Tissue Factor–Activated Coagulation Cascade in the Tumor Microenvironment Is Critical for Tumor Progression and an Effective Target for Therapy

Yuan Liu, Pengfei Jiang, Katerina Capkova, Dong Xue, Longwu Ye, Subhash C. Sinha, Nigel Mackman, Kim D. Janda, and Cheng Liu

Abstract

Tissue factor (TF), a rate-limiting enzyme cofactor in activating coagulation, is highly expressed in a wide spectrum of human tumor and tumor stromal cells. Using TF-deficient cancer cells and a conditional TF-knockout mouse model, we show that TF expressed by cancer cells, but not by the host stromal cells, plays a critical role in tumor growth. In the tumor microenvironment, serum coagulation factors are readily extravasated and therefore lead to continuous TF-mediated activation of coagulation proteases. To target this highly specific cascade of serine proteases, we used both a TF:FVIIa inhibitor and doxorubicin-based prodrugs that are selectively activated by TF:FVIIa, FXa, and thrombin. Treatment with the TF:FVIIa inhibitor led to growth retardation in breast tumor models. In contrast, treatment with the prodrug eliminated primary tumor cells and lung metastases without apparent toxicity. Our findings offer preclinical proof of principle that targeting the coagulation cascade that is activated in the tumor microenvironment can be a highly effective approach for cancer therapy. Cancer Res; 71(20); 6492–502. ©2011 AACR.

Introduction

Tissue factor (TF), the plasmalemma receptor and obligatory cofactor for cell surface assembly and initiation of the coagulation protease cascade (1). It is widely expressed and a key determinant of tumor progression (2–6). In addition to its function as an initiator of hemostasis, TF can signal through TF:FVIIa, FXa, and thrombin-mediated activation of protease-activated receptors. Human TF is a glycoprotein of 263 residues, which shares structural homology with the cytokine receptor families (7–9). To initiate the coagulation protease cascade, TF binds and facilitates activation of factor VII(FVII) to the serine protease factor VIIa(FVIIa) and allosterically conforms the catalytic site of the bound FVIIa and associates with the physiologic substrate zymogens factor X(FX) and factor IX (10, 11), leading to thrombin generation, fibrin deposition, and platelet activation. TF presence is prominent in the perivascular cells that form a hemostatic barrier and serve to limit hemorrhage after vessel injury. Therefore, TF-mediated coagulation is otherwise inactive elsewhere in the body, unless there is an injury to the vasculature.

To assess the role of TF in tumor progression, we generated TF knockout cancer cells by crossing a PyVmT mouse with TF flox/flox mice. Multiple cancer lines were established from the tumors developed in TF flox/flox PyVmT(+) mice. In addition, TF knockout was achieved by infecting the established TFflox/flox.PyVmT(+) tumor cell line with adenovirus vector expressing Cre recombinase. The contribution of the host TF was evaluated in TF flox/flox LysM Cre(+) mice with the deleted TF gene in mature macrophages and granulocytes, and the TF flox/flox Tie2 Cre(+) mice specifically deleted TF gene in endothelial cells and hematopoietic cells. Through these genetic models, we show that TF expressed by cancer cells is the key contributor to tumor growth, but not the host TF expressed by myeloid cells and endothelial cells.

Because of enhanced tumor vasculature permeability, the coagulation factors and albumin are extravasated and present in the tumor microenvironment where the coagulation cascade is constantly activated by the high level of the tissue factor on the tumor and stromal cell surface. Fibrin deposition in tumor stroma is commonly observed. Therefore, the coagulation cascade is an attractive target for prodrug therapy. Peptide conjugates of doxorubicin designed for activation by plasmin (12, 13) and cathepsins (14, 15) have been described. Indeed, the TF:FVIIa and proteases in the coagulation cascade have the highest substrate specificity among serine proteases and are very well characterized (16, 17). We synthesized 2 types of doxorubicin prodrugs targeting coagulation proteases. The first type of prodrug contained a short polyethylene glycol or a succinyl substituent to enhance the prodrug...
Coagulation Proteases Activated Prodrug

Materials and Methods

Reagents and cell lines

Biotinylated mouse TF antibody was purchased from American Diagnostica. Rabbit FVII antibody and human albumin were from Abcam. FVIIa and FVIIIa were from HTI. Thrombin was from R&D systems. Doxorubicin and biotinylated albumin were from Sigma. Tissue factor was kindly provided by Wolfram Ruf. The 4T1 and MDA-MB231 cell lines were purchased from American Type Culture Collection (ATCC) and were characterized according to ATCC instructions. The lungs were removed on day 24 and fixed in Bouin’s solution to count spontaneous lung metastases. Number of lung metastases was counted under an anatomy microscope. Experimental lung metastases were induced by i.v. injection of 15 µmol/kg prodrugs i.v. injection of 1 × 10^6 4T1 cells into the s.c. site on the back of BALB/c mice. MDA-MB231 human breast carcinoma model was generated by injection of 1 × 10^6 MDA-MB231 cells into the s.c. site on the back of Hsd:Athymic nude mice. Treatment was initiated when the tumors reached 4 mm in diameter through intraperitoneal (i.p.) injections of the indicated reagents. The lungs were removed on day 24 and fixed in the Bouin’s solution to count spontaneous lung metastases. Number of lung metastases was counted under an anatomy microscope. Experimental lung metastases were induced by i.v. injection of 2 × 10^6 4T1 in the tail vein of BALB/c mice. EMC-LTPRL-DOX treatment was started on day 16 with i.p. injection of 15 µmol/kg daily. Experimental lung metastases were monitored including for any gross evidence of tumor necrosis, local tumor ulceration, and evidence of toxicity including the mobility of animals, response to stimulus, piloerection, eating, and weight. These procedures have been reviewed and approved by the Institutional Animal Care and Use Committee at The Scripps Research Institute.

Immunohistochemical analysis

4T1 and PyVmT tumor sections were stained by using biotinylated anti-TF and Goat anti-FVII antibody. fluorescein streptavidin and Texas red were used as the secondary reporting reagent. FITC was i.v. injected into mice to increase FITC extravasation. Bio-Rad Radiance 2100 laser scanning confocal microscope was used for analysis.

Albumin extravasation assay

Albumin or biotinylated albumin (30 µmol/kg) was i.v. injected into the tail vein for observation. fluorescein avidin was used for biotinylated albumin staining. Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI).

Tissue distribution

Drug auto fluorescence was observed 12 hours after 10 µmol/kg i.v. injection. Nuclei were stained with DAPI. Tissues were homogenized and diluted with 30% ethanol containing 0.6 mol/L HCl. After normalization of protein concentration, the relative fluorescent intensity was measured by using of a Perkin-Elmer LS-50-B spectrofluorometer (excitation: 470 nm; emission: 590 nm).

Colony-forming cell assays

Bone marrow single cell suspension was (1 × 10^6 per mL) cultured in MethoCult medium containing SCF, IL-3, and IL-6 (Stemcell Technologies) for 10 days at 37°C and 5% CO2 and the number of colony is counted.

Plasma pharmacokinetics

Blood from mice injected with 15 µmol/kg prodrugs i.v. were collected at 10 minutes, 6-, 12-, and 24-hour postinjection and 1:10 diluted. Samples were measured by spectrofluorometer (excitation: 470 nm; emission: 590 nm).

Mouse tumor models

PyVmT murine breast carcinoma was produced by injection of 5 × 10^5 TF normal and deficient PyVmT tumor cells into the right flank of wild or conditional knockout C57BL/6J mice. 4T1 murine breast carcinoma model was produced by injection 1 × 10^6 4T1 cells into the s.c. site on the back of BALB/c mice. MDA-MB231 human breast carcinoma model was generated by injection of 1 × 10^6 MDA-MB231 cells into the s.c. site on the back of Hsd:Athymic nude mice. Treatment was initiated when the tumors reached 4 mm in diameter through intraperitoneal (i.p.) injections of the indicated reagents. The lungs were removed on day 24 and fixed in the Bouin’s solution to count spontaneous lung metastases. Number of lung metastases was counted under an anatomy microscope. Experimental lung metastases were induced by i.v. injection of 2 × 10^6 4T1 in the tail vein of BALB/c mice. EMC-LTPRL-DOX treatment was started on day 16 with i.p. injection of 15 µmol/kg daily. Experimental lung metastases were monitored including for any gross evidence of tumor necrosis, local tumor ulceration, and evidence of toxicity including the mobility of animals, response to stimulus, piloerection, eating, and weight. These procedures have been reviewed and approved by the Institutional Animal Care and Use Committee at The Scripps Research Institute.

Statistical analysis

Statistical significance of data was determined by the 2-tailed Student t test.

Results

TF activates coagulation within the tumor microenvironment

To determine cancer cell-surface expression of TF:FVIIa complex, we examined 4T1 murine syngeneic mammary carcinoma and polyoma virus middle T antigen (PyVmT) murine spontaneous mammary carcinoma by immunohistochemical analysis using the rabbit anti-mouse TF antibody. The staining shows that there is high-level expression of the
TF on 4T1 tumor cell surface (Fig. 1A). It also shows that FVII can be extravasated readily from the vessel into the tumor microenvironment of primary tumors and TF:FVIIa complex are detectable on the tumor cell surface (Fig. 1B and 1C). The TF expression was furthermore found on the cell face of tumor associated macrophage in PyVmT tumor (Fig. 1D). Expression of TF is also confirmed by Western blot analysis (Fig. 1E). A schematic presentation of TF:FVIIa complex formation in primary tumor microenvironment is proposed (Fig. 1F). On the basis of the size of the coagulation factors and the enhanced permeability of tumor vasculature (Supplementary Table S1), FVII and FX extravasate from leaky tumor vessels into the tumor microenvironment of primary tumors and bind to the cell surface TF to active coagulation cascade.

Table 1. TF overexpression is a critical mediator of the tumor growth

A transgenic animal expressing the polyoma virus middle T antigen (PyVmT) is a robust breast cancer model developing multiple palpable mammary carcinomas spontaneously. To generate TF knockout cancer cells, we crossed TF++/PyVmT (+) mice with TF^floxed/floxed-PyVmT (−) mice to acquire TF^floxed/floxed-PyVmT (+) mice (Supplementary Fig. S1A). The mouse tail PCR genotyping were performed to confirm TF^floxed/floxed-PyVmT (+) mice (Supplementary Fig. S1B). TF^floxed/floxed-PyVmT (+) cancer cell lines were established from the spontaneous tumors developed in TF^floxed/floxed-PyVmT (+) mice. The TF^−/−PyVmT (+) cancer cell line was achieved by infecting the established TF^floxed/floxed-PyVmT (+) tumor cell line with adenovirus vector expressing Cre recombinase and GFP+ marker (Supplementary Fig. S1C). The Cre recombinase eliminates a segment of TF gene from the genome and disrupts TF expression completely (Supplementary Fig. S1D). To examine the role of TF expressed by cancer cell in tumor growth, TF normal (TF^+/−PyVmT (+)) and TF-deficient (TF^−/−PyVmT (+)) tumor cells were inoculated into C56BL/6 mice. The tumor induced by TF-deficient cells grow much slower than that induced by TF normal cells (Fig. 2A and B). TF-deficient cells only developed and grew small tumors in mice, indicating a critical role of TF in tumor progression.

Figure 1. TF:FVIIa complex is formed on cell surface in the tumor microenvironment. TF (A, green) and FVII (B, red) is detected on 4T1 tumor cell surface. TF and FVIIa are colocalized (C, yellow). TF (D, green) is also observed on cellular surface of PyVmT tumor cells and tumor-associated macrophages (red, CD68). E, Western blotting of TF expression. F, schematic presentation of extravasation of coagulation factors. G, assessment of albumin extravasation with fluorescein-labeled strepavidin (green).
Hematoxylin and eosin (H&E) staining of tumor specimens indicated the TF-deficient tumors contain scarce and small lobular of tumor cells, but abundance of stromal component between tumor cells (Supplementary Fig. S1E).

The contribution of TF expressed by stromal cells was evaluated in mice with conditional TF gene knockout in different host cells. We have transplanted TF normal cancer cells into the TF^flox/flox^LysM Cre(+) mice in which TF gene is deleted in mature macrophage and granulocyte, and the TF^flox/flox^Tie2 Cre (+) mouse in which TF gene deleted endothelial cells and hematopoetic cells. We found no difference in tumor growth patterns in these models, and all the tumor volume are larger than 1,200 mm^3 (Fig. 2C and D). However, when we transplanted TF^+/−^ cancer cells into the TF^flox/flox^LysM Cre(+) and Tie2 Cre (+) mice, tumor growth is retarded and all the tumor volume is less than 600 mm^3 (Fig. 2E and F). TF deletion in stromal cells does not seem to suppress tumor growth. Taken together these results indicate that TF expressed by cancer cells plays a significant role in tumor progression, in contrast to TF provided by stromal cells.

FVIIa inhibitor suppresses tumor growth

To evaluate the role of TF:FVIIa on tumor growth, a reported high-affinity inhibitor of FVIIa (Supplementary Fig. S2A) was synthesized and applied into 4T1 in vivo model with 0.2 mg/kg dosage daily. At this dose, bleeding time was prolonged 3-fold (Supplementary Fig. S2B) in mouse tail-bleeding experiment. The FVIIa inhibitor had an inhibitory effect on tumor growth (Supplementary Fig. 2C) that is consistent with the role of TF:FVIIa activity in tumor growth. However, the FVIIa inhibitor has a low solubility and short half-life in blood. The lack of more pronounced effects is due to the poor pharmacokinetic properties of this compound. These experiments underscore the difficulty in the development of successful inhibitors for this class of serine proteases in cancer therapy, especially due to the risk of bleeding.

Synthesis of doxorubicin-based prodrugs

To validate the strategy of tumor microenvironment activated prodrugs and to take advantage of an enhanced vascular permeability of the blood vessels found in malignant tissue for circulating macromolecules, we synthesized 2 doxorubicin

Figure 2. TF deletion in cancer cell suppresses tumor growth. A, tumor growth and tumor weight (B) of mice planted with TF deficient and TF^+/−^ PyVmT cells. Tumor growth in wild and TF conditional knockout mice that were planted with TF^+/−^(C, D) and TF^−/−^(E, F) PyVmT cancer cells.
prodrugs targeting coagulation proteases containing: (a) a short polyethylene glycol substituent to enhance the prodrug solubility, (b) an albumin binding ε-maleimidocaproic acid moiety introduced to react with cysteine-34 of the albumin circulating in the bloodstream, increasing the prodrug half-life, and significantly reducing drug toxicity. The plasma protein albumin preferentially accumulates in solid tumors (20, 21), and can be used as an endogenous drug carrier to enhance the pharmacologic properties of these drugs. The synthesis of both prodrugs commenced with the preparation of peptides 2a–b using standard Fmoc solid phase synthesis, where 2-(2-methoxyethoxyacetic acid) or ε-maleimidocaproic acid was incorporated as the last amino acid residue in the growing sequence. After cleavage from the resin, these peptides were purified by RP HPLC. Subsequent coupling with doxorubicin in the presence of PyBOP and diisopropylethylamine afforded the target prodrugs a and b, which were purified by RP HPLC and characterized by HR MS (Fig. 3A).

The activation of Peg-LTPRL-DOX by FVIIa and TF:FVIIa was carried out in vitro and analyzed by LC-MS (Fig. 3B and C). In the control sample, there was only 1 component, the Peg-LTPRL-DOX (WM 1240.5; ref. Fig. 3C, peak 2). Hence,

Figure 3. Prodrug synthesis and activation. A, synthesis scheme. B, scheme of prodrug activation. C, analysis of prodrug activation. D, peak 1 and peak 2 are prodrug and activated prodrug (+Na⁺), respectively.
incubation of Peg-LTPRL-DOX with thrombin, FVIIa, and FXa
induced activation of the prodrug producing Leu-DOX (WM
542.5; Fig. 3C, peak 1), which could be separated by liquid
chromatography and detected by mass spectrometry (Fig. 3D).
Inclusion of equal molar soluble TF extracellular domain with
FVIIa significantly enhanced the activity of FVIIa as expected.
However, this still underestimates the catalytic activity of TF:
FVIIa complexes on the cell surface that are of native TF
proteins and in an appropriate cell-surface lipid environment.

Indeed, nonspecific serine protease trypsin has a very low
activity toward this prodrug. Although the catalytic efficiency
of the serine proteases in the coagulation cascade and trypsin
toward prodrug activation were determined (Table 1) and
support the specificity of activation of the prodrug by serine
proteases in the coagulation cascade.

Table 1. Steady-state kinetic constants for activation enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>K_m (nmol/L)</th>
<th>k_{cat} (min$^{-1}$)</th>
<th>k_{cat}/K_m (min nmol/L)$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin</td>
<td>989</td>
<td>169.38</td>
<td>0.142</td>
</tr>
<tr>
<td>FVIIa</td>
<td>1,887</td>
<td>8.94</td>
<td>0.004</td>
</tr>
<tr>
<td>FVIIa+TF</td>
<td>1,423</td>
<td>16.08</td>
<td>0.011</td>
</tr>
<tr>
<td>FXa</td>
<td>1,558</td>
<td>4.32</td>
<td>0.003</td>
</tr>
<tr>
<td>Trypsin</td>
<td>2,106</td>
<td>3.42</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The profile of prodrug distribution and activation in vivo
were determined by detecting prodrug and parent drug using
a fluorescent microscope and a fluorometer. Prodrug and
active prodrug accumulation were visualized in tumor sections
after i.v. injection of 10 μmol/kg DOX, Peg-LTPRL-DOX,
and EMC-LTPRL-DOX, respectively (Fig. 4A, red color). The
accumulation of the prodrug in tumors of Peg-LTPRL-DOX–
treated mice and EMC-LTPRL-DOX–treated mice was greatly
enhanced compared with that of doxorubicin-treated mice.
Doxorubicin is cell permeable and has a high-clearance rate in
tumor tissue, because doxorubicin is a small molecular
compound. The EMC-LTPRL-DOX is cell impermeable until acti-
vated and is not taken up by normal tissue cells. The

![Figure 4. In vivo distribution of prodrugs. A, autofluorescence of prodrugs (red) in samples. EMC-LTPRL-DOX showed nuclear positivity in tumor tissue. B, biodistribution of EMC-LTPRL-DOX. C, plasma pharmacokinetics of prodrugs.](image-url)
fluorescence signal in the liver and kidneys of mice treated with EMC-LTPRL-DOX were primarily extracellular, suggesting that EMC-LTPRL-DOX is not activated in the normal tissues (Fig. 4A, liver and kidney). Nuclear positivity of active EMC-LTPRL-DOX is detected in tumor indicating that the prodrugs are only activated in the tumor microenvironment (Fig. 4A, tumor). Tumor accumulation and activation of the EMC-LTPRL-DOX are supported by quantitative assay in tumor-bearing mice (Fig. 4B). Binding to albumin (half-life 9–12 days) with EMC group, EMC-LTPRL-DOX shows a longer half-life in mouse circulating blood than that of doxorubicin, which almost disappeared after 6 hours from injection (Fig. 4C).

Coagulation cascade serine protease-activated prodrug has low toxicity and is stable in serum

First, we assessed the stability of the prodrug compounds by mixing the Peg-LTPRL-DOX with mouse serum and incubated at 37°C for 24 hours. The compounds were subjected to HPLC analysis at the end of incubation (Fig. 5A) and the prodrugs appeared very stable in serum and only minor degradation products were observed that was distinct from activated drug. With 3 mg/kg injection every 2 days, doxorubicin caused significant toxicity as shown by weight loss (Fig. 5B) whereas both Peg-LTPRL-DOX and EMC-LTPRL-DOX lacked apparent toxicity and weight loss. We further evaluated the effect on white blood cells by EMC-LTPRL-DOX prodrug and compared this with doxorubicin (Supplementary Table S2). Single injection of doxorubicin at MTD caused significant WBC reduction, whereas EMC-LTPRL-DOX given at a "save-dosage" had no effect on the WBC count. Next, we examined the effect of EMC-LTPRL-DOX on hematopoietic stem cells using a colony forming assay. Doxorubicin showed significant suppression on the formation of CFU-GM. In contrast, EMC-LTPRL-DOX at the same concentration had no effect on colony formation (Fig. 5C) indicating the coagulation cascade is not activated in the bone marrow microenvironment and is consistent with the lack of TF expression by hematopoietic cells and circulating blood cells. The EMC-LTPRL-DOX was significantly less toxic than doxorubicin when evaluated in vivo and its accumulated MTD is greater than 20-fold of that of the doxorubicin (Supplementary Table S3).

The coagulation activated prodrugs are affective against tumor

The 4T1 murine mammary carcinoma model was used to evaluate the efficacy and safety of Peg-LTPRL-DOX, EMC-LTPRL-DOX, and doxorubicin. On 21-day posttreatment, tumor volumes of the prodrug-treated groups (3 μmol/kg) were significantly smaller than the control group (Fig. 6A; P < 0.01 for EMC-LTPRL-DOX, n = 6). The MTD of Peg-LTPRL-DOX (i.e., p. 5×) was greater than 54 μmol/kg versus that of DOX at 2.8 μmol/kg. Treatment of 4T1 at MTD of DOX showed growth retardation in this model versus untreated control.

Prodrug with the EMC tag has enhanced efficacy

The efficacy of the albumin-binding prodrug EMC-LTPRL-DOX was further enhanced (Fig. 6A), compared with Peg-LTPRL-DOX at 3 μmol/kg dosage and resulted in near complete growth inhibition at 3 μmol/kg. Thus, prodrug treatment significantly prolonged survival of tumor-bearing mice compared with untreated controls and DOX-treated groups (Fig. 6B). Both prodrug treatments caused massive tumor death upon histologic analysis (Supplementary Fig. S3). In groups treated with EMC-LTPRL-DOX at a higher dose, the tumor growth was completely halted and started to reduce upon continued treatment (Fig. 6C). Importantly, in a human MBA-MD-231 xenograph model, EMC-LTPRL-DOX treatment at 3 μmol/kg led to complete tumor eradication and non-recurrence with no weight loss and no other apparent signs of toxicity (Fig. 6D).

Albumin bound prodrug eliminates established breast cancer metastasis in lung

EMC-LTPRL-DOX treatment at 3 μmol/kg has significant inhibitory effects on spontaneous metastasis of 4T1 murine mammary carcinoma (Fig. 7A and B). H&E staining of lung sections showed metastasis and extensive lung architecture destruction in untreated control mice, whereas in the treated mice, metastasis was significantly inhibited and the lung architecture was nearly normal (Fig. 7C).

Next, we evaluated the effect of high-dosage treatment on established metastasis. The lung metastasis was induced by i.v. injection of 4T1 murine mammary carcinoma cells. On day 16, tumor metastasis was already established in the lung of tumor-bearing animals (Fig. 7D, control 16 days). The high dose EMC-LTPRL-DOX treatment was initiated on day 16 with...
10 μmol/kg dose for 7 injections. The lungs were dissected on day 25. Lung metastasis of the treated group on day 25 was compared with that of the control on day 16 (Fig. 7D). The lung metastasis in the EMC-LTPRL-DOX–treated group on day 25 was significantly less than that found in control mice on the day 16 indicating the high dose EMC-LTPRL-DOX treatment is capable of eliminating established lung metastasis in these mice (Fig. 7E). H&E staining of lung sections revealed that treatment of metastasis greatly improves lung tissue morphology (Fig. 7F). Elimination of established metastasis is a very challenging assay and has great clinical relevance. Taken together, the effect of EMC-TPRL-DOX represents a promising treatment for metastatic cancer, a major cause of mortality of cancer patients.

Discussion

TF is overexpressed in many types of human cancers, and clinical studies have shown a correlation between the levels of TF expression and poor prognosis (22–25). Not only does TF expression occur in a wide spectrum of cancers, but also the level of expression in cancer cells is upregulated by 1,000-fold compared with the levels of normal cells that these cancer cells are derived from (26, 27). This drastic upregulation may, to some extent, be caused by the existence of common tumor microenvironmental stimuli, such as those responsible for TF upregulation during inflammation and hypoxia. Recently, it was shown that TF expression is under the direct control of oncogenic pathways activated by genetic mutations sustained by cancer cells (28). This is shown experimentally by the effect of several mutant oncogenes, including K-ras, EGFR, EGFRvIII, HER-2, and PML-RARα on TF transcription, translation, half-life, and encryption. The effect of these oncogenes was operative in colorectal, mammary, cutaneous, and astrocytic cancer cells (28–31). In addition, similar changes are also found in loss of function mutations of major tumor suppressor genes such as p53 and PTEN (2, 30–32).

Several recent studies indicate that TF plays a role in tumor biology (33). The formation of the TF:FVIIa and TF:FVIIa:FXa complexes leads to cleavage of protease-activated receptors (PAR) at the cell surface (34). The TF:FVIIa–PAR-2 pathway induces expression of the proangiogenic cytokine IL-8 in tumor cells (35) and also contributes to retinal neangiogenesis (36). The TF cytoplasmic domain can regulate the p38 mitogen-activated kinase and extracellular signal-regulated kinase1/2 and the rac pathways (37) as well as suppress integrin-mediated migration of cells (36). Increased intravascular TF expression is observed in cancers (33, 38). TF is also expressed by tumor cells as well stromal cells such as monocytes, macrophages, and endothelial cells (38). This may contribute to the prothrombotic state (Trouseau’s syndrome) associated with a high percentage of cancer patients (27). In addition, TF containing procoagulant microparticles may be shed from different cells, including platelets, leukocytes, and endothelial cells, or from cancer cells (39–44) and recently these particles were shown to be important to tumor growth (4).

Breeding conditional TF knockout mice with PyVmT murine spontaneous mammary carcinoma model, we generated for the first time conditional TF knockout tumor lines that are tumorigenic and metastatic in C57Bl/6 mice. Multiple stable
cancer lines were established from this tumor model. They express a high level of TF and the TF gene can be removed by Cre expressing adenovirus in vitro. The growth patterns of the TF wild type and the TF-deficient cancer cells provided clear evidence that TF expressed by tumor cells is required for the accelerated growth of cancers in this model. In contrast, the growth of tumor cells in mice lacking TF either in myeloid-derived cells and endothelial cells is barely affected, suggesting the contribution of TF expressed by these 2 types of stromal cells is small.

Consistent with enhanced permeability of the tumor vasculature, we have shown that coagulation factors are readily extravasated in tumors. Furthermore, TF initiates the activation of the coagulation cascade in the tumor microenvironment.

On the basis of on these findings, we designed and validated PEG-LTPRL-DOX and EMC-LTPRL-DOX produgs that can be selectively catalytically converted to the cytotoxic end product by the tissue factor–activated coagulation cascade in the tumor microenvironment. PEG-LTPRL-DOX and EMC-LTPRL-DOX activation is not found in any significant amount in normal tissues because TF:FVIIa and thrombin are not activated without injury. Importantly, PEG-LTPRL-DOX and EMC-LTPRL-DOX are very stable in plasma. We found the little effect of PEG-LTPRL-DOX and EMC-LTPRL-DOX on cells of myeloid lineage, as mice showed a negligible reduction in peripheral blood or marrow myeloid cells at elevated therapeutic doses. Although this therapeutic approach showed little toxicity in our mouse models, the potential toxic risks of off-site activation require careful evaluation in cancer patients especially when persistent thrombotic conditions such as deep vein thrombosis exist. Selection criteria to exclude such higher-risk patients may be necessary in initial clinical trial.

Because of the reduced toxicity, larger cumulative dosage of PEG-LTPRL-DOX and EMC-LTPRL-DOX can be administered more frequently. Consequently, significant effect of EMC-LTPRL-DOX on tumor has been observed in the 4T1 mouse carcinoma model. In high-dose treatment of EMC-LTPRL-DOX in the human MDA-MB231 carcinoma model, the tumor was completely eradicated, and the host survives long term. In high-dose treatment, EMC-LTPRL-DOX not only reduced 4T1 tumor metastasis to lung, but also halted and eradicated established metastasis.

In summary, TF expression in malignant cancers is widely recognized, yet its functions during tumor progression are unknown. Our findings implicate TF expressed by cancer cells can activate a coagulation cascade in the tumor microenvironment and is an essential contributor to tumor progression. For robust and critical hydrolases, including proteases and glycosidases that are enriched and activated in the tumor microenvironment, sufficient inhibition may prove difficult to achieve pharmacologically without significant toxicity. Target the enzymatic activity for prodrug activation is an attractive alternative and amenable to rationally design drug candidates. Development of clinically viable inhibitors for these enzymes has proven to be difficult and has taken up an overwhelming majority of our collective cancer drug
discovery efforts. Herein we showed that eradication of primary and metastatic cancers can be achieved by functionally targeted prodrugs in animal models; our findings provide a logical path for future preclinical and clinical studies of this form of targeted cancer therapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Tissue Factor–Activated Coagulation Cascade in the Tumor Microenvironment Is Critical for Tumor Progression and an Effective Target for Therapy

Yuan Liu, Pengfei Jiang, Katerina Capkova, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-1145

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/08/31/0008-5472.CAN-11-1145.DC1

Cited articles
This article cites 44 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/20/6492.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/71/20/6492.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.