REVIEWS

Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression
Francesca Aguilo, Ming-Ming Zhou, and Martin J. Walsh

B-Myb, Cancer, Senescence, and MicroRNAs
Ivan Martinez and Daniel DiMaio

PRIORITY REPORTS

Indirubins Decrease Glioma Invasion by Blocking Migratory Phenotypes in Both the Tumor and Stromal Endothelial Cell Compartments
Shante P. Williams, Michal O. Nowicki, Fang Liu, Rachael Press, Jakub Godlewski, Mahmoud Abdel-Rasoul, Balveen Kaur, Soledad A. Fernandez, E. Antonio Chiocca, and Sean E. Lawler

Precis: Preclinical studies validate a novel class of small molecule inhibitors of the enzyme GSK-3, which exert potent antitumor properties by blocking both tumor invasion and angiogenesis.

Imatinib Sensitivity in BCR-ABL1–Positive Chronic Myeloid Leukemia Cells Is Regulated by the Remaining Normal ABL1 Allele
Anna Virgili, Mateusz Koptyra, Yashodhara Dasgupta, Eliza Gódikowska-Mrowka, Tomasz Stoklosa, Elisabeth P. Nacheva, and Tomasz Skorski

Precis: The lack of a complete cytogenetic response in chronic phase CML patients treated with the ABL kinase inhibitor imatinib can be explained by loss of the remaining normal ABL1 allele in CML cells.

INTEGRATED SYSTEMS AND TECHNOLOGIES

Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models

Precis: Findings illustrate a novel approach to creating cell-specific computational models of signaling networks based on biochemical data, applying it in this study to define deregulated pathways in hepatocellular carcinoma.

TMPRSS2–ERG-Mediated Feed-Forward Regulation of Wild-Type ERG in Human Prostate Cancers
Ram-Shankar Mani, Matthew K. Iyer, Qi Cao, J. Chad Brenner, Lei Wang, Aparna Ghosh, Xuhong Cao, Robert J. Lonigro, Scott A. Tomlins, Sooryanarayana Varambally, and Arul M. Chinnaiyan

Precis: This study identifies an important mechanism of ERG regulation in human prostate cancers, with implications for understanding prostate tumor progression.

IL-18 Induces PD-1–Dependent Immunosuppression in Cancer

Precis: IL-18 suppresses the crucial role of natural killer cells in supporting tumor immunosurveillance, with implications for clinical strategies to reverse this mechanism of tumoral immune escape.

Contents

Cancer Research
August 15, 2011 • Volume 71 • Number 16

A Journal of the American Association for Cancer Research iii www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on April 15, 2017. © 2011 American Association for Cancer Research.
Profound Coordinated Alterations of Intratumoral NK Cell Phenotype and Function in Lung Carcinoma
Sophia Platonova, Julien Cherfils-Vicini, Diane Damotte, Lucile Crozet, Vincent Vieillard, Pierre Validire, Pascale André, Marie-Caroline Dieu-Nosjean, Marco Alfano, Jean-François Régnard, Wolf-Herman Fridman, Catherine Sautès-Fridman, and Isabelle Cremer

Précis: The tissue microenvironment in human lung carcinomas suppresses the tumoricidal activity of natural killer cells, thereby contributing to immune escape and progression.

Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer
Sana Intidhar Labidi-Galy, Vanja Sisirak, Pierre Meeus, Michael Gobert, Isabelle Treilleux, Agathe Bajard, Jean-Damien Combes, Julien Faget, François Mithieux, Alexandre Cassignon, Olivier Tredan, Isabelle Durand, Christine Ménétrier-Caux, Christophe Caux, Jean-Yves Blay, Isabelle Ray-Coquard, and Nathalie Bendriss-Vermare

Précis: Findings define a critical cellular mechanism of immune escape in human ovarian cancers, offering new insights into the pathophysiology of this often fatal cancer.

A Novel Tumor Antigen Derived from Enhanced Degradation of Bax Protein in Human Cancers
Claudia Trindade Nunes, Kelly L. Miners, Garry Dolton, Chris Pepper, Chris Fegan, Malcolm D. Mason, and Stephen Man

Précis: Study findings suggest that useful peptide antigens for cancer vaccination might be derived from proteins commonly expressed in normal cells but abnormally proteolyzed in cancer.

The ICOS/ICOSL Pathway Is Required for Optimal Antitumor Responses Mediated by Anti–CTLA-4 Therapy
Tihui Fu, Qiuming He, and Padmanee Sharma

Précis: Findings elucidate how antitumor responses are elicited by CTLA-4 antibody ipilimumab, recently approved by the FDA for treatment of melanoma.

Comparison of Increased Aromatase versus ERα in the Generation of Mammary Hyperplasia and Cancer
Edgar S. Díaz-Cruz, Yasuhiro Sugimoto, G. Ian Gallicano, Robert W. Brueggemeier, and Priscilla A. Furth

Précis: Findings show that increased aromatase levels may play an even larger role in breast cancer progression than overexpression of estrogen receptor α.

Api6/AIM/Spa/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma
Yuan Li, Peng Qu, Lingyan Wu, Beilin Li, Hong Du, and Cong Yan

Précis: This study illustrates the importance of "immunogenic" cell death signaling for blocking lung cancer, the progression of which relies upon the activation of proinflammatory mechanisms that not only block cancer cell apoptosis but also promote their immune escape.
VHL Gene Mutations and Their Effects on Hypoxia Inducible Factor HIFα: Identification of Potential Driver and Passenger Mutations
Markus P. Rechsteiner, Adriana von Teichman, Anna Nowicka, Tullio Sulser, Peter Schraml, and Holger Moch

Précis: Understanding the functional impact of specific mutations in the VHL tumor suppressor pathway in deadly kidney cancers may be critical for selecting appropriate individualized therapies in patients.

Increased VEGFR-2 Gene Copy Is Associated with Chemoresistance and Shorter Survival in Patients with Non–Small-Cell Lung Carcinoma Who Receive Adjuvant Chemotherapy
Fei Yang, Ximing Tang, Erick Riquelme, Carmen Behrens, Monique B. Nilsson, Uma Giri, Mariilea Varella-Garcia, Lauren A. Byers, Heather Y. Lin, Jing Wang, Maria G. Raso, Luc Girard, Kevin Coombes, J. Jack Lee, Roy S. Herbst, John F. Boylan, David Heimbrook, and Huifeng Niu

Précis: Results show an association between VEGFR-2 copy number gains and reduced overall survival in patients with non–small cell lung cancer.

CXCL12/CXCR4 Blockade Induces Multimodal Antitumor Effects That Prolong Survival in an Immunocompetent Mouse Model of Ovarian Cancer
Elda Righi, Satoshi Kashiwagi, Jianping Yuan, Michael Santosuosso, Pierre Leblanc, Rachel Ingraham, Benjamin Forbes, Beth Edelblute, Brian Collette, Deyin Xing, Magdalena Kowalski, Maria Cristina Mingari, Fabrizio Vianello, Michael Birrer, Sandra Orsulic, Glenn Dranoff, and Mark C. Poznansky

Précis: A druggable target implicated in promoting metastasis is found to coordinately promote immune escape, illustrating the important linkage between these two processes in ovarian cancer progression.

Identification of the MEK1(F129L) Activating Mutation as a Potential Mechanism of Acquired Resistance to MEK Inhibition in Human Cancers Carrying the B-Raf/V600E Mutation
Huisheng Wang, Sherif Daouti, Wen-hui Li, Yang Wen, Christine Rizzo, Brian Higgins, Kathryn Packman, Neal Rosen, John F. Boylan, David Heimbrook, and Huifeng Niu

Précis: Combined inhibition of Raf and MEK may offer a clinical strategy to bypass or overcome acquired resistance to MEK inhibitors that can arise as the result of a powerful activating mutation in MEK1.

p53-Dependent BRCA1 Nuclear Export Controls Cellular Susceptibility to DNA Damage
Juhong Jiang, Eddy S. Yang, Guochun Jiang, Somaira Nowsheen, Hong Wang, Tong Wang, Yihan Wang, Dean Billheimer, A. Bapsi Chakravarthy, Melissa Brown, Bruce Hallfy, and Fen Xia

Précis: This study suggests novel strategies to re-sensitize p53-deficient breast cancer cells to genotoxic chemotherapy by restoring nuclear shuttling which is dysfunctional in such cells.

GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression
Liquan Yang, Guangchun Chen, Sonali Mohanty, Glynis Scott, Fabeha Fazal, Arshad Rahman, Shahinoo Begum, Richard O. Hynes, and Lei Xu

Précis: Findings identify a novel G protein-coupled receptor that regulates VEGF production, offering a new therapeutic target for angiogenesis inhibition.

YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth

Précis: A transcription factor required for embryonic brain development also contributes in later life to brain tumor development, due to its roles in normal and malignant neural stem cells.
Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4
Matthew A. Powers, Marta M. Fay, Rachel E. Factor, Alana L. Welm, and Katharine S. Ullman

Précis: This article reports a new regulatory node in cancer in which a protein methyltransferase works in conjunction with the tumor suppressor PDCD4 to cause accelerated tumor growth.

p53-Dependent Regulation of Mitochondrial Energy Production by the RelA Subunit of NF-κB
Renée F. Johnson, Ini-Isabée Witzel, and Neil D. Perkins

Précis: This study defines an important new link in the control of mitochondrial function by oncogenes that influence cellular metabolism.

ABOUT THE COVER

The Y-box binding protein (YB-1) is an oncogenic transcription factor known for its ability to cause drug resistance and cancer recurrence. Fotovati and colleagues report that YB-1 supports brain tumor–initiating cells by inhibiting differentiation through the maintenance of proteins associated with stem cells. In cancer-derived neurospheres grown from pediatric glioblastoma multiforme cells, YB-1 was highly expressed along with the stem cell markers nestin and Bmi-1. For details, see the article by Fotovati and colleagues on page 5569 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/16

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.