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Abstract
The AACR-NCI Conference "Systems Biology: Confronting the Complexity of Cancer" took place from

February 27 to March 2, 2011, in San Diego, CA. Several themes resonated during the meeting, notably (i)
the need for better methods to distill insights from large-scale networks, (ii) the importance of integrating
multiple data types in constructing more realistic models, (iii) challenges in translating insights about
tumorigenic mechanisms into therapeutic interventions, and (iv) the role of the tumor microenvironment,
at the physical, cellular, and molecular levels. The meeting highlighted concrete applications of systems biology
to cancer, and the value of collaboration between interdisciplinary researchers in attacking formidable
problems. Cancer Res; 71(18); 5961–4. �2011 AACR.

Introduction

Our knowledge of cancer is advancing at an unprece-
dented rate; however, the more we understand, the more
complex this family of diseases reveals itself to be. Various
processes, at both a molecular and cellular level, function in
a dynamic and connective manner which must be under-
stood to address the disease. These processes are guided by
the genetic and epigenetic events inherent in cancer cells,
and in the microenvironment with which they interact. The
rate of innovation in technologies for interrogating cellular
systems at multiple levels presents major challenges in
interpretation and in uncovering core insights. Systems
biology has developed to address such issues by bringing
to bear the techniques of computational and mathematical
sciences in an attempt to tame some of the complexity. The
National Cancer Institute (NCI)'s Integrative Cancer Biology
Program was among the earliest to explicitly promote
multidisciplinary approaches for advancing cancer
research. Recently, the AACR and NCI held their first joint
conference, "Systems Biology: Addressing the Complexity of
Cancer," presenting an opportunity to review the current
state of the field and highlight ongoing challenges. The
meeting covered a vast spectrum of topics, befitting the
subject. We outline some of the results presented, with
apologies to those researchers whose work cannot be
included due to space.

Genetic Systems

The spectrum of mutational changes differs widely
between cancers, both in terms of their overall frequency,
and the relative frequency of mutational classes such as
transitions versus transversions. Recent results from The
Cancer Genome Atlas (TCGA) presented by Paul Spellman
(Oregon Health Science University, Portland, OR) and
Gad Getz (Broad Institute, Boston, MA) show that neuro-
blastomas, prostate, and breast cancers exhibit small num-
bers of mutations (�10 per exome, or 0.3/Mb, in pediatric
cancers), whereas lung cancer and UV-induced melanoma
(�3,000 per exome) have orders of magnitude more. This
likely reflects the role of carcinogens in the latter malig-
nancies. Moreover, the specific classes of mutations
observed differ markedly in melanoma (UV-induced) and
lung cancer (smoking-related; Getz and colleagues, in pre-
paration). Although 96% of ovarian tumors harbor P53
mutations, recurrent mutations are otherwise scarce, with
many genes being mutated in only a few percent of cases.
However, particular genes (e.g., IDH1 and MYD88) are com-
monly amplified or mutated, and implicated across malig-
nances. At a higher level, glioblastomas show few structural
genomic aberrations, whereas ovarian cancers exhibit exten-
sive genome "shredding." The reasons for these differences
are unknown.

Molecular Systems

The genetic configuration is integrated through intricate
signaling pathways culminating in the activation or repres-
sion of cellular process that are indicative of, or contribute
to, tumor initiation and progression. One common activity
in systems biology is to reconstruct large interaction net-
works, at intracellular and intercellular levels. However,
replacing a list of differentially expressed genes with a
massive hairball is not terribly elucidating. The key is
identifying dysregulation of specific genes, interactions,
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and subnetworks that drive malignancy, influence pheno-
types, and characterize response to therapy. Both top-down
and bottom-up approaches have important roles to play.

Lou Staudt (National Cancer Institute, Bethesda, MD)
described RNAi screening of activated B-cell type diffuse large
B-cell lymphoma (ABC DLBCL) cell lines, which identified the
cytosolic adaptor protein gene MYD88 as essential to their
survival (1). High throughput resequencing showed the gene to
be mutated and constitutively activated in the cell lines, and
29% of clinical ABC DLBCL samples. Similarly, JAK2 (Janus
kinase 2) and JMJD2C (a Jumonji domain histone demethylase)
were found to cooperatively remodel the epigenome in primary
mediastinal B-cell lymphoma and Hodgkins lymphoma (2).
Intriguingly, despite heterogeneity in oncogenic mechanisms,
cancer cells often seem to "hardwire" prosurvival/proliferative
pathways already utilized by their normal cell of origin.

A small but remarkable number of neuroblastoma patients,
even with massive metastatic burden, experience spontaneous
differentiation or complete regression of their disease. John
Maris (Children's Hospital of Pennsylvania, Philadelphia, PA)
described a top-down approach to analyzing neuroblastoma
by using a Master Regulator Analysis method (MRA, described
below) developed by Andrea Califano's group at Columbia
University (New York, NY). By comparing patients with good
or poor prognosis, ALK was identified as a key driver gene in
familial neuroblastoma. Sixteen percent of cases subjected to
high-throughput resequencing were found to harbor muta-
tions in ALK, consistent with previous reports (3).

DNA repair pathways defects are present in the majority of
cancers. The Mre11-Rad50-Nbs1 (MRN) trimeric complex can
sense diverse lesion types and coordinate appropriate DNA
damage responses. John Tainer (Lawrence Berkeley National
Laboratory, Berkeley, CA) described how this ability is attri-
butable to the multiple possible conformational states of its
subunits (4). MRN functions as a molecular machine, altering
shape according to the type of DNA damage present, and
simultaneously integrating correct cellular response mechan-
isms. This dynamic process highlights another layer of mole-
cular complexity which may be therapeutically exploitable by
employing conformational inhibitors.

Network regulation of cell function and dysfunction
Even as scientists, we have a tendency for presenting results

in a "Just So" fashion.The very concept of a pathway is nebulous,
given tissue and context-specific differences in the information
flow throughcellularnetworks. Top-downdata-drivennetwork
reconstruction approaches combat this need for story telling
but require better downstream methods for making specific
inferences about causal associations with disease.

The MRA approach described by Andrea Califano identifies
highly connected regulatory "hubs" using the ARACNe method
(5). Targets of these hub genes are then used in gene set
analysis. Coherent changes in predicted targets between, for
example, 2 cancer subtypes "point back" to the driver gene.
Application to differences between glioblastomas with
mesenchymal versus proneural expression signatures identi-
fied a core network involving CEPBPa and STAT3 that was
validated to synergistically drive the mesenchymal phenotype

(6). Causality is most readily inferred in the presence of
perturbations; however, most (e.g., siRNA) are artificial.
DNA variations such as SNPs can be considered as natural
perturbations for informing the task of causal inference.
Ernest Fraenkel (MIT, Boston, MA) described 1 method for
integrating such diverse data types using Prize-collecting
Steiner trees (7). Given an interactome, this approach balances
the "cost" of removing nodes from the network against the
cost of using edges to include nodes. Penalties depend on the
reliability of edges in the network, and strength of support of
nodes in the experimental data. Integration of expression data,
phosphoprotein data, and DNAase sensitivity sites implicates
a central role for ESR1 in glioblastoma.

David Haussler (University of California, Santa Cruz, CA)
outlined how TCGA data is integrated into the UCSC Cancer
Genomics Browser. A key modeling component is the PARA-
DIGM method developed with Josh Stuart's group (University
of California, Santa Cruz, CA). This system uses a "central
dogma" based model coupled with Bayesian integration of
multiple data types to infer biological processes that are
activated or repressed in a patient-specific manner (8). Initial
analysis identified a previously unknown key role for a
FOXM1-driven network in ovarian cancer. Paul Spellman
(standing in for Joe Gray, Oregon Health Science University,
Portland, OR) outlined work on assaying phenotypic
responses of 70 breast cancer cell lines to a large number
of drugs under many conditions (9). Genomic data including
transcriptome and exome sequencing, CNVs, fusion tran-
scripts, alternative splicing events, and protein signaling
are integrated using PARADIGM to identify subtype-specific
pathway dysregulation. Subsequent mapping to patient tumor
data makes selection of specific drug interventions possible.

Joel Wagner (Doug Lauffenburger lab, MIT, Boston, MA)
applied Bayesian networks to reconstruct dynamic signaling
networks downstream of surface receptor tyrosine kinase
(RTK). Six diverse RTKs were transfected into a cell line after
which protein lysatemicroarrays were used to assay phosphor-
ylation and PARP cleavage at 11 time points, in the presence of
91 shRNA perturbations. Time-invariant edges in the network
were conserved across multiple receptors, whereas time-var-
iant edges were conserved in fewer. This supports a "backbone"
of signaling across RTKs, layered on which are RTK-specific
signaling features affecting phenotype and signal timing. Jason
Neil (Forest White lab, MIT, Boston, MA) presented a network
model of how EMT-mediated rewiring of epidermal growth
factor receptor (EGFR) signaling influences cell mobility.
iTRAQ and LC-MS data showed dynamic changes in pre-
and post-EMT phosphorylation of SRC and ERK kinases down-
stream of EGFR. Further characterization may present targets
for modulating EGF-driven cell motility.

The static connectivity of networks in different conditions
may be less informative than differences between them. Trey
Ideker (University of California, San Diego, CA) presented
work in yeast where genetic interaction maps were generated
under normal and methyl methanesulfonate-induced DNA
damage conditions using epistatic miniarrays. DNA
damage–response genes were no more likely than random
to exhibit association with each other in either condition
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considered separately (10). However, interactions between
these genes were strongly enriched in the dynamic DNA
damage map representing differences between the networks.

Cellular systems
Cancer represents a heterogeneous collection of cell types

and differentiation states that function as an "organ." Cancer
stem cells might play a critical role in the generation and
maintenance of this heterogenous environment (11), includ-
ing the tumor, stroma, and also systemic host cellular systems
such as the immune system. One may also think of the host's
microbiome or bacterial population as an interacting system,
because 90% of cells in the human body are actually microbial
with approximately 400 phylotypes inhabiting the typical gut.
Elhanan Borenstein (University of Washington, Seattle, WA)
discussed reconstruction of cross-phylum networks using
shotgun metagenomics to look at total sets of genes and
follow their interactions. These, and related computational
techniques, may prove useful in probing and understanding
tumor-stromal interactions in cancer (12).

Cancer stem cells and the tumor microenvironment
Induced pluripotent stem (iPS) cells become more similar

to ES cells in gene expression and epigenetic patterns with
increasing numbers of passage in culture. Kathrin Plath
(University of California, Los Angeles, CA) outlined work on
pre-iPS cells to understand late stages of reprogramming (13).
Many genes that are cobound by the reprogramming factors
Oct4, Sox, and Klf4 (OSK) in fully reprogrammed iPS cells and
ES cells are not cobound in pre-iPS cells; however, the cMYC
network becomes engaged significantly earlier than the OSK
network. There are tempting parallels to be drawn between
iPS reprogramming and the possible reactivation or subver-
sion of self-renewal functions in cancer cells, and this is likely
to be an informative direction of research.
If subpopulations of tumor initiating cells (TIC) maintain a

tumor, eliminating them is necessary for effective treatment.
Stephen Wong (Methodist University, Houston, TX) posed the
hypothesis that TICs aremore likely to be high drug efflux cells.
His group conducted a screen of 1,280 compounds, coupled
with automated image acquisition and processing to identify
and isolate high efflux cells in malignant populations (14).
Several inhibitors of drug efflux found in the screen sensitized
lung cancer cells to chemotherapeutics, overcoming multiple-
drug resistance. The software tools deployed in this approach
are freely available to the community.
Cancer has been eradicated thousands of times in a Petri

dish, but these results rarely translate to in vivo. Tumors are
dynamic and evolving ecosystems of interacting cancer cells,
endothelial cells, fibroblasts, and infiltrating immune cells,
among others. Moreover, the physical properties of the tumor
microenvironment modulate cellular behavior in poorly
understood ways.
Collateral damage of the host immune system is another

factor in treatment failure, not just due to impairment of its
antitumor functions. Peter Nelson (Fred Hutchinson Cancer
Research Center, Seattle, WA) showed that introducing DNA
damage to fibroblasts, as might occur during chemotherapy,

dramatically affects their gene expression profile, upregulating
WNT16B 60-fold at the transcript level, with increased protein
excretion. This paracrine signal promotes an aggressive
mesenchymal phenotype in tumor cells. Valerie Weaver (Uni-
versity of California, San Francisco, CA) described her lab's
work on the mechanical effect of the extracellular matrix
(ECM) on tumor cells. ECM stiffness promoted malignant
progression, and regulated sensitivity to chemotherapy and
radiation (15). As the medium is changed from soft to stiff a
"switch" occurs in gene expression profiles, with associated
changes in chromatin structure and genomic methylation
patterns. A specific SMRT/NCOR2 signature affects che-
motherapy response, and similar stress pathway agonists
are also potential modulators of tumor behavior.

"Triple-negative" breast cancer (TNBC) patients have dis-
mal prognosis with no specific effective treatments. Jennifer
Pietenpol (Vanderbilt University, Nashville, TN) discussed
meta-analysis of 21 gene expression data sets comprising
587 TNBCs. Seven subtypes could be discerned related to cell
cycle, DNA damage response, immune response, TGFB/
mesenchymal signatures, focal adhesion, and androgen sig-
naling. Cell lines representing these subtypes were designated
according to gene expression profiles, and potential regulatory
signaling pathways targeted pharmacologically.

System approaches to drug discovery
Given knowledge of tumorigenic mechanisms, ideally at a

patient-specific level, the next challenge for clinical translation
is to find therapeutic interventions that can target them. Cell
line and in vivo models provide initial guidance, but dosage
and treatment timing are crucial, particularly in the context of
combination regimens.

The Connectivity map (C-map) is one tool for initial identi-
fication of potential drug interventions (16). Given a gene
expression signature, the aim is to identify drugs which induce
an opposite pattern. Todd Golub (Broad Institute, Boston, MA)
described the future evolution of the C-map to encompass
5,000 compounds, 3,000 RNAi perturbations, and 3,000 over-
expression experiments in 20 cell lines at multiple time points
and doses. A total of 1,000 representative "landmark genes"
have been identified from which expression levels of other
genes can be imputed with 80% accuracy, permitting the use of
a bead-based Luminex system, dramatically reducing costs.

In another demonstration of the power of RNAi, Michael
Hemann (MIT, Boston, MA) described an in vivo mouse
(importantly, with an intact immune system) screen to iden-
tify predictors of response to drug interventions. Libraries of
shRNAs were used to infect lymphoma/leukemia cells which
were transplanted in vivo to see which sensitized tumors to
chemotherapy. Dependence of lymphoma and leukemia cells
on members of the BCL-2 family was readily identified. By
clustering drugs by genotype sensitivity, an 8 shRNA signature
was found that could identify genes associated with response
of mammalian cells to genotoxic drugs (17).

Even if dosing levels and schedule are established for a
combination regimen, ensuring patient adherence is challen-
ging. Yet as illustrated by Michael Lee (Michael Yaffe lab, MIT,
Boston, MA), timing and ordering of treatments is critical to
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their synergy. In a drug screen TNBCs, staggered treatment
with erlotinib followed by doxylamine had a much greater
effect than doxylamine followed by erlotinib. Chronic EGFR
inhibition by erlotinib rewires signaling in BT20 cell lines,
sensitizing them to DNA damage. A partial least squares
model based on a 35-protein phosphoprotein assay indicated
that EGFR inhibition reactivates a Caspase-8 dependent
apoptotic pathway required for DNA damage-induced killing.
Activity of the pathway is normally repressed in BT20, render-
ing them insensitive to doxylamine.

Summary

The prognosis for many cancer patients remains dismal.
Countless treatments fail in late stage clinical trials despite
promising early results. Howmanymight have been successful
with a better comprehension of the importance of timing and
ordering of treatments? The role of the immune system and
microenvironment has deservedly received increasing atten-
tion-–now including physical properties, not just biological
ones. It is clear that some treatments fail not just by damaging
the immune system but by causing it to backfire and promote
tumor progression.

The observed mutational frequency across cancers differs.
How many rare mutations, which are difficult to detect even if
sequencing were 99.9999% accurate, are actually drivers or at
least copilots of oncogenic phenotypes? Another challenge is
to study the continuum and evolution of cancer–-from early
initiation events through progression and treatment response.
Of 500 ovarian tumors acquired by TCGA, only 5 represent
stage 2 disease, and none represent the ovary-confined stage 1,
due to availability of suitable quality samples. Yet analyzing
and understanding early stage disease is absolutely critical.

This problem will become more severe as new technologies
and modalities are introduced.

We have vastly increased our understanding of cancer, but
perhaps the unifying result has been the recognition of the
complexity of these diseases. Despite skepticism in some
quarters, systems biology has made significant contributions.
At this meeting, speakers described advances in understand-
ing oncogenic mechanisms using computational techniques
from data-driven top-down models, such as MRA and Baye-
sian networks, to detailed mechanistic and dynamic models of
specific processes. Methods such as PARADIGM are tackling
the question of identifying patient-specific oncogenic
mechanisms and assisting identification of appropriate ther-
apeutics. The next few years will see acceleration in the rates
and types of data acquisition, such as whole genome sequen-
cing. Making sense of this information will necessitate sophis-
ticated models developed in interdisciplinary collaborations,
and there will be challenges in balancing patient privacy with
the need for making data accessible as widely as possible.
Support and understanding from patients and their advocates
will be important in guiding these efforts.
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