BREAKING ADVANCES
6293 Highlights from Recent Cancer Literature

REVIEWS
6295 Resuscitating Wild-Type p53 Expression by Disrupting Ceramide Glycosylation: A Novel Approach to Target Mutant p53 Tumors
Yong-Yu Liu
6300 Treatment of Hematologic Malignancies with Immunotoxins and Antibody-Drug Conjugates
David J. FitzGerald, Alan S. Wayne, Robert J. Kreitman, and Ira Pastan

PRIORITY REPORTS
6310 Regulator of G Protein Signaling 6 Mediates Doxorubicin-Induced ATM and p53 Activation by a Reactive Oxygen Species–Dependent Mechanism
Jie Huang, Jianqi Yang, Riswanath Malty, Daisuke Mayuzumi, and Rory A. Fisher

INTEGRATED SYSTEMS AND TECHNOLOGIES
6327 Evolution of Tumor Invasiveness: The Adaptive Tumor Microenvironment Landscape Model
Hyung-Ok Lee, Ariosto S. Silva, Susanna Concilio, Yue-Sheng Li, Michael Slifker, Robert A. Gatenby, and Jonathan D. Cheng

6338 p38γ Promotes Breast Cancer Cell Motility and Metastasis through Regulation of RhoC GTPase, Cytoskeletal Architecture, and a Novel Leading Edge Behavior

6350 Antiangiogenic Agent Sunitinib Transiently Increases Tumor Oxygenation and Suppresses Cycling Hypoxia

Contents
Activation of the Glucocorticoid Receptor Is Associated with Poor Prognosis in Estrogen Receptor-Negative Breast Cancer
Deng Pan, Masha Kocherginsky, and Suzanne D. Conzen

Précis: By identifying the glucocorticoid receptor as a key driver of central pathways of chemotherapy resistance and metastasis, this important study may help explain the basis for the poor prognosis of a subset of ER-negative breast cancers.

Tumor-Associated Macrophages Mediate Immunosuppression in the Renal Cancer Microenvironment by Activating the 15-Lipoxygenase-2 Pathway
Irina Daurkin, Evgeniy Eruslanov, Taryn Gilbert, George Q. Perrin, Chester Algood, Scott M. Gilbert, Charles J. Rosser, Li-Ming Su, Johannes Vieweg, and Sergei Kusmartsev

Précis: Findings define a specific lipoxygenase that is essential for tumor-associated macrophages to nurture the tumor microenvironment by driving immune escape.

IRF-1 Expression Is Essential for Natural Killer Cells to Suppress Metastasis
Antje Ksienzyk, Berit Neumann, Ramya Nandakumar, Katja Finsterbusch, Martina Grashoff, Rainer Zawatzky, Günter Bernhardt, Hansjörg Hauser, and Andrea Kröger

Précis: Tumoricidal natural killer cells are attracted to budding sites of metastasis by the tumor cells themselves, which by expressing the IFN-γ–regulated transcription factor IRF1 generate signals that reinforce immune surveillance and prevent effective colonization.

Asialoglycoprotein Receptor Promotes Cancer Metastasis by Activating the EGFR-ERK Pathway
Suguru Ueno, Marija Mojic, Yoshimi Ohashi, Nobuaki Higashi, Yoshihiro Hayakawa, and Tatsuro Irimura

Précis: Hepatic lectins are a metastatic stimulus in the lung tumor microenvironment by acting as a positive modifier of EGFR-ERK signaling.

Characterization of Chemokines and Adhesion Molecules Associated with T cell Presence in Tertiary Lymphoid Structures in Human Lung Cancer
Luc de Chaisemartin, Jéremy Goc, Diane Damotte, Pierre Validire, Pierre Magdeleinat, Marco Alfano, Isabelle Cremer, Wolf-Herman Fridman, Catherine Sautès-Fridman, and Marie-Caroline Dieu-Nosjean

Précis: This study identifies molecules that mediate migration of tumor-specific T cells into tertiary lymphoid structures where T cell priming occurs, suggesting new strategies to enhance the efficacy of cancer immunotherapy.
Enhancement of TGF-β Signaling Responses by the E3 Ubiquitin Ligase Arkadia Provides Tumor Suppression in Colorectal Cancer

Vikas Sharma, Anna G. Antonacopoulou, Shinya Tanaka, Alexios A. Panoutsopoulos, Vasiliki Bravou, Haralabos P. Kalofonos, and Vasso Episkopou

Précis: The definition of a ubiquitin ligase that determines the positive versus negative functions of transforming growth factor-β in colon cancer may advance understanding of its dual nature during tumorigenesis.

miR-152 Is a Tumor Suppressor microRNA That Is Silenced by DNA Hypermethylation in Endometrial Cancer

Tomohiko Tsuruta, Ken-ichi Kozaki, Atsushi Uesugi, Mayuko Furuta, Akira Hirasawa, Issei Imoto, Nobuyuki Susumu, Daisuke Aoki, and Johji Inazawa

Précis: The etiology and development of human cancers that are poorly understood may be enlightened by defining tumor suppressor microRNAs, as illustrated in this function-based screen in endometrial cancers.

Pivotal Role of Reduced let-7g Expression in Breast Cancer Invasion and Metastasis

Pengxu Qian, Zehua Zuo, Zhengsheng Wu, Xianyi Meng, Gaopeng Li, Zhengzhou Wu, Weijie Zhang, Sheng Tan, Vijay Pandey, Yandan Yao, Puyue Wang, Liqing Zhao, Jun Wang, Qiang Wu, Erwei Song, Peter E. Lobie, Zhinan Yin, and Tao Zhu

Précis: Only one of several let-7 miRNA family members serves as a prognostic biomarker in breast cancer that promotes breast cancer invasion and metastasis.

Loss of Transcription Factor KLF5 in the Context of p53 Ablation Drives Invasive Progression of Human Squamous Cell Cancer

Yizeng Yang, Hiroshi Nakagawa, Marie-Pier Tetreault, Janelle Billig, Noel Victor, Abha Goyal, Antonia R. Sepulveda, and Jonathan P. Katz

Précis: Findings identify a secondary event that cooperates with p53 mutation to drive malignant conversion of human squamous carcinomas.

Tissue Factor–Activated Coagulation Cascade in the Tumor Microenvironment Is Critical for Tumor Progression and an Effective Target for Therapy

Yuan Liu, Pengfei Jiang, Katerina Capkova, Dong Xue, Longwu Ye, Subhash C. Sinha, Nigel Mackman, Kim D. Janda, and Cheng Liu

Précis: Targeting the coagulation cascade activated in the tumor microenvironment may be a highly effective strategy for therapeutic eradication of metastatic cancer.

Intratumoral De Novo Steroid Synthesis Activates Androgen Receptor in Castration-Resistant Prostate Cancer and Is Upregulated by Treatment with CYP17A1 Inhibitors

Changmeng Cai, Sen Chen, Patrick Ng, Glenn J. Buhley, Peter S. Nelson, Elahe A. Mostaghel, Brett Marck, Alvin M. Matsumoto, Nicholas I. Simon, Hongyun Wang, Shaoyong Chen, and Steven P. Balk

Précis: In castration-resistant prostate cancers, the activity of the androgen receptor may still rely upon de novo steroid synthesis in the tumor, which may respond to therapies that can suppress this synthesis.
Oncogene AEG-1 Promotes Glioma-Induced Neurodegeneration by Increasing Glutamate Excitotoxicity

Seok-Geun Lee, Keetae Kim, Timothy P. Kegelman, Rupesh Dash, Swadesh K. Das, Jung Kyoungh Choi, Luni Emdad, Eric L. Howlett, Hyun Yong Jeon, Zhao Zhong Su, Byoung Kwon Yoo, Devanand Sarkar, Sung-Hoon Kim, Dong-Chul Kang, and Paul B. Fisher

Précis: By providing insights into how gliomas induce neurodegeneration, a hallmark of this deadly cancer, the findings suggest novel entry points for developing targeted therapies to improve its treatment.

ZNF668 Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer

Ruozhen Hu, Guang Peng, Hui Dai, Eun-Kyoung Breuer, Katherine Stemke-Hale, Kaiyi Li, Ana M. Gonzalez-Angulo, Gordon B. Mills, and Shiaw-Yih Lin

Précis: Genome-wide studies had identified the subject of this study previously as a frequently mutated gene in breast cancer, but its role and function in p53 control were unknown until now.

Haploinsufficiency in the Prometastasis Kiss1 Receptor Gpr54 Delays Breast Tumor Initiation, Progression, and Lung Metastasis

Sung-ook Cho, Ying Wang, Melissa Rodriguez, Kunrong Tan, Wenzheng Zhang, Jian Luo, Dali Li, and Mingyao Liu

Précis: Mice lacking the prometastatic receptor Kiss1R are resistant to breast cancer due to deficiencies in Rho signaling.

A Role for Bone Morphogenetic Protein-4 in Lymph Node Vascular Remodeling and Primary Tumor Growth

Rae H. Farnsworth, Tara Karnezis, Ramin Shayan, Masataka Matsumoto, Cameron J. Nowell, Marc G. Achen, and Steven A. Stacker

Précis: This study identifies a TGFβ-related growth factor that negatively regulates aspects of the metastatic niche formation in tumor-draining lymph nodes, acting to control both seed and soil in the metastatic process.

ABOUT THE COVER

Breast tumor development in 7-week-old PyMT/Kiss1r+/- mouse. Whole mounting of the fourth inguinal mammary fat pad of 7-week-old PyMT/Kiss1r+/- mouse shows hyperplastic nodules. Kiss1r heterozygosity in MMTV-PyMT mouse reduced hyperplastic nodule numbers and delayed tumor initiation and formation. For details, see the article by Cho and colleagues on page 6535 of this issue.
Cancer Research

71 (20)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/20

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.