Molecular and Cellular Pathobiology

Api6/AIM/Spa/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma

Yuan Li1,2,3,4, Peng Qu1,2,3, Lingyan Wu1,2,3, Beilin Li1,2,3, Hong Du3, and Cong Yan1,2,3

Abstract

Chronic inflammation is an important contributor to the development of lung cancers, one of the most common malignancies worldwide, but the underlying molecular mechanisms of inflammation that specifically cue cancer risk remain poorly understood. Apoptosis inhibitor 6 (Api6, also known as AIM, Sp-α, and CD5L) is a downstream target gene of neutral lipids and peroxisome proliferator–activated receptor gamma in lung alveolar type II (AT II) epithelial cells. An association among increased expression of Api6 in certain settings of pathogenic lung inflammation in mice prompted us to hypothesize a possible role in cancer. Here, we report that Api6 promotes malignant transformation by limiting lung epithelial cell apoptosis and promoting immune escape. The specific function of Api6 in AT II cells was determined by using a doxycycline-inducible Api6 mouse model. Api6 overexpression inhibited apoptosis and activated oncogenic signaling in AT II lung epithelial cells, inducing emphysema and adenocarcinoma. In addition, Api6 overexpression in AT II cells increased the concentrations of proinflammatory cytokines/chemokines in bronchoalveolar lavage fluid and serum, promoting expansion of myeloid-derived suppressor cells (MDSC) in lung and blood but not in bone marrow or spleen. Lung MDSCs suppressed T-cell proliferation and activity in vitro and reduced levels of T cells in vivo following doxycycline treatment to activate Api6. Together, our findings establish that Api6 promotes lung tumorigenesis by blocking a mechanism of epithelial apoptosis that would normally support immunosurveillance. Cancer Res; 71(16); 5488–99. © 2011 AACR.

Introduction

Neutral lipid metabolism plays an important role in maintaining tissue homeostasis and controlling inflammation. We have previously found that blocking neutral lipid metabolism in lysosomal acid lipase (LAL, EC 3.1.1.13) knockout mice (lal−/−) leads to severe tissue inflammation and diseases in multiple organs, including the lung (1–6). LAL converts cholesterol ester and triglycerides to free cholesterol and free fatty acids. In an effort to identify downstream target genes of LAL to promote lung inflammation, we previously reported that apoptosis inhibitor 6 (Api6, also known as AIM, Sp-α, and CD5L) expression was increased 70-folds in the lal−/− lung by Affymetrix GeneChip microarray analysis (3, 4). Api6 is a secreted protein and it belongs to the macrophage scavenger receptor cysteine-rich domain superfamily (SRCR-SF; refs. 7, 8). It has been reported that Api6 inhibits fatty acid synthase activity (9).

In the lung, aberrant upregulation of Api6 occurs primarily in alveolar type II (AT II) epithelial cells of lal−/− mice (4). AT II epithelial cells can serve as regional immune cells that synthesize/secrete proinflammatory cytokines/chemokines to recruit inflammatory cells into the lung in favor of tumor initiation and growth (10, 11). AT II epithelial cells are regional tumor progenitor cells (10, 11). To determine the functional role of Api6 in AT II epithelial cells, an epithelial-specific CCSP-rTA/(TetO)7-CMV-Api6 bitransgenic mouse model has been generated. This report shows that Api6 is a proinflammatory and oncogenic molecule. Overexpression of Api6 in AT II epithelial cells promotes spontaneous emphysema and adenocarcinoma in the lung by blocking epithelial apoptosis to promote cancerous transformation and inhibiting immune surveillance. In humans, expression of the Api6 gene is upregulated in chronic obstructive pulmonary disease (COPD; the major phenotype is emphysema) and lung cancer.

Materials and Methods

Animal care

All scientific protocols involving the use of animals in this study have been approved by the Institution Animal Care and
Usage Committee (IACUC) of Indiana University School of Medicine, and follow the guidelines established by the Panel on Euthanasia of the American Veterinary Medical Association. Protocols involving the use of recombinant DNA or biohazardous materials have been approved by the Institutional Biosafety Committee and follow the guidelines established by the NIH. Animals were housed under IACUC-approved conditions in a secure animal facility at Indiana University School of Medicine. Animals were regularly screened for common pathogens. Experiments involving animal sacrifice utilize CO2 narcosis to minimize animal discomfort.

Generation of doxycycline-controlled Api6 transgenic mice

Previously made (TetO)-CMV.Api6 (12) and CCSP-rtTA (13) single transgenic mouse lines were crossbred to generate CCSP-rtTA/(TetO)-CMV.Api6 bitransgenic mouse line.

Lung histology and morphometry

The trachea was cannulated and the cannula was tied firmly in place. The lungs were filled through the trachea with 4% paraformaldehyde in PBS at 20 cm H2O pressure by gravity and maintained overnight at 4°C. The lungs were monitored for leakage during this procedure at 4°C for approximately 24 hours, and only lungs that did not leak were used for further study. The lungs were washed with PBS and dehydrated through a series of ethanol followed by paraffin embedding. Sections (5 µm) were mounted on glass slides and deparaffinized. The adult lung slices were washed in a series of xylene and ethanol to remove paraffin from the tissues. Multiple sections from each lung were stained with hematoxylin and eosin (H&E). For quantitative characterization, the images (20×) were transferred by video camera to a computer screen. The measurements of alveolar number, alveolar sphere surface area, and alveolar volume were determined by MetaMorph imaging software. Twenty randomly selected microscopic focal emphysema fields were analyzed.

Reverse transcription and real-time PCR

As described previously (10), all reverse transcription reactions were set up by the Taqman Reverse Transcription Kit (Applied Biosystems).

CD11b[−]Ly6G⁺ cell immune suppressive assay

CD11b[−]Ly6G⁺ cells were isolated from the lung of wild-type, doxycycline-treated or untreated bitransgenic mice as described previously (11).

ELISA for cytokine analysis

The protein levels of cytokines and lymphokines [interleukin-2 (IL-2), IL-4, and IFN-γ] in bronchoalveolar lavage fluid (BALF), blood serum, and culture medium were measured by DueSet ELISA kits (R&D Systems).

Fluorescence-activated cell sorting analysis

Cells were isolated from the bone marrow, spleen, blood, and lung and analyzed by fluorescence-activated cell sorting (FACS) as previously described (11, 14). To measure intracellular signaling molecules, a previous procedure was followed by using cell surface markers and phospho-specific antibodies followed by FACS analysis (6).

Conversion of alveolar macrophages to myeloid-derived suppressor cells in vitro

Alveolar macrophages were isolated from BALF as described previously (3). Isolated macrophages were cultured in RPMI 1640 medium with or without 100 ng/mL Api6 (R&D Systems) for 2 days. FACS and ELISA analyses were carried out as outlined above.

Caspase-3 activity assay

Caspase-3 activity was measured by ApoAlert assay kit (BD Biosciences Clonetech). Cells from the whole lung, AT II epithelial cells, and alveolar macrophages of 3-month doxycycline-treated or untreated bitransgenic mice were washed twice with cold PBS and lysed on ice in 50 µL lysis buffer. Cell lysates were centrifuged at 13,000 rpm for 10 minutes to remove cellular debris. Each assay was conducted in triplicates in a 96-well plate based on the manufacturer’s protocol. Plates were read (excitation 360 nmol/L; emission 480 nmol/L) by using a Spectra max Gemini XPS (Molecular Devices) multiwell fluorescence plate reader. A minimum of 3 experiments were carried out for each sample.

Apoptosis by Annexin V assay

A previous procedure was followed (14).

Bromodeoxyuridine assay

A previous procedure was followed (12).

Statistical analysis

A paired Student’s t test or ANOVA was used to evaluate the significance of the differences. Statistical significance was set at P < 0.05.

Results

Generation of CCSP-rtTA/(TetO)-CMV-Api6 bitransgenic mice

A previously made CCSP-rtTA transgenic mouse line (13) was crossbred with a previously generated (TetO)-CMV-Api6 transgenic mouse line (ref. 12; Fig. 1A). A Flag sequence was inserted at the C terminus of Apil6 cDNA to distinguish it from endogenous Api6. Single transgenic and bitransgenic mice were detected by PCR, using sequence-specific primers for transgene constructs (Fig. 1B). After doxycycline treatment, the Api6 mRNA level was highly induced in AT II epithelial cells, and alveolar macrophages of 3-month doxycycline-treated or untreated bitransgenic mice were washed twice with cold PBS and lysed on ice in 50 µL lysis buffer. Cell lysates were centrifuged at 13,000 rpm for 10 minutes to remove cellular debris. Each assay was conducted in triplicates in a 96-well plate based on the manufacturer’s protocol. Plates were read (excitation 360 nmol/L; emission 480 nmol/L) by using a Spectra max Gemini XPS (Molecular Devices) multiwell fluorescence plate reader. A minimum of 3 experiments were carried out for each sample.

Apoptosis by Annexin V assay

A previous procedure was followed (14).

Bromodeoxyuridine assay

A previous procedure was followed (12).

Statistical analysis

A paired Student’s t test or ANOVA was used to evaluate the significance of the differences. Statistical significance was set at P < 0.05.

Results

Generation of CCSP-rtTA/(TetO)-CMV-Api6 bitransgenic mice

A previously made CCSP-rtTA transgenic mouse line (13) was crossbred with a previously generated (TetO)-CMV-Api6 transgenic mouse line (ref. 12; Fig. 1A). A Flag sequence was inserted at the C terminus of Apil6 cDNA to distinguish it from endogenous Api6. Single transgenic and bitransgenic mice were detected by PCR, using sequence-specific primers for transgene constructs (Fig. 1B). After doxycycline treatment, the Api6 mRNA level was highly induced in AT II epithelial cells, and alveolar macrophages of 3-month doxycycline-treated or untreated bitransgenic mice were washed twice with cold PBS and lysed on ice in 50 µL lysis buffer. Cell lysates were centrifuged at 13,000 rpm for 10 minutes to remove cellular debris. Each assay was conducted in triplicates in a 96-well plate based on the manufacturer’s protocol. Plates were read (excitation 360 nmol/L; emission 480 nmol/L) by using a Spectra max Gemini XPS (Molecular Devices) multiwell fluorescence plate reader. A minimum of 3 experiments were carried out for each sample.

Apoptosis by Annexin V assay

A previous procedure was followed (14).

Bromodeoxyuridine assay

A previous procedure was followed (12).

Statistical analysis

A paired Student’s t test or ANOVA was used to evaluate the significance of the differences. Statistical significance was set at P < 0.05.
A fusion protein was detected in Clara cells and alveolar macrophages when costained with Flag antibody and CCSP (Clara cell marker) or CD11b antibody (macrophage marker) regardless of doxycycline treatment. Selective expression of reporter gene in CCSP-rtTA transgenic system in AT-II epithelial cells has been previously reported (13). In wild-type mice, no Api6-Flag fusion protein was observed in AT II epithelial cells regardless of doxycycline treatment except nonspecific signals. Both the Api6 mRNA and protein levels in doxycycline-treated bitransgenic mice were reduced to the basal level after doxycycline removal for 3 days or 1 month (Fig. 1C and D).

Figure 1. Generation of doxycycline-controlled CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic mice. A, illustration of the CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic mouse system. B, genotyping of CCSP-rtTA transgenic (lane 1), (TetO)7-CMV-Api6 transgenic (lane 2), and CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic (lane 3) mice. The M lane is DNA ladder. C, real-time PCR to quantify mRNA expression levels of Api6 in AT II epithelial cells of CCSP-rtTA single transgenic mouse (CCSP), (TetO)7-CMV-Api6 single transgenic mouse (Api6), and CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic mice (Bi Tg) that were treated (+DOX) or untreated (-DOX) with doxycycline for 3 months. The numbers were normalized by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression. In separate groups, doxycycline was removed for 3 days or 1 month from bitransgenic mice followed by real-time PCR analysis of Api6 mRNA expression. Results represent the mean ± SD. n = 3 to 5, * P < 0.05. D, expression levels of Api6-Flag fusion protein in bitransgenic mice. Lung single cells from 3-month +DOX or -DOX CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic mice or wild-type mice (WT) were labeled with anti-Flag antibody and cell surface marker anti-SP-C antibody (AT II epithelial cell marker) or anti-CCSP antibody (Clara cell marker) or anti-CD11b antibody (macrophage marker) and analyzed by FACS. Isotype antibodies were used as control. In separate groups, doxycycline was removed for 3 days or 1 month from bitransgenic mice followed by FACS analysis of Api6 protein expression. Results represent the mean ± SD. n = 3 to 5, * P < 0.05. MFI, mean fluorescence intensity.
from doxycycline-treated or untreated bitransgenic mice, and labeled with Annexin V and fluorochrome-conjugated anti-SP-C antibodies. FACS analysis showed a more than 7-fold decrease of Annexin V–labeled AT II epithelial cells in 3-month doxycycline-treated bitransgenic mice compared with untreated littermates (Fig. 2A). Api6 also stimulated proliferation of AT II epithelial cells in doxycycline-treated bitransgenic mice (Fig. 2A). As a consequence, SP-C+ epithelial cells were significantly increased in doxycycline-treated bitransgenic mice (Fig. 2A). In addition, mRNA expression levels of proapoptotic genes (Bad, CideA, Casp3, Casp7, Casp9, Apaf-1, and FasL) in AT II epithelial cells were significantly decreased compared with those of untreated bitransgenic mice as assessed by real-time PCR. Some of these genes also showed decreased expression levels in alveolar macrophages and whole lungs (Fig. 2B). Furthermore, the caspase-3 activity in cell lysates that were isolated from whole lung cells, AT II epithelial cells, and alveolar macrophages of 3-month doxycycline-treated bitransgenic mice was decreased compared with that in untreated bitransgenic mice (Fig. 2C).
studies suggest that Api6 was able to inhibit apoptosis in lung epithelial cells and alveolar macrophages in autocrine and paracrine fashions. When doxycycline was removed from the treated mice for 3 days, Annexin V activity and expression of apoptotic genes did not revert to the normal levels in the lung (Supplementary Fig. S1A and B). Even when doxycycline was removed for 1 month, the Annexin V activity, expression of most apoptotic genes, and cell proliferation were not completely recovered to the normal levels in the lung (Supplementary Fig. S2A and B).

Overexpression of Api6 induced emphysema and adenocarcinoma in the lung of CCSP-rtTA/(TetO)7-CMV-Api6 bitransgenic mice

To evaluate the pathogenic consequence of Api6 overexpression in the lung, bitransgenic mice were treated with doxycycline for various time lengths. Histopathologic analyses revealed coexistence of emphysema and hypercellularity in the lung after 6 weeks of doxycycline treatment (Fig. 3A, +DOX 6w). Quantitative analysis showed that alveolar numbers of doxycycline-treated bitransgenic mice in focal

![Figure 3](image_url)

Figure 3. Api6 overexpression caused emphysema and adenocarcinoma in the lung of bitransgenic mice. A, histologic analysis of doxycycline-treated (+DOX) or untreated (−DOX) bitransgenic mice at various time points by H&E staining. After 6 weeks of doxycycline treatment (+DOX 6w), emphysema and hyperplasia were observed. Adenocarcinomas were found in 12-week doxycycline-treated lungs (+DOX 12w), but not in age-matched untreated lungs (−DOX 12w). Normal lung tissue from 12-week wild-type mice (WT 12w) was used as control. A gross picture of lung tumor after 9 months of doxycycline treatment (pointed by the green arrow) was presented. B, the tumor incidence rates between 4 and 9 months of +DOX and −DOX bitransgenic mice (n = 36/group). C, quantitative measurements of alveolar number, alveolar surface area, and alveolar volume in +DOX and −DOX bitransgenic mice were determined by MetaMorph imaging software. Values are the mean ± SD, n = 6. **, P < 0.01. D, immunohistochemical staining with Mac2, B220, and Ki67 antibodies in 2-month +DOX and −DOX bitransgenic mice. E, doxycycline on/off study. Bitransgenic mice were treated with doxycycline for 2 months. One group of mice (n = 5) was terminated for treatment (+DOX on/off) and another group of mice (n = 5) continued to be treated (+DOX). One month later, mice were harvested, and the inflated lungs were stained with H&E. −DOX served as control.
emphysema areas were much less than those of untreated bitransgenic mice. The average alveolar sphere surface area and average alveolar volume were significantly increased in doxycycline-treated bitransgenic mice compared with those of untreated bitransgenic mice (Fig. 3C). Immunohistochemical staining identified infiltration of Mac2- and B220-positive inflammatory cells in the hyperplasia areas of 2-month doxycycline-treated bitransgenic mice prior to tumorigensis, an indication of prior tumor inflammation (Fig. 3D). Twelve weeks after doxycycline treatment, adenocarcinomas as previously described (15) were observed in the lungs of bitransgenic mice (Fig. 3A, +DOX 12w). To determine the tumor incidence rate, bitransgenic mice were euthanized at 4 to 9 months after doxycycline treatment for histopathologic analyses. Of 36 doxycycline-treated bitransgenic mice, 15 mice developed lung tumors (41.67%; Fig. 3B). Four of them developed both pulmonary hyperplasia and adenocarcinoma. Eight of them developed adenocarcinoma. Three mice developed hyperplasia without adenocarcinoma. In most cases, one tumor per lung was observed. A few mice showed tumors on both sides of lung lobes. In comparison, only 1 mouse showed lung adenocarcinoma (3.03%) and another 1 developed pulmonary dysplasia without cancer in 33 doxycycline-untreated bitransgenic mice. None of the wild-type mice, CCSP-rtTA single transgenic mice, and (TetO)–CMV-API6 single transgenic mice developed tumor or hyperplasia regardless of doxycycline treatment (n = 10). Finally, a doxycycline on/off experiment was carried out to assess whether the neoplastic process is reversible. Bitransgenic mice were treated with doxycycline for 2 months. One group of mice (n = 5) was terminated of doxycycline treatment, whereas another group of mice continued to be treated. Of the 5 deinduced mice, 3 developed hyperplasia 1 month later (Fig. 3E). It seems that removal of doxycycline did not stop the inflammation-induced neoplastic process. This is consistent with observations made in apoptosis, cell proliferation, and inflammatory analyses (Supplementary Figs. S1 and S2).

Overexpression of API6 promoted proinflammatory microenvironment change in the lung of CCSP-rtTA/(TetO)–CMV-API6 bitransgenic mice

Previously, we reported that persistent activation of the Stat3 pathway in AT II epithelial cells directly induced lung adenocarcinoma in CCSP-rtTA/(TetO)–CMV-Stat3C bitransgenic mice (10). This was the first animal model demonstrating that Stat3 activation is able to induce spontaneous tumor in vivo. To determine whether Stat3 was activated in AT II epithelial cells of CCSP-rtTA/(TetO)–CMV-API6 bitransgenic mice as a part of the tumorigenic process, cells from whole lungs of 1-month doxycycline-treated or untreated bitransgenic mice were isolated and double labeled with fluorochrome-conjugated anti–phospho-Stat3Y705 and SP-C (AT II cell marker) antibodies. Labeled cells were analyzed by FACS. In gated SP-C+/positive cells, the percentage of phospho-Stat3Y705 was dramatically increased in doxycycline-treated bitransgenic mice (16.16%) compared with that in untreated bitransgenic mice (3.62%; Supplementary Table S1). Other oncogenic intracellular molecules extracellular signal-regulated kinase (Erk) and P38 were significantly activated as well in doxycycline-treated bitransgenic mice. Akt was only activated in AT II epithelial cells, but not in lung myeloid-derived suppressor cells (MDSC). These observations suggest that API6 overexpression was able to activate various oncogenic pathways in AT II epithelial cells to facilitate the neoplastic process. At the gene transcriptional level, API6 overexpression stimulated mRNA expression of Stat3 and its upstream stimuli IL-6 in whole lung cells, AT II epithelial cells, and alveolar macrophages (Fig. 4A). Upregulation of IL-6 mRNA in the lung led to the increased concentration of secreted IL-6 in BALF and blood of 1-month doxycycline-treated bitransgenic mice compared with that in untreated bitransgenic mice as measured by ELISA (Fig. 4B and C). In addition, concentrations of IL-1β, IL-10, granulocyte macrophage–colony stimulating factor (GM-CSF), G-CSF, and VEGF were increased in BALF and blood of 1-month doxycycline-treated bitransgenic mice (Fig. 4B and C). It is well known that these factors play critical roles in recruiting and stimulating expansion of inflammatory cells (especially MDSCs) in inflammatory organs to exert immunosuppression in favor of tumor growth (16–18). Similar to that observed in the apoptotic studies, concentrations of these cytokines were not significantly decreased in BALF and plasma after 3 days of doxycycline removal (Supplementary Fig. S1C and D). When doxycycline was removed for 1 month, they were not completely reduced to the normal levels (Supplementary Fig. S2C and D).

Overexpression of API6 stimulated expansion of MDSCs in the lung of CCSP-rtTA/(TetO)–CMV-API6 bitransgenic mice

Because multiple MDSC-stimulating cytokines were increased in BALF and blood of bitransgenic mice after API6 overexpression, it was important to determine expansion of MDSCs in the lung. Single-cell suspensions were prepared from the bone marrow, blood, spleen, and lung of 3-month doxycycline-treated, untreated bitransgenic mice, and age-matched wild-type mice. The percentage of CD11b+Ly6G+ myeloid cells were significantly increased in the blood (19.45%) and lung (31.99%) of doxycycline-treated mice compared with those (4.46% and 4.27%, respectively) in untreated bitransgenic mice. However, the percentage of CD11b+Ly6G+ myeloid cells in the bone marrow and spleen were relatively unchanged between doxycycline-treated and untreated bitransgenic mice (Fig. 5A). The total numbers of MDSCs in the lung were increased in a time-dependent fashion with a peak at 6 months of doxycycline treatment (Fig. 5B). Removal of doxycycline for 3 days and 1 month did not result in significant decreases in the total number of MDSCs in the lung (Fig. 5B). When phosphorylation of Stat3, Erk, and P38 was assessed in MDSCs, a similar observation was made. The phosphorylation levels of Stat3, Erk, and P38 in CD11b+Ly6G+ myeloid cells were significantly higher in the blood and lung, but not in the bone marrow and spleen of doxycycline-treated mice (Supplementary Table S1). Therefore, API6 overexpression in lung epithelial cells only caused regional inflammation, not systemic inflammation. Because API6 had no effect on bone marrow progenitor development, it is unlikely that...
expansion of MDSCs was a result of myeloid differentiation originating from the bone marrow. It is intriguing to speculate that Api6 converts local macrophages to MDSCs in the lung. To test this assumption, alveolar monocytes/macrophages from 3-month-old wild-type mice were isolated from BALF and cultured in vitro in the presence or absence of Api6 protein for 3 days. Cultured cells were stained with anti-CD11b and anti-Ly6G antibodies, and analyzed by FACS. Interestingly, the
percentage of CD11b+Ly6G+ myeloid cells was significantly increased in the Api6-treated group (87.15%) compared with those in the untreated group (20.40%; Fig. 5C). The phosphorylated Stat3 level was dramatically increased in CD11b+Ly6G+ myeloid cells of the Api6-treated group (Fig. 5C), which is a characteristic of MDSCs in vivo (Supplementary Table S1). Furthermore, concentrations of IL-6, IL-10, and GM-CSF were dramatically increased in the culture medium of the Api6-treated group (Fig. 5D). This observation clearly suggests that Api6 can convert regional macrophages to MDSCs.

CD11b+Ly6G+ lung MDSCs suppress T-cell proliferation and function in vitro

Next, it was important to show whether CD11b+Ly6G+ myeloid cells from the bitransgenic lung possess an immunosuppressive function. Carboxyfluorescein succinimidyl ester (CFSE)-labeled wild-type CD4+ T cells were stimulated with anti-CD3 monoclonal antibody (mAb) plus anti-CD28 mAb for 3 days and cocultured with lung CD11b+Ly6G+ myeloid cells (MDSC:T cell ratio = 1:5) in vitro. CD11b+Ly6G+ myeloid cells from the lung of wild-type and doxycycline-un treated bitransgenic lung lacked an inhibitory effect on
T-cell receptor–stimulated proliferation of wild-type CD4+ T cells. In contrast, CD11b+Ly6G+ myeloid cells from the lung of doxycycline-treated bitransgenic mice showed complete inhibition on proliferation of wild-type CD4+ T cells (Fig. 6A). This was further confirmed by a significant reduction of CD69 expression on CD4+ T cells, a key molecular marker for T-cell activation (Fig. 6B). Functionally, secretion of T-cell lymphokines, including IL-2, IL-4, and IFN-γ was also reduced in the coculturing medium with CD11b+Ly6G+ myeloid cells from doxycycline-treated bitransgenic mice (Fig. 6C), an implication of functional impairment. To further determine whether the inhibition of T-cell proliferation was secondary to apoptosis, Annexin V analysis was carried out in which wild-type CD4+ T cells were stained with Annexin V antibody after coculture with various CD11b+Ly6G+ myeloid cells. CD4+ T cells showed the highest apoptotic activity when cocultured with CD11b+Ly6G+ myeloid cells from the lung of doxycycline-treated bitransgenic mice (Fig. 6D). There was no distinctive apoptotic activity of CD4+ T cells after coculturing with CD11b+Ly6G+ myeloid cells from the lung of wild-type or genotyped CD4+ T cells were stimulated with anti-CD3 mAb plus anti-CD28 mAb for 4 days in the presence or absence of MDSCs from the lung of wild type (WT MDSCs), 3-month doxycycline-treated (+DOX MDSCs) or untreated (-DOX MDSCs) bitransgenic mice. The ratio of MDSC/CD4+ T cell was 1:5. Proliferation of labeled CD4+ T cells was analyzed as CFSE dilution by FACS. Peaks represent cell division cycles. PBS was negative control. Anti-CD3 plus anti-CD28 without MDSCs was positive control. B, CFSE-labeled CD4+ T cells were cocultured with MDSCs as above. After 72 hours, cocultured cells were stained with anti-CD69 and CD4 antibodies for FACS analysis. In gated CD4+ T cells, a representative histogram of CD69/CFSE double-positive cells was shown. C, the concentrations of IL-2, IL-4, and IFN-γ in the above cultured medium were measured by ELISA. Results represent the mean ± SD, n = 5; *, P < 0.05; D, WT CD4+ T cells were cocultured with MDSCs as described in A and labeled with Annexin V and anti-CD4 antibodies for FACS analysis. Results represent the mean ± SD, n = 5; *, P < 0.05. E, single-cell suspensions were prepared from the lung of 3-month +DOX, −DOX bitransgenic mice, and age-matched WT mice. The percentage of the CD4+ and CD8+ cell populations was analyzed by FACS in dot plots.
Figure 7. Ap6 upregulation in human tumor and COPD. Real-time PCR was carried out to quantify mRNA expression levels of Ap6 in human lung tissues from adenocarcinoma (Adeno), squamous cell carcinoma (Squa), and COPD patients, and normalized by GAPDH mRNA expression. Numbers in each column represent average \(\Delta Ct \). Average fold changes were determined by \(2^{\Delta \Delta Ct} \), in which \(\Delta \Delta Ct = \Delta Ct \) (cancer or COPD samples) – \(\Delta Ct \) (normal human samples). Numbers on the bottom represent average fold changes compared with the normal human samples. Normal human samples were set up as 1.

Discussion

Here, we present data that Ap6 possesses dual functions in controlling both epithelial cancerous transformation and expansion of MDSCs. Ap6 overexpression in AT II epithelial cells blocked the apoptotic pathway, promoted epithelial cell proliferation (Fig. 2), and induced emphysema/hypercellularity (Fig. 3), similar to those observed in \(\text{ld}^{-/-} \) mice (3). In short-term doxycycline removal studies (3 days), the apoptotic activities and proinflammatory cytokine concentrations in the lung were not completely reversed to the normal levels in the lung (Supplementary Fig. S2A and B). After stopping treatment of doxycycline for 1 month, hyperplasia still existed in the lung (Fig. 3E). It seems that once proinflammatory cytokines are upregulated by Ap6, they sustain the neoplastic process even in the absence of Ap6. Subsequently, adenocarcinoma was developed in the lung at a 40% rate after 3 to 4 months of doxycycline treatment (Fig. 3B). This is different from the fast-growing and fast-regressing lung tumor mouse models, in which lung tumors can be induced quickly upon doxycycline treatment and regress quickly after doxycycline removal (19–21). Our model resembles the smoking population in humans, in which smokers still develop lung cancer even after stopping smoke. We made a similar observation in another CCSP-rtTA/(TetO)\textsubscript{7}-CMV-MMP12 bitransgenic mouse model (11).

Activation of oncogenic intracellular Stat3, Erk, Akt, and P38 signaling in AT II epithelial cells was involved in the Ap6-induced pathogenic process (Supplementary Table S1). As reported previously, persistent activation of Stat3 and Kras (upstream regulator of Erk and P38) in AT II epithelial cells was able to induce lung tumor (10, 19). Therefore, Ap6 overexpression caused AT II epithelial cells to induce cancerous transformation at least by 2 mechanisms: blocking apoptosis and activating oncogenic pathways.

Ap6 overexpression in AT II epithelial cells also showed immunomodulatory activity. It promoted CD11b\(^+\)Ly6G\(^+\) myeloid cell expansion in the lung and blood (Fig. 5A and B). Interestingly, removal of doxycycline did not result in a decrease in the number of MDSCs in the lung (Fig. 5B). Because the bone marrow and spleen were not affected (Fig. 5A and B), CD11b\(^+\)Ly6G\(^+\) myeloid cell expansion in the lung was unlikely due to a hematopoietic abnormality as we reported recently (22). The regional CD11b\(^+\)Ly6G\(^+\) myeloid cell expansion must be due to a local effect caused by Ap6 overexpression in the bitransgenic lung. This was tested directly in an in vitro experiment. The purified Ap6 protein stimulated in vitro cultured wild-type alveolar monocytes/macrophages to CD11b\(^+\)Ly6G\(^+\) myeloid cell transition (Fig. 5C). This interesting observation for the first time showed a reverse process of myeloid cells from a more mature stage back to an immature stage under pathogenic condition. Importantly, in vitro converted CD11b\(^+\)Ly6G\(^+\) myeloid cells showed characteristics of MDSCs, including increased activation of Stat3 (Fig. 5C) and increased secretory levels of IL-6, IL-10, and GM-CSF that are known to be secreted by MDSCs in cultured medium (Fig. 5D). When cocultured in vitro, CD11b\(^+\)Ly6G\(^+\) myeloid cells isolated from doxycycline-treated bitransgenic mice inhibited wild-type CD4\(^+\) T-cell proliferation and function (Fig. 6).

Ap6 also induce lung inflammation and adenocarcinoma through a myeloid-initiated mechanism as we reported previously (12). Compared with the regional inflammation in CCSP-rtTA/(TetO)\textsubscript{7}-CMV-Ap6 bitransgenic mice, Ap6 overexpression in myeloid cells led to systemic inflammation in cfms-rtTA/(TetO)-CMV-Ap6 bitransgenic mice. It promoted expansion of MDSCs in multiple organ compartments starting from the bone marrow by both inhibiting apoptosis and...
stimulating proliferation of myeloid lineage cells. MDSCs in all compartments showed strong activation of Stat3, Erk, and P38. We also reported that activation of these oncogenic molecules served as hallmarks for MDSCs in other animal models (6, 11, 12). In cfms-rtTA/(TetO)7-CMV-Api6 bitransgenic mice, infiltration of Api6-induced MDSCs into the lung changed the local microenvironment and promoted adenocarcinoma (12). In a paracrine fashion, Api6 secreted from carcinoma (11). Through studying CCSP-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice, multiple Stat3 downstream genes were identified to be associated with COPD/emphysema and lung cancer in animals and humans (10, 23). In the future, characterization of these proteins will facilitate identification of new members in the cancer promoting network of the lung.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Dr. Rebecca A. Shilling for critical reading of the manuscript.

Grant Support

This study was supported by NIH grants HL087001 (H. Du); CA138739 (C. Yan); and HL061803 and HL067862 (C. Yan and H. Du).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 24, 2010; revised June 14, 2011; accepted June 14, 2011; published OnlineFirst June 22, 2011.

References

Api6/AIM/Spα/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma

Yuan Li, Peng Qu, Lingyan Wu, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-4225

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/06/22/0008-5472.CAN-10-4225.DC1

Cited articles
This article cites 23 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/16/5488.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/71/16/5488.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.