BREAKING ADVANCES

6559 Highlights from Recent Cancer Literature

REVIEWS

6561 PAR-1 and Thrombin: The Ties That Bind the Microenvironment to Melanoma Metastasis
Maya Zigler, Takafumi Kamiya, Emily C. Brantley, Gabriel J. Villares, and Menashe Bar-Eli

6563 Prospects for TIM3-Targeted Antitumor Immunotherapy
Shin Foong Ngior, Michele W.L. Teng, and Mark J. Smyth

PERSPECTIVES

6570 Is Co-option a Prevailing Mechanism during Cancer Progression?
Marc Billaud and Massimo Santoro

6574 Sphingosine Kinase Inhibitors and Cancer: Seeking the Golden Sword of Hercules
Susan Pyne, Robert Bittman, and Nigel J. Pyne

PRIORITY REPORT

6582 Oxygen Is a Master Regulator of the Immunogenicity of Primary Human Glioma Cells

Précis: The efficacy of hundreds of dendritic cell vaccines currently in clinical development might be improved dramatically simply by reducing the oxygen level in tumor cell cultures that are used as source of antigens to prime the vaccine.

INTEGRATED SYSTEMS AND TECHNOLOGIES

6590 Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Plasma Metabolomics and Lipid Profiling
Andrew D. Patterson, Olivier Maurhofer, Diren Beyoglu, Christian Lanz, Kristopher W. Krausz, Thomas Pabst, Frank J. Gonzalez, Jean-François Dufour, and Jeffrey R. Idle

Précis: A sophisticated set of metabolomic discovery platforms were employed in this study to define plasma markers of intermediate-stage hepatocellular carcinoma, revealing a number of new molecular alterations and illustrating the potential of this technology for developing pathophysiological understanding and discovering informative diagnostics.

MICROENVIRONMENT AND IMMUNOLOGY

6601 Antiangiogenic and Antimetastatic Activity of JAK Inhibitor AZD1480
Hong Xin, Andreas Herrmann, Karen Reckamp, Wang Zhang, Sumanta Pal, Michael Hedvat, Chunyan Zhang, Wei Lian, Anna Scuto, Shaobu Weng, Deborah Morosini, Zhi A. Cao, Michael Zinda, Robert Figlin, Dennis Huszar, Richard Jove, and Hua Yu

Précis: JAK inhibitors in clinical development effectively inhibit tumor angiogenesis and metastasis mediated by STAT3 in tumor stromal cells as well as tumor cells themselves, encouraging their broader evaluation for cancer treatment than only in malignancies characterized by JAK/STAT mutations.

6611 Targeting the Immunoregulator SRA/CD204 Potentiates Specific Dendritic Cell Vaccine-Induced T-cell Response and Antitumor Immunity
Huana Yi, Chunqing Guo, Xiaofei Yu, Ping Gao, Jie Qian, Daming Zao, Masoud H. Manjili, Paul B. Fisher, John R. Subjeck, and Xiang-Yang Wang

Précis: Finding offers a straightforward strategy to enhance the potency of dendritic cell vaccines, for which Provenge is the first FDA-approved example, by targeting a pattern recognition scavenger receptor that limits the ability of dendritic cells to restore T-cell-mediated antitumor immunity.
Human Breast Tumor Cells Induce Self-Tolerance Mechanisms to Avoid NKG2D-Mediated and DNAM-Mediated NK Cell Recognition
Emilie Mamessier, Aude Sylvain, François Bertucci, Rémy Castellano, Pascal Finetti, Gilles Houvenaeghel, Emmanuelle Charaffe-Jaufret, Daniel Birnbaum, Alessandro Moretta, and Daniel Olive

Précis: All breast cancer subtypes develop mechanisms to escape natural killer cell-mediated immune recognition, rationalizing the development of immunotherapies that can relieve escape and/or enhance natural killer cell function.

MOLECULAR AND CELLULAR PATHOBIOLOGY

HB-EGF and PDGF Mediate Reciprocal Interactions of Carcinoma Cells with Cancer-Associated Fibroblasts to Support Progression of Uterine Cervical Cancers
Takuya Murata, Hiroto Mizushima, Ichino Chinen, Hiroki Moribe, Shigeo Yagi, Robert M. Hoffman, Tadashi Kimura, Kiyoshi Yoshino, Yutaka Ueda, Takayuki Enomoto, and Eisuke Mekada

Précis: Findings define two central drivers of the reciprocal master-slave relationship created between cancer cells and cancer-associated fibroblasts in the tumor microenvironment.

Human Cytomegalovirus US28 Found in Glioblastoma Promotes an Invasive and Angiogenic Phenotype
Liliana Soroceanu, Lisa Matlaf, Vladimir Bezrookove, Loui Harkins, Roxanne Martinez, Mary Greene, Patricia Soteropoulos, and Charles S. Cobbs

Précis: Human cytomegalovirus infections that occur commonly in deadly brain glioblastomas may be contributing strongly to the aggressive progression which characterizes this disease, through expression of a viral G protein-like coupled receptor that can be therapeutically targeted.

SIRT1 Is Essential for Oncogenic Signaling by Estrogen/Estrogen Receptor α in Breast Cancer
Selvakumar Elangovan, Sabarish Ramachandran, Narayan Venkatesan, Sudha Ananth, Jaya P. Gnaa-Prakasam, Pamela M. Martin, Darren D. Browning, Patricia V. Schoenlein, Purtur D. Prasad, Vadivel Ganapathy, and Muthusamy Thangaraju

Précis: Small molecule inhibitors of the histone deacetylase SIRT1 presently in clinical development may find an important application in potentiating the beneficial effects of antiestrogen treatments in breast cancer.

Progression of Human Bronchioloalveolar Carcinoma to Invasive Adenocarcinoma Is Modeled in a Transgenic Mouse Model of K-ras-Induced Lung Cancer by Loss of the TGF-β Type II Receptor
Alain C. Borczuk, Marieta Sole, Ping Lu, Jinli Chen, May-Lin Wilgus, Richard A. Friedman, Steven M. Albelda, and Charles A. Powell

Précis: The important new model of lung cancer progression reported in this study recapitulates the genomics and clinical progression of human lung adenocarcinoma, also highlighting its control by an important TGF-β receptor.

Plasminogen Receptor S100A10 Is Essential for the Migration of Tumor-Promoting Macrophages into Tumor Sites
Kyle D. Phipps, Alexi P. Surette, Paul A. O’Connell, and David M. Waisman

Précis: This important study reveals a pivotal signaling node in cancer progression by demonstrating that the receptor for plasminogen, a key regulator of blood coagulation and metastasis, is essential for migration of tumor-promoting macrophages into tumor sites.

Manganese Superoxide Dismutase Is a p53-Regulated Gene That Switches Cancers between Early and Advanced Stages
Sanjit K. Dhar, Jitbanjong Tangpong, Luksana Chaiswing, Terry D. Oberley, and Daret K. St. Clair

Précis: This study reports a novel genetic model of skin carcinogenesis that reveals the importance of a linkage between ROS scavenging networks and cellular stress responses involving p53.
RNA Helicase DDX5 Is a p53-Independent Target of ARF That Participates in Ribosome Biogenesis


Precis: This study offers an answer to the long-standing question of how the tumor suppressor ARF inhibits ribosome biogenesis, which does not involve p53 but is essential to prevent Ras-induced cell transformation.

A Forkhead transcription factor controlling global chromatin structure is a pivotal organizer of G₁-S cell cycle transit in castration-resistant prostate cancer.


Precis: A Forkhead transcription factor controlling global chromatin structure is a pivotal organizer of G₁-S cell cycle transit in castration-resistant prostate cancer.

There are no images or figures in this document.
Expression and Immunotherapeutic Targeting of the SSX Family of Cancer–Testis Antigens in Prostate Cancer
Heath A. Smith, Robert J. Cronk, Joshua M. Lang, and Douglas G. McNeel

Précis: Exclusive expression of a set of antigens expressed only in testis and metastatic prostate cancer may offer attractive targets for immunotherapy.

2-Deoxyglucose Induces Noxa-Dependent Apoptosis in Alveolar Rhabdomyosarcoma
Silvia Ramírez-Peinado, Fermín Alcázar-Limones, Laura Lagares-Tena, Nadia El Mjiyad, Alfredo Caro-Maldonado, Oscar M. Tirado, and Cristina Muñoz-Pinedo

Précis: An aggressive pediatric muscle tumor was discovered to be highly sensitive to a glycolytic inhibitor similar to one used widely in the oncology clinic for PET imaging, suggesting it might be immediately repositioned as a therapeutic to treat what is often a fatal childhood cancer.

Verticillin A Overcomes Apoptosis Resistance in Human Colon Carcinoma through DNA Methylation-Dependent Upregulation of BNIP3
Feiyan Liu, Qianqian Liu, Dafeng Yang, Wendy B. Bollag, Keith Robertson, Ping Wu, and Kebin Liu

Précis: To combat drug resistance, the primary cause of deaths from cancer, one top goal of laboratory research is to identify adjuvants that can safely and effectively cooperate with existing treatments to widen their therapeutic window of action.

Inhibition of Neurotensin Receptor 1 Selectively Sensitizes Prostate Cancer to Ionizing Radiation
Nicholas C.K. Valerie, Eli V. Casarez, John O. DaSilva, Marya E. Dunlap-Brown, Sarah J. Parsons, George P. Amorino, and Jaroslaw Dziegielewski

Précis: A receptor that is absent from normal prostate cells, but switched on in prostate cancers, offers a therapeutic target for radiosensitizing this malignancy.
TNT-α Promotes c-REL/ΔNp63α Interaction and TAp73 Dissociation from Key Genes That Mediate Growth Arrest and Apoptosis in Head and Neck Cancer

Hai Lu, Xingping Yang, Praveen Duggal, Clint T. Allen, Bin Yan, Jonah Cohen, Liesl Nottingham, Rose-Anne Romano, Satrajit Sinha, Kathryn E. King, Wendy C. Weinberg, Zhong Chen, and Carter Van Waes

Précis: Inflammatory signals in the tumor microenvironment can attenuate tumor suppressor functions in cancer cells, as illustrated by this study of how TNF-β and the NF-κB oncoprotein c-REL repress the antiproliferative and proapoptotic activities of ΔNp63-bound p73 in cancer cells harboring mutant p53.

FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization

Jen-Liang Su, Xiaoyun Cheng, Hirohito Yamaguchi, Yi-Wen Chang, Chao-Feng Hou, Dung-Fang Lee, How-Wen Ko, Kuo-Tai Hua, Ying-Nai Wang, Michael Hsiao, Po-Shen B. Chen, Jung-Mao Hsu, Robert C. Bast, Jr., Gabriel N. Hortobagyi, and Mien-Chie Hung

Précis: By providing a leap forward in understanding how the adenovirus oncoprotein E1A sensitizes cancer cells to paclitaxel, this study provides a strong mechanistic rationale to use E1A gene therapy which has been tested clinically as an adjuvant to chemosensitize cancers to this widely used antimitotic drug.

OBITUARY

On the Passing of Gerald C. Mueller, MD, PhD (1920–2010)

Correction: A Requirement of STAT3 DNA-Binding Precludes Th-1 Immunostimulatory Gene Expression by NF-κB in Tumors

Correction: Online Publication Date for Cancer Research September 1, 2011, Article

ABOUT THE COVER

Macrophages play a key role in tumor growth, invasion, and metastasis. Phipps and colleagues identified the mechanism that controls the migration of macrophages to the tumor site. They showed that the generation of plasmin at the cell surface of the macrophage is regulated by the plasminogen receptor S100A10, and that S100A10-regulated plasmin generation is necessary for both the movement of the macrophages to the tumor site and tumor growth and vascularization. The photomicrograph shows that the vascular density, monitored by CD31 immunofluorescence (green), of Lewis lung carcinoma tumors grown in S100A10-null mice can be restored by the adoptive transfer of wild-type macrophages. For details, see the article by Phipps and colleagues on page 6676 of this issue.