BREAKING ADVANCES

5363 Highlights from Recent Cancer Literature

REVIEWS

5365 Long Noncoding RNA, Polycomb, and the Ghosts Haunting \textit{INK4b-ARF-INK4a} Expression
Francesca Aguilo, Ming-Ming Zhou, and Martin J. Walsh

5370 B-Myb, Cancer, Senescence, and MicroRNAs
Ivan Martinez and Daniel DiMaio

PRIORITY REPORTS

5374 Indirubins Decrease Glioma Invasion by Blocking Migratory Phenotypes in Both the Tumor and Stromal Endothelial Cell Compartments
Shantee P. Williams, Michal O. Nowicki, Fang Liu, Rachael Press, Jakub Godlewski, Mahmoud Abdel-Rasoul, Balveen Kaur, Soledad A. Fernandez, E. Antonio Chiocca, and Sean E. Lawler

Précis: Preclinical studies validate a novel class of small molecule inhibitors of the enzyme GSK-3, which exert potent antitumor properties by blocking both tumor invasion and angiogenesis.

5381 Imatinib Sensitivity in BCR-ABL1–Positive Chronic Myeloid Leukemia Cells Is Regulated by the Remaining Normal \textit{ABL1} Allele
Anna Virgili, Mateusz Kopytya, Yashodhara Dasgupta, Eliza Gidkowska-Mrowka, Tomasz Stoklosa, Elisabeth P. Nacheva, and Tomasz Skorski

Précis: The lack of a complete cytogenetic response in chronic phase CML patients treated with the ABL kinase inhibitor imatinib can be explained by loss of the remaining normal ABL1 allele in CML cells.

INTEGRATED SYSTEMS AND TECHNOLOGIES

5400 Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models

Précis: Findings illustrate a novel approach to creating cell-specific computational models of signaling networks based on biochemical data, applying it in this study to define deregulated pathways in hepatocellular carcinoma.
Profound Coordinated Alterations of Intratumoral NK Cell Phenotype and Function in Lung Carcinoma
Sophia Platonova, Julien Cherfils-Vicini, Diane Damotte, Lucile Crozet, Vincent Vieillard, Pierre Validire, Pascale André, Marie-Caroline Dieu-Nosjean, Marco Alfano, Jean-François Régnard, Wolf-Herman Fridman, Catherine Sautès-Fridman, and Isabelle Cremer

Precis: The tissue microenvironment in human lung carcinomas suppresses the tumoricidal activity of natural killer cells, thereby contributing to immune escape and progression.

Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer
Sana Intidhar Labidi-Galy, Vanja Sisirak, Pierre Meeus, Michael Gobert, Isabelle Treilleux, Agathe Bajard, Jean-Damien Combes, Julien Faget, François Mithieux, Alexandre Cassignol, Olivier Tredan, Isabelle Durand, Christine Ménétret-Caux, Christophe Caux, Jean-Yves Blay, Isabelle Ray-Coquard, and Nathalie Bendriss-Vermare

Precis: Findings define a critical cellular mechanism of immune escape in human ovarian cancers, offering new insights into the pathophysiology of this often fatal cancer.

A Novel Tumor Antigen Derived from Enhanced Degradation of Bax Protein in Human Cancers
Claudia Trindade Nunes, Kelly L. Miners, Garry Dolton, Chris Pepper, Chris Fegan, Malcolm D. Mason, and Stephen Man

Precis: Study findings suggest that useful peptide antigens for cancer vaccination might be derived from proteins commonly expressed in normal cells but abnormally proteolysed in cancer.

The ICOS/ICOSL Pathway Is Required for Optimal Antitumor Responses Mediated by Anti–CTLA-4 Therapy
Tihui Fu, Qiuming He, and Padmanee Sharma

Precis: Findings elucidate how antitumor responses are elicited by CTLA-4 antibody ipilimumab, recently approved by the FDA for treatment of melanoma.

Maximal T Cell–Mediated Antitumor Responses Rely upon CCR5 Expression in Both CD4⁺ and CD8⁺ T Cells
Alicia González-Martín, Lucio Gómez, Joseph Lastgarten, Emilia Mira, and Santos Mañes

Precis: A chemokine receptor that is critical to organize leukocyte trafficking responses to infection is also found to be critical for T cell-mediated responses against tumors, suggesting mechanistic similarities in the way that the immune system interprets cancer cells and infectious pathogens.

TLR4 Engagement during TLR3-Induced Proinflammatory Signaling in Dendritic Cells Promotes IL-10–Mediated Suppression of Antitumor Immunity
Dusan Bogunovic, Olivier Manches, Emmanuelle Godefroy, Alice Yewdall, Anne Gallois, Andres M. Salazar, Isabelle Marie, David E. Levy, and Nina Bhardwaj

Precis: Findings suggest that the antitumor properties of a potent immune stimulatory Toll receptor ligand with therapeutic potential may be reduced or negated if the Toll receptor TLR4 is also activated, with implications for the design of immunotherapy trials.

Comparison of Increased Aromatase versus ERα in the Generation of Mammary Hyperplasia and Cancer
Edgar S. Díaz-Cruz, Yasuro Sugimoto, G. Ian Gallicano, Robert W. Brueggemeier, and Priscilla A. Furth

Precis: Findings show that increased aromatase levels may play an even larger role in breast cancer progression than overexpression of estrogen receptor α.

Api6/AIM/Spa/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma
Yuan Li, Peng Qu, Lingyan Wu, Beilin Li, Hong Du, and Cong Yan

Precis: This study illustrates the importance of "immunogenic" cell death signaling for blocking lung cancer, the progression of which relies upon the activation of proinflammatory mechanisms that not only block cancer cell apoptosis but also promote their immune escape.
VHL Gene Mutations and Their Effects on Hypoxia Inducible Factor HIFα: Identification of Potential Driver and Passenger Mutations

Markus P. Rechsteiner, Adriana von Teichman, Anna Nowicka, Tullio Sulser, Peter Schraml, and Holger Moch

Précis: Understanding the functional impact of specific mutations in the VHL tumor suppressor pathway in deadly kidney cancers may be critical for selecting appropriate individualized therapies in patients.

5512

Increased VEGFR-2 Gene Copy Is Associated with Chemoresistance and Shorter Survival in Patients with Non–Small-Cell Lung Carcinoma Who Receive Adjuvant Chemotherapy

Précis: Results show an association between VEGFR-2 copy number gains and reduced overall survival in patients with non–small cell lung cancer.

5522

CXCL12/CXCR4 Blockade Induces Multimodal Antitumor Effects That Prolong Survival in an Immunocompetent Mouse Model of Ovarian Cancer

Elda Righi, Satoshi Kashiwagi, Jianping Yuan, Michael Santosuosso, Pierre Leblanc, Rachel Ingraham, Benjamin Forbes, Beth Edelblute, Brian Collette, Deyin Xing, Magdalena Kowalski, Maria Cristina Mingari, Fabrizio Vianello, Michael Birrer, Sandra Orsulic, Glenn Dranoff, and Mark C. Poznansky

Précis: A druggable target implicated in promoting metastasis is found to coordinate the immune escape, illustrating the important linkage between these two processes in ovarian cancer progression.

5532

Identification of the MEK1(F129L) Activating Mutation as a Potential Mechanism of Acquired Resistance to MEK Inhibition in Human Cancers Carrying the B-RafV600E Mutation

Huisheng Wang, Sherif Daouti, Wen-hui Li, Yang Wen, Christine Rizzo, Brian Higgins, Kathryn Packman, Neal Rosen, John F. Boylan, David Heimbrook, and Huifeng Niu

Précis: Combined inhibition of Raf and MEK may offer a clinical strategy to bypass or overcome acquired resistance to MEK inhibitors that can arise as the result of a powerful activating mutation in MEK1.

5542

p33-Dependent BRCA1 Nuclear Export Controls Cellular Susceptibility to DNA Damage

Juhong Jiang, Eddy S. Yang, Guochun Jiang, Somaira Nowsheen, Hong Wang, Tong Wang, Yihan Wang, Dean Billheimer, A. Bapsi Chakravarthy, Melissa Brown, Bruce Halfy, and Fen Xia

Précis: This study suggests novel strategies to re-sensitize p53-deficient breast cancer cells to genotoxic chemotherapy by restoring nuclear shuttling which is dysfunctional in such cells.

5552

GPR56 Regulates VEGF Production and Angiogenesis during Melanoma Progression

Liquan Yang, Guangchun Chen, Sonali Mohanty, Glynis Scott, Fabeha Fazal, Arshad Rahman, Shahinoor Begum, Richard O. Hynes, and Lei Xu

Précis: Findings identify a novel G protein-coupled receptor that regulates VEGF production, offering a new therapeutic target for angiogenesis inhibition.

5562

YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth

Précis: A transcription factor required for embryonic brain development also contributes in later life to brain tumor development, due to its roles in normal and malignant neural stem cells.
Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4
Matthew A. Powers, Marta M. Fay, Rachel E. Factor, Alana L. Welm, and Katharine S. Ullman

Précis: This article reports a new regulatory node in cancer in which a protein methyltransferase works in conjunction with the tumor suppressor PDCD4 to cause accelerated tumor growth.

5588
p53-Dependent Regulation of Mitochondrial Energy Production by the RelA Subunit of NF-κB
Renée F. Johnson, Ini-Isabèé Witzel, and Neil D. Perkins

Précis: This study defines an important new link in the control of mitochondrial function by oncogenes that influence cellular metabolism.

ABOUT THE COVER

The Y-box binding protein (YB-1) is an oncogenic transcription factor known for its ability to cause drug resistance and cancer recurrence. Fotovati and colleagues report that YB-1 supports brain tumor–initiating cells by inhibiting differentiation through the maintenance of proteins associated with stem cells. In cancer-derived neurospheres grown from pediatric glioblastoma multiforme cells, YB-1 was highly expressed along with the stem cell markers nestin and Bmi-1. For details, see the article by Fotovati and colleagues on page 5569 of this issue.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/71/16

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.