activity of natural killer cells, thereby contributing to immune escape and progression.

Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer
Sana Intidhar Labidi-Galy, Vanja Sisirak, Pierre Meeus, Michael Gobert, Isabelle Treilleux, Agathe Bajard, Jean-Damien Combes, Alexandre Cassignol, Olivier Tredan, Isabelle Durand, Christine Ménétrier-Caux, Christophe Caux, Jean-Yves Blay, Isabelle Ray-Coquard, and Nathalie Bendriess-Vermare

Précis: Findings define a critical cellular mechanism of immune escape in human ovarian cancers, offering new insights into the pathophysiology of this often fatal cancer.

A Novel Tumor Antigen Derived from Enhanced Degradation of Bax Protein in Human Cancers
Claudia Trindade Nunes, Kelly L. Miners, Garry Dolton, Chris Pepper, Chris Fegan, Malcolm D. Mason, and Stephen Man

Précis: Study findings suggest that useful peptide antigens for cancer vaccination might be derived from proteins commonly expressed in normal cells but abnormally proteolyzed in cancer.

The ICOS/ICOSL Pathway Is Required for Optimal Antitumor Responses Mediated by Anti–CTLA-4 Therapy
Tihui Fu, Qiuming He, and Padmanee Sharma

Précis: Findings elucidate how antitumor responses are elicited by CTLA-4 antibody ipilimumab, recently approved by the FDA for treatment of melanoma.

Comparison of Increased Aromatase versus ERα in the Generation of Mammary Hyperplasia and Cancer
Edgar S. Diaz-Cruz, Yasuro Sugimoto, G. Ian Gallicano, Robert W. Brueggemeier, and Priscilla A. Furth

Précis: Findings show that increased aromatase levels may play an even larger role in breast cancer progression than overexpression of estrogen receptor α.

Maximal T Cell–Mediated Antitumor Responses Rely upon CCR5 Expression in Both CD4+ and CD8+ T Cells
Alicia González-Martín, Lucio Gómez, Joseph Lustgarten, Emilia Mira, and Santos Mañes

Précis: A chemokine receptor that is critical to organize leukocyte trafficking responses to infection is also found to be critical for T cell-mediated responses against tumors, suggesting mechanistic similarities in the way that the immune system interprets cancer cells and infectious pathogens.

TLR4 Engagement during TLR3-Induced Proinflammatory Signaling in Dendritic Cells Promotes IL-10–Mediated Suppression of Antitumor Immunity
Dusan Bogunovic, Olivier Manches, Emmanuelodefroy, Alice Yewdall, Anne Gallois, Andres M. Salazar, Isabelle Marie, David E. Levy, and Nina Bhardwaj

Précis: Findings suggest that the antitumor properties of a potent immune stimulatory Toll receptor ligand with therapeutic potential may be reduced or negated if the Toll receptor TLR4 is also activated, with implications for the design of immunotherapy trials.

Comparison of Increased Aromatase versus ERα in the Generation of Mammary Hyperplasia and Cancer
Edgar S. Diaz-Cruz, Yasuro Sugimoto, G. Ian Gallicano, Robert W. Brueggemeier, and Priscilla A. Furth

Précis: Findings show that increased aromatase levels may play an even larger role in breast cancer progression than overexpression of estrogen receptor α.

Api6/AIM/Spa/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma
Yuan Li, Peng Qu, Lingyan Wu, Beilin Li, Hong Du, and Cong Yan

Précis: This study illustrates the importance of "immunogenic" cell death signaling for blocking lung cancer, the progression of which relies upon the activation of proinflammatory mechanisms that not only block cancer cell apoptosis but also promote their immune escape.
VHL Gene Mutations and Their Effects on Hypoxia Inducible Factor HIFα: Identification of Potential Driver and Passenger Mutations
Markus P. Rechsteiner, Adriana von Teichman, Anna Nowicka, Tullio Sulser, Peter Schraml, and Holger Moch

Précis: Understanding the functional impact of specific mutations in the VHL tumor suppressor pathway in deadly kidney cancers may be critical for selecting appropriate individualized therapies in patients.

Increased VEGFR-2 Gene Copy Is Associated with Chemoresistance and Shorter Survival in Patients with Non-Small-Cell Lung Carcinoma Who Receive Adjuvant Chemotherapy

Précis: Results show an association between VEGFR-2 copy number gains and reduced overall survival in patients with non–small cell lung cancer.

CXCL12/CXCR4 Blockade Induces Multimodal Antitumor Effects That Prolong Survival in an Immunocompetent Mouse Model of Ovarian Cancer
Elda Righi, Satoshi Kashiwagi, Jianping Yuan, Michael Santosuosso, Pierre Leblanc, Rachel Ingraham, Benjamin Forbes, Beth Edelblute, Brian Collette, Deyin Xing, Magdalena Kowalski, Maria Cristina Mingari, Fabrizio Vianello, Michael Birrer, Sandra Orsulic, Glenn Dranoff, and Mark C. Poznansky

Précis: A druggable target implicated in promoting metastasis is found to coordinate immune escape, illustrating the important linkage between these two processes in ovarian cancer progression.

Identification of the MEK1(F129L) Activating Mutation as a Potential Mechanism of Acquired Resistance to MEK Inhibition in Human Cancers Carrying the B-Raf/V600E Mutation
Huisheng Wang, Sherif Daouti, Wen-hui Li, Yang Wen, Christine Rizzo, Brian Higgins, Kathryn Packman, Neal Rosen, John F. Boylan, David Heimbrook, and Huifeng Niu

Précis: Combined inhibition of Raf and MEK may offer a clinical strategy to bypass or overcome acquired resistance to MEK inhibitors that can arise as the result of a powerful activating mutation in MEK1.

GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression
Liquan Yang, Guangchun Chen, Sonali Mohanty, Glynis Scott, Fabeha Fazal, Arshad Rahman, Shahinoor Begum, Richard O. Hynes, and Lei Xu

Précis: Findings identify a novel G protein-coupled receptor that regulates VEGF production, offering a new therapeutic target for angiogenesis inhibition.

YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth

Précis: A transcription factor required for embryonic brain development also contributes in later life to brain tumor development, due to its roles in normal and malignant neural stem cells.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5579</td>
<td>Protein Arginine Methyltransferase 5 Accelerates Tumor Growth</td>
<td>Matthew A. Powers, Marta M. Fay, Rachel E. Factor, Alana L. Welm, and Katharine S. Ullman</td>
<td>Précis: This article reports a new regulatory node in cancer in which a protein methyltransferase works in conjunction with the tumor suppressor PDCD4 to cause accelerated tumor growth.</td>
</tr>
<tr>
<td>5588</td>
<td>p53-Dependent Regulation of Mitochondrial Energy Production</td>
<td>Renée F. Johnson, Ini-Isabée Witzel, and Neil D. Perkins</td>
<td>Précis: This study defines an important new link in the control of mitochondrial function by oncogenes that influence cellular metabolism.</td>
</tr>
</tbody>
</table>

ABOUT THE COVER

The Y-box binding protein (YB-1) is an oncogenic transcription factor known for its ability to cause drug resistance and cancer recurrence. Fotovati and colleagues report that YB-1 supports brain tumor–initiating cells by inhibiting differentiation through the maintenance of proteins associated with stem cells. In cancer-derived neurospheres grown from pediatric glioblastoma multiforme cells, YB-1 was highly expressed along with the stem cell markers nestin and Bmi-1. For details, see the article by Fotovati and colleagues on page 5569 of this issue.