Effects of Photoacoustic Imaging and Photothermal Ablation Therapy Mediated by Targeted Hollow Gold Nanospheres in an Orthotopic Mouse Xenograft Model of Glioma
Wei Lu, Marites P. Melancon, Chiyi Xiong, Qian Huang, Andrew Elliott, Shaoli Song, Rui Zhang, Leo G. Flores II, Juri G. Gelovani, LiHong V. Wang, Geng Ku, R. Jason Stafford, and Chun Li
Précis: Multifunctional targeted hollow gold nanospheres serve as a new cancer theranostic platform for both photoacoustic imaging and photothermal ablation therapy.

Resuscitating Cancer Immunosurveillance: Selective Stimulation of DLL1-Notch Signaling in T cells Rescues T-cell Function and Inhibits Tumor Growth
Yuhui Huang, Luping Lin, Anil Shanker, Anshu Malhotra, Li Yang, Mikhail M. Dikov, and David P. Carbone
Précis: Definition of a novel pathway of immune escape mediated by attenuation of Notch signaling in T cells suggests a generalized strategy to activate T cell–mediated destruction of tumor cells in clinical trials.

FLT3 Ligand Enhances the Cancer Therapeutic Potency of Naked RNA Vaccines
Sebastian Kreiter, Mustafa Diken, Abderraoud Selmi, Jan Diekmann, Sebastian Attig, Yves Häsemann, Michael Koslowski, Christoph Huber, Özlem Türeci, and Ugur Sahin
Précis: This study reports an adjuvant strategy to strengthen the antitumor effects achieved by lymph node injection with naked RNA encoding tumor antigens, optimizing a safe and simple vaccination strategy for cancer immunotherapy.
Early Detection of Tumor Cells by Innate Immune Cells Leads to Treg Recruitment through CCL22 Production by Tumor Cells
Julien Faget, Cathy Biotia, Thomas Bachelot, Michael Gobert, Isabelle Treilleux, Nadège Goutagny, Isabelle Durand, Sophie Leon-Goddard, Jean Yves Blay, Christophe Caux, and Christine Ménétrier-Caux

Précis: This important study addresses the key question of how early tumor cells evolve the ability to escape roving innate immune cells by recruiting tumor-promoting T regulatory cells (Tregs), thought to be central drivers of cancer progression.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Proto-oncogene PBEF/PTTG1IP Regulates Thyroid Cell Growth and Represses Radioiodide Treatment
Martin L. Read, Greg D. Lewy, Jim C.W. Fong, Neil Sharma, Robert I. Seed, Vicki E. Smith, Erica Gentilin, Adrian Warfield, Margaret C. Egg, Jeffrey A. Knauf, Wendy E. Leadbeater, John C. Watkinson, Jayne A. Franklyn, Kristien Boelaert, and Christopher J. McCabe

Précis: A little-characterized proto-oncogene in thyroid hyperplasia and neoplasia functions in blocking the chief route of radioiodine uptake, which is vital for clinical treatment of thyroid cancer.

miR-375 Is Activated by ASH1 and Inhibits YAP1 in a Lineage-Dependent Manner in Lung Cancer
Eri Nishikawa, Hirotaka Osada, Yasumasa Okazaki, Chinatsu Arima, Shuta Tomida, Yoshio Tatematsu, Ayumu Taguchi, Yukako Shimada, Kiyoshi Yanagisawa, Yasushi Yatabe, Shinya Toyokuni, Yoshitaka Sekido, and Takashi Takahashi

Précis: Findings provide insight into the molecular determinants of small cell lung cancers with neuroendocrine features, which tend to be aggressive and difficult to treat.

Cyclin D1 and Cdk4 Mediate Development of Neurologically Destructive Oligodendroglioma
Daniel Ciznadija, Yuhui Liu, Stephanie M. Pyonteck, Eric C. Holland, and Andrew Koff

Précis: This seminal in vivo study establishes that the Cyclin D1-Cdk4 complex—the central regulator of cell proliferation in human cancer cells—is not only important in tumor cells but also in stromal cells of the surrounding microenvironment that are critical for tumor outgrowth.

Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence
Benjamin G. Bitler, Jasmine P. Nicolademus, Hua Li, Qi Cai, Hong Wu, Xiang Hu, Tianyu Li, Michael J. Birrer, Andrew K. Godwin, Paul Cairns, and Rugang Zhang

Précis: Findings define a tumor suppressor function that when downregulated in ovarian cancer patients confers a poor prognosis for outcomes.

Genome-wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence
Mary Jo Fackler, Christopher B. Umbricht, Danielle Williams, Pedram Argani, Leigh-Ann Cruz, Vanessa F. Merino, Wei Wen Teo, Zhe Zhang, Peng Huang, Kala Visvanathan, Jeffrey Marks, Stephen Ethier, Joe W. Gray, Antonio C. Wolff, Leslie M. Cope, and Saraswati Sukumar

MicroRNA-708 Induces Apoptosis and Suppresses Tumorigenicity in Renal Cancer Cells
Sharanjot Saini, Soichiro Yamamura, Shahana Majid, Varahram Shahryari, Hiroshi Hirata, Yuichiro Tanaka, and Rajvir Dahiya

Précis: This study reveals a major suppressor role for a little-studied microRNA in the pathogenesis of a highly aggressive kidney malignancy, mediated in large part by its ability to inhibit expression of the antiapoptotic protein survivin, which is widely overexpressed in human cancers.
A Mutation Threshold Distinguishes the Antitumorigenic Effects of the Mitochondrial Gene MTND1, an Oncojanus Function
Giuseppe Gasparre, Ivana Kurelac, Mariantonietta Caprizzo, Luisa Iommarini, Anna Ghelli, Claudio Ceccarelli, Giordano Nicoletti, Patrizia Nanni, Carla De Giovanni, Valerio Carelli, Pier Luigi Lollini, Giovanni Romeo, Michela Rugolo, and Anna Maria Porcelli

Precis: This study reinterprets the role of mitochondrial DNA mutations in cancer progression and adds a novel functional definition for metabolic genes with a threshold-dependent lethality effect.

MicroRNA-32 Upregulation by 1,25-Dihydroxyvitamin D3 in Human Myeloid Leukemia Cells Leads to Bim Targeting and Inhibition of AraC-Induced Apoptosis
Elzbieta Gocek, Xuening Wang, Xiuping Liu, Chang-Gong Liu, and George P. Studzinski

Precis: Treatment of acute myeloid leukemias that remain poorly managed in the clinic may benefit from agents that can block the expression of a microRNA that limits expression of the pro-apoptotic protein Bim.

Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer
Kristen N. Stevens, Celine M. Vachon, Adam M. Lee, Susan Slager, Timothy Lesnick, Curtis Olswold, Peter A. Fasching, Penelope Miron, Diana Eccles, Jane E. Carpenter, Andrew K. Godwin, Christine Ambrosone, Robert Winqvist, Hiltrud Brauch on behalf of the GENICA consortium, Marjanka K. Schmidt, Angela Cox, Simon S. Cross, Elinor Sawyer, Arndt Hartmann, Matthias W. Beckmann, Rudiger Schulz-Wendtland, Arif R. Ekici, William J. Tapper, Susan M. Gerty, Foluso Ademuyiwa, Swati Kulkarni, Katri Pylkas, Arja Jukkola-Vuorinen, Yon-Dschun Ko, Erik Van Limbergen, Hilde Nevanlinna, Xianshu Wang, and Fergus J. Couch

Precis: This first report from a large consortium identifies variants in the ESR1, MERIT40, RAD51L1, and TOX3 genes that were found to be highly significantly associated with risk of triple negative breast cancer.

Androgen-Independent Molecular Imaging Vectors to Detect Castration-Resistant and Metastatic Prostate Cancer
Z Yue Karen Jiang, Makoto Sato, Liu H. Wei, Chinghai Kao, and Lily Wu

Precis: A prostate cancer-specific but androgen-independent imaging reporter system is shown to be useful for detecting advanced castration-resistant prostate cancer, including disseminated bony metastases.

EGF Receptor Inhibition Radiosensitizes NSCLC Cells by Inducing Senescence in Cells Sustaining DNA Double-Strand Breaks
Meng Wang, Fabian Morsbach, David Sander, Liliana Gheorghiu, Akash Nanda, Cyril Benes, Malte Kriegs, Mechthild Krause, Ekkehard Dikomey, Michael Baumann, Jochen Dahm-Daphi, Jeffrey Settlement, and Henning Willers

Precis: This study offers a mechanistic rationale to reposition EGF inhibitors used widely in the clinic as radiosensitizers in lung cancer.

Celecoxib Promotes c-FLIP Degradation through Akt-Independent Inhibition of GSK3
Shu zheng Chen, Wei Cao, Ping Yue, Chunhai Hao, Fadlo R. Khuri, and Shi-Yong Sun

Precis: Mechanistic findings reveal insights into how celecoxib may promote cancer cell death by promoting turnover of c-FLIP, a chief regulator of the death receptor pathway of apoptosis.
Transplantation of β-Endorphin Neurons into the Hypothalamus Promotes Immune Function and Restricts the Growth and Metastasis of Mammary Carcinoma

Dipak K. Sarkar, Changqing Zhang, Sengottuvelan Murugan, Madhavi Dokur, Nadka I. Boyadjieva, Maria Ortigiela, Kenneth R. Reuhl, and Sepide Mojtehedzadeh

Précis: Stress blunts the effects of a mood-altering molecule that appears to affect the innate immune response to tumors, suggesting a role in tumorigenesis for an inflammatory reflex that integrates neuronal and immune signaling in the body.

ABOUT THE COVER

β-endorphin (bEP) neuron activation prevents the growth and metastasis of mammary tumor cells by altering autonomic nervous system activities that enhance innate immune functions. Sarkar and colleagues identified the mechanism by which bEP cell transplantation into the brain prevents mammary carcinogenesis by showing that the transplants’ antimetastatic effect, along with stimulation of cytotoxic function of immune cells and production of anti-inflammatory cytokines, is reversed by the treatment with an opiate antagonist, naloxone (NAL), to block bEP, the β-receptor agonist metaproterenol (MET) to activate sympathetic neurotransmission, or the nicotine acetylcholine receptor antagonist methyllycaconitine (MLA) to prevent parasympathetic neurotransmission. For details, see the article by Sarkar and colleagues on page 6282 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/19

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at <a href="mailto:pubs@aacr.org">pubs@aacr.org</a>.</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at <a href="mailto:permissions@aacr.org">permissions@aacr.org</a>.</td>
</tr>
</tbody>
</table>