Contents

BREAKING ADVANCES

6559 Highlights from Recent Cancer Literature

REVIEWS

6561 PAR-1 and Thrombin: The Ties That Bind the Microenvironment to Melanoma Metastasis
Maya Zigler, Takafumi Kamiya, Emily C. Brantley, Gabriel J. Villares, and Menashe Bar-Eli

6567 Prospects for TIM3-Targeted Antitumor Immunotherapy
Shin Foong Ngiow, Michele W.L. Teng, and Mark J. Smyth

PERSPECTIVES

6572 Is Co-option a Prevailing Mechanism during Cancer Progression?
Marc Billaud and Massimo Santoro

6576 Sphingosine Kinase Inhibitors and Cancer: Seeking the Golden Sword of Hercules
Susan Pyne, Robert Bittman, and Nigel J. Pyne

PRIORITY REPORT

6583 Oxygen Is a Master Regulator of the Immunogenicity of Primary Human Glioma Cells

MICROENVIRONMENT AND IMMUNOLOGY

6590 Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Plasma Metabolomics and Lipid Profiling
Andrew D. Patterson, Olivier Maurhofer, Diren Beyoglu, Christian Lanz, Kristopher W. Krausz, Thomas Pabst, Frank J. Gonzalez, Jean-François Dufour, and Jeffrey R. Idle

Précis: A sophisticated set of metabolomic discovery platforms were employed in this study to define plasma markers of intermediate-stage hepatocellular carcinoma, revealing a number of new molecular alterations and illustrating the potential of this technology for developing pathophysiological understanding and discovering informative diagnostics.

6601 Antiangiogenic and Antimetastatic Activity of JAK Inhibitor AZD1480
Hong Xin, Andreas Herrmann, Karen Reckamp, Wang Zhang, Sumanta Pal, Michael Hedvat, Chunyan Zhang, Wei Liang, Anna Scuto, Shaobu Weng, Deborah Morosini, Zhu A. Cao, Michael Zinda, Robert Figlin, Dennis Huszar, Richard Jove, and Hua Yu

Précis: JAK inhibitors in clinical development effectively inhibit tumor angiogenesis and metastasis mediated by STAT3 in tumor stromal cells as well as tumor cells themselves, encouraging their broader evaluation for cancer treatment than only in malignancies characterized by JAK/STAT mutations.

6611 Targeting the Immunoregulator SRA/CD204 Potentiates Specific Dendritic Cell Vaccine-Induced T-cell Response and Antitumor Immunity
Huafan Yi, Chunqing Guo, Xiaofei Yu, Ping Gao, Jie Qian, Daming Zuo, Masoud H. Manjili, Paul B. Fisher, John R. Subjeck, and Xiang-Yang Wang

Précis: Findings offer a straightforward strategy to enhance the potency of dendritic cell vaccines, for which Provenge is the first FDA-approved example, by targeting a pattern recognition scavenger receptor that limits the ability of dendritic cells to restore T cell–mediated antitumor immunity.
Human Breast Tumor Cells Induce Self-Tolerance Mechanisms to Avoid NKG2D-Mediated and DXAM-Mediated NK Cell Recognition

Emilie Mamessier, Aude Sylvain, François Bertucci, Rémy Castellano, Pascal Finetti, Gilles Houvenaeghel, Emmanuelle Charaffe-Jaufret, Daniel Birnbaum, Alessandro Moretta, and Daniel Olive

Précis: All breast cancer subtypes develop mechanisms to escape natural killer cell–mediated immune recognition, rationalizing the development of immunotherapies that can relieve escape and/or enhance natural killer cell function.

MOLECULAR AND CELLULAR PATHOBIOLOGY

HB-EGF and PDGF Mediate Reciprocal Interactions of Carcinoma Cells with Cancer-Associated Fibroblasts to Support Progression of Uterine Cervical Cancers

Takuya Murata, Hiroto Mizushima, Ichino Chinen, Hiroki Moribe, Shigeo Yagi, Robert M. Hoffman, Tadashi Kimura, Kiyoshi Yoshino, Yutaka Ueda, Takayuki Enomoto, and Eisuke Mekada

Précis: Findings define two central drivers of the reciprocal master-slave relationship created between cancer cells and cancer-associated fibroblasts in the tumor microenvironment.

Human Cytomegalovirus US28 Found in Glioblastoma Promotes an Invasive and Angiogenic Phenotype

Liliana Soroceanu, Lisa Matlaf, Vladimir Bezrookove, Loui Harkins, Roxanne Martinez, Mary Greene, Patricia Soteropoulos, and Charles S. Cobbs

Précis: Human cytomegalovirus infections that occur commonly in deadly brain glioblastomas may be contributing strongly to the aggressive progression which characterizes this disease, through expression of a viral G protein-like coupled receptor that can be therapeutically targeted.

SIRT1 Is Essential for Oncogenic Signaling by Estrogen/Estrogen Receptor α in Breast Cancer

Selvakumar Elangovan, Sabarish Ramachandran, Narayanavan Venkatesan, Sudha Ananth, Jaya P. Gnana-Prakasam, Pamela M. Martin, Darren D. Browning, Patricia V. Schoenelein, Purtur D. Prasad, Vadivel Ganapathy, and Muthusamy Thangaraju

Précis: Small molecule inhibitors of the histone deacetylase SIRT1 presently in clinical development may find an important application in potentiating the beneficial effects of antiestrogen treatments in breast cancer.

Progression of Human Bronchioloalveolar Carcinoma to Invasive Adenocarcinoma Is Modeled in a Transgenic Mouse Model of K-ras–Induced Lung Cancer by Loss of the TGF-β Type II Receptor

Alain C. Borczuk, Marieta Sole, Ping Lu, Jinli Chen, May-Lin Wilgus, Richard A. Friedman, Steven M. Albelda, and Charles A. Powell

Précis: The important new model of lung cancer progression reported in this study recapitulates the genomics and clinical progression of human lung adenocarcinoma, also highlighting its control by an important TGF-β receptor.

Plasminogen Receptor S100A10 Is Essential for the Migration of Tumor-Promoting Macrophages into Tumor Sites

Kyle D. Phipps, Alexi P. Surette, Paul A. O’Connell, and David M. Waisman

Précis: This important study reveals a pivotal signaling node in cancer progression by demonstrating that the receptor for plasminogen, a key regulator of blood coagulation and metastasis, is essential for migration of tumor-promoting macrophages into tumor sites.

Manganese Superoxide Dismutase Is a p53-Regulated Gene That Switches Cancers between Early and Advanced Stages

Sanjit K. Dhar, Jitbanjong Tangpong, Luksana Chaiswing, Terry D. Oberley, and Daret K. St. Clair

Précis: This study reports a novel genetic model of skin carcinogenesis that reveals the importance of a linkage between ROS scavenging networks and cellular stress responses involving p53.
A Novel MLL5 Isoform That Is Essential to Activate E6 and E7 Transcription in HPV16/18-Associated Cervical Cancers
Chow Wenyew, Pei Lee, Wai Keong Chan, Vania Kai Jun Lim, Sun Kuie Tay, Theresa M. Tan, and Lih-Wen Deng

RNA Helicase DDX5 Is a p53-Independent Target of ARF That Participates in Ribosome Biogenesis

ARID1A, a Factor That Promotes Formation of SWI/SNF-Mediated Chromatin Remodeling, Is a Tumor Suppressor in Gynecologic Cancers
Bin Guan, Tian-Li Wang, and Ie-Ming Shih

An Iron Regulatory Gene Signature Predicts Outcome in Breast Cancer
Lance D. Miller, Lan G. Coffman, Jeff W. Chou, Michael A. Black, Jonas Bergh, Ralph D’Agostino Jr, Suzy V. Torti, and Frank M. Torti

Definition of a FoxA1 Cistrome That Is Crucial for G1 to S-Phase Cell-Cycle Transit in Castration-Resistant Prostate Cancer

Itraconazole Inhibits Angiogenesis and Tumor Growth in Non–Small Cell Lung Cancer
Blake T. Aftab, Irina Dobromilskaya, Jun O. Liu, and Charles M. Rudin

Urinary Levels of Cigarette Smoke Constituent Metabolites Are Prospectively Associated with Lung Cancer Development in Smokers
Jian-Min Yuan, Yu-Tang Gao, Sharon E. Murphy, Steven G. Carmella, Renwei Wang, Yan Zhong, Kristin A. Moy, Andrew B. Davis, Li Tao, Menglan Chen, Shaomei Han, Heather H. Nelson, Mimi C. Yu, and Stephen S. Hecht

Shorter Telomeres Associate with a Reduced Risk of Melanoma Development
Hongmei Nan, Mengmeng Du, Immaculata De Vivo, JoAnn E. Manson, Simin Liu, Anne McTiernan, J. David Curb, Lawrence S. Lessin, Matthew R. Bonner, Qun Guo, Abrar A. Qureshi, David J. Hunter, and Jiali Han

A Kinome-Wide Screen Identifies the Insulin/IGF-1 Receptor Pathway as a Mechanism of Escape from Hormone Dependence in Breast Cancer
Emily M. Fox, Todd W. Miller, Justin M. Balko, Maria G. Kubia, Violeta Sánchez, R. Adam Smith, Shuying Liu, Ana María González-Angulo, Gordon B. Mills, Fei Ye, Yu Shyr, H. Charles Manning, Elizabeth Buck, and Carlos L. Arteaga
Expression and Immunotherapeutic Targeting of the SSX Family of Cancer—Testis Antigens in Prostate Cancer
Heath A. Smith, Robert J. Cronk, Joshua M. Lang, and Douglas G. McNeel

Precis: Exclusive expression of a set of antigens expressed only in testis and metastatic prostate cancer may offer attractive targets for immunotherapy.

2-Deoxyglucose Induces Noxa-Dependent Apoptosis in Alveolar Rhabdomyosarcoma
Silvia Ramírez-Peinado, Fermín Alcázar-Limones, Laura Lagares-Tena, Nadia El Mijiyad, Alfredo Caro-Maldonado, Oscar M. Tirado, and Cristina Muñoz-Pinedo

Precis: An aggressive pediatric muscle tumor was discovered to be highly sensitive to a glycolytic inhibitor similar to one used widely in the oncology clinic for PET imaging, suggesting it might be immediately repositioned as a therapeutic to treat what is often a fatal childhood cancer.

Verticillin A Overcomes Apoptosis Resistance in Human Colon Carcinoma through DNA Methylation-Dependent Upregulation of BNIP3
Feiyun Liu, Qianqian Liu, Dafeng Yang, Wendy B. Bollag, Keith Robertson, Ping Wu, and Kebin Liu

Precis: To combat drug resistance, the primary cause of deaths from cancer, one top goal of laboratory research is to identify adjuvants that can safely and effectively cooperate with existing treatments to widen their therapeutic window of action.

Inhibition of Neurotensin Receptor 1 Selectively Sensitizes Prostate Cancer to Ionizing Radiation
Nicholas C.K. Valerie, Eli V. Casarez, John O. DaSilva, Marya E. Dunlap-Brown, Sarah J. Parsons, George P. Amorino, and Jaroslaw Dziegielewski

Precis: A receptor that is absent from normal prostate cells, but switched on in prostate cancers, offers a therapeutic target for radiosensitizing this malignancy.
Tumor Necrosis Factor-α (TNF-α) promotes interaction with c-REL/ΔNp63α from key genes that mediate growth arrest and apoptosis in head and neck cancer.

Précis: Inflammatory signals in the tumor microenvironment can attenuate tumor suppressor functions in cancer cells, as illustrated by this study of how TNF-β and the NF-κB oncoprotein c-REL repress the antiproliferative and proapoptotic activities of ΔNp63-bound p73 in cancer cells harboring mutant p53.

FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization

Jen-Liang Su, Xiaoyun Cheng, Hirohito Yamaguchi, Yi-Wen Chang, Chao-Feng Hou, Dung-Fang Lee, How-Wen Ko, Kuo-Tai Hua, Ying-Nai Wang, Michael Hsiao, Po-Shen B. Chen, Jung-Mao Hsu, Robert C. Bast, Jr., Gabriel N. Hortobagyi, and Mien-Chie Hung

Précis: By providing a leap forward in understanding how the adenosine oncoprotein E1A sensitizes cancer cells to paclitaxel, this study provides a strong mechanistic rationale to use E1A gene therapy which has been tested clinically as an adjuvant to chemosensitize cancers to this widely used antimitotic drug.

PGC1α Promotes Tumor Growth by Inducing Gene Expression Programs Supporting Lipogenesis

Kavita Bhalla, Bor Jang Hwang, Ruby E. Dewi, Lihui Ou, William Twaddel, Hong-bin Fang, Scott B. Vafai, Francesca Vazquez, Pere Puigserver, Laszlo Boros, and Geoffrey D. Girnun

Précis: Results show how a central regulator of energy metabolism controls multiple metabolic pathways to drive carcinogenesis and cancer growth.

Binding of the JmjC Demethylase JARID1B to LSD1/NuRD Suppresses Angiogenesis and Metastasis in Breast Cancer Cells by Repressing Chemokine CCL14

Qian Li, Lei Shi, Bin Gui, Wenhua Yu, Jiamei Wang, Di Zhang, Xiao Han, Zhi Yao, and Yongfeng Shang

OBITUARY

On the Passing of Gerald C. Mueller, MD, PhD (1920–2010)

CORRECTIONS

Correction: A Requirement of STAT3 DNA-Binding Precludes Th-1 Immunostimulatory Gene Expression by NF-κB in Tumors

Correction: Online Publication Date for Cancer Research September 1, 2011, Article

ABOUT THE COVER

Macrophages play a key role in tumor growth, invasion, and metastasis. Phipps and colleagues identified the mechanism that controls the migration of macrophages to the tumor site. They showed that the generation of plasmin at the cell surface of the macrophage is regulated by the plasminogen receptor S100A10, and that S100A10-regulated plasmin generation is necessary for both the movement of the macrophages to the tumor site and tumor growth and vascularization. The photomicrograph shows that the vascular density, monitored by CD31 immunofluorescence (green), of Lewis lung carcinoma tumors grown in S100A10-null mice can be restored by the adoptive transfer of wild-type macrophages. For details, see the article by Phipps and colleagues on page 6676 of this issue.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/21

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.