The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair

Joseph W. Franses1 and Elazer R. Edelman1,2

Abstract

Although the roles of endothelial cells in cancer have primarily been considered to be related to tumor perfusion, the emerging appreciation of "angiocrine" regulation adds stromal regulatory capabilities to the expanding list of endothelial functions in tumors. We posit that an understanding of the state-dependent paracrine regulatory paradigms established in vascular disease and repair will be critical for a deep understanding of tumor biology, as endothelial cells regulate diverse processes in all vascularized tissues. Here, we outline the historical developments that led to the appreciation of the paracrine regulatory functions of endothelial cells, summarize classical views of blood vessels and stroma in cancer, and attempt to merge these ideas to include the stromal regulatory endothelial cell as a critical regulator of cancer. The notion of the endothelial cell as a biochemical regulator of cancer state in constant dynamic balance with its tumor could impact diagnosis, prognosis, and treatment of cancer. Such concepts might well explain the mixed results from antiangiogenic cancer therapeutics and how certain drugs that improve vascular health correlate with improved cancer prognosis. Cancer Res; 71(24); 7339–44. ©2011 AACR.

Introduction

"In the time available I have been able to show you a little of the current knowledge of the morphology of [endothelial] cells which fifteen years ago were thought to form little more than a sheet of nucleated cellophane."

Lord Florey, 1966 (1)

In the mid-nineteenth century, Virchow (2) included "abnormalities of the blood vessel wall" as one of the critical elements of his classic triad defining propensity for clotting, the others being blood coagulability and flow disruption. We interpret this abnormality to mean endothelial dysfunction and seek to ascribe to Virchow the deepest insight about the bioregulatory function of the endothelium, extending his triad of risk of venous thrombosis to all vascular pathologies. Current dogma holds that vascular health is synonymous with endothelial integrity and that disruption of endothelial health presages and contributes to vascular disease. Thus, we retrospectively attribute Virchow's inclusion of mural abnormalities as early reference to the notion that the state of the endothelial cell determines if overlying blood will flow or clot, circulating leukocytes will adhere and transmigrate, underlying vessels will constrict or dilate, and adjacent smooth muscle cells proliferate or regress.

As we continue to consider these issues in vascular biology, the analogy to tumor biology's vascular dependence is obvious and intriguing. Factors released by endothelial cells can control many of cancer's aggressive traits in a manner analogous to endothelial regulation of vascular repair (3). Reparative endothelial cells, similar to those that inhibit vascular smooth muscle hyperplasia after vascular injury (4, 5), inhibit in vitro cancer proliferation and invasiveness and in vivo tumor growth and metastasis (3). Controlled disruption of the endothelial phenotype, via silencing of the gene encoding perlecan, a heparan sulfate proteoglycan critical for endothelial inhibition of thrombosis after vascular repair (6), eliminates the ability of endothelial cells to inhibit cancer invasion and metastasis.

Here, we present our thoughts on the convergence of the biologies of vascular repair or injury with tumor control or spread and, especially, how the use of matrix-embedded endothelial cells can help to reveal complex regulatory mechanisms in physiology and disease.

Vascular Biology's Origins

Functional studies of the vasculature originated with Ernest Starling in 1896 and later were expanded upon by Edmund Cowdry, Alfred Kohn, Ramon y Cajal, and others. Supported with a quantitative framework provided by John Pappenheimer, they surmised that the endothelium served primarily as a selectively permeable vascular lining. Examination of endothelial cell control of vascular tone, thrombosis, hyperplasia, and inflammation (7, 8) was complemented by investigation of endothelial sensitivity to biomechanical stimuli, including shear stress, hydrostatic pressure, and circumferential strain (Fig. 1A).
Insight into the structural biology of the endothelium was made possible by technical achievements linked to deep scientific insight; Karnovsky’s work on novel cytochemical investigations into intact vascular ultrastructure was among the many important findings. Florey cites Karnovsky’s research in his tome on endothelial physiology (1), a work that was astonishingly prescient in its scientific implications and general perspectives about the synergistic progress of the science and enabling technological innovations of vascular biology. Drugs that regulate clotting, blood pressure, cholesterol metabolism, heart failure, and endovascular implants could not have been conceived of, developed, or refined without a deep understanding of vascular biology. Use of these drugs and devices provided new means of probing physiologic systems. Detailed examination of endothelial cell biology was propelled further by 2 pioneering descriptions of the stable culture, identification, and study of isolated endothelial cells (9, 10).

The Endothelial Cell, Endothelium, and Vascular Structure

Large vessels are endothelial-lined tubes and, like epithelial-lined tubes, have a trilaminate architecture. Three vascular mural tunics interface with the lumen from within and the viscera from without, with a muscular layer in between. The innermost intima contains endothelial cells and their underlying extracellular matrix (ECM) layer, the basement membrane, and in larger vessels, vascular smooth muscle cells. Beneath the intima, separated by the internal elastic lamina, is the media, with phalanges of smooth muscle cells separated into packets by fascia and connective tissue sheets. The densest of these sheets bounds the media, on the intimal side as the internal elastic lamina and on the interface with the adventitia as the external elastic lamina. The adventitia contains nerves (vasa nervosum), fibroblasts, ECM, and capillaries (vasa vasorum). The capillaries, made of endothelial cells and sparse supporting pericytes, comprise a second vascular network parallel to the vessel. As the vessel wall thickens beyond a critical limit, additional perfusing vessels and a network of vasa interna, connected to the externa via communicating capillaries, become necessary. This thickness limit is always reached in large arteries, in particular in atherosclerotic vessels. Atherosclerotic plaques (11) and catheter-induced intimal hyperplastic regions (12) are rich in and dependent upon vasa vasorum.

Endothelial cells in large vessels have 2 primary sources: those that reside at the lumen of the large vessel and those of the vasa vasorum that run parallel to and then course through the vessel wall. The large vessels’ endothelial cells regulate and sense flow, interact with blood-borne elements, and modulate permeability. The capillary endothelial cells of the vasa vasorum are far more abundant, and their ubiquity provides that every cell in the vessel wall is adjacent to and under the
potential regulatory control of an endothelial cell. Because all tissues contain microvasculature, every cell in every tissue is under similar potential control. It is, then, the endothelial cells of all tissues that convey vital systemic and regional environmental cues, like inflammation and fluid dynamics, inward and endothelial cell–secreted factors that impinge on regulation control over inflammation and flow, in turn.

Endothelial Cells Are Ubiquitous, Plastic, Paracrine Regulators

The power of endothelial-derived regulation resides not only in its interfacial position but also in its plasticity. The same cells can respond differentially on the basis of subtle alterations in microenvironmental cues and in their own state (13). For example, the density dependence of endothelial regulatory phenotype modulates control of vascular smooth muscle hyperplasia (4, 14) and attraction and trafficking of leukocytes. Healthy endothelium responds to increased blood flow by releasing vasodilatory factors like nitric oxide, whereas injured endothelial layers respond to the identical stimulus with the release of vasoconstricting factors. This latter response of macrovascular endothelium to increased fluid flow was termed paradoxical and formed the original definition of "endothelial dysfunction" (15). The state-dependent endothelial regulatory phenotype has been extended to explain perivascular angiogenesis (16), hematopoiesis and thrombopoiesis (17), and most aspects of inflammation (18). Within a vast potential spectrum of control over diverse physiologic and pathophysiologic processes, we posit the existence of at least 3 fundamental states: dormant or quiescent; physiologically activated and reparative; and dysfunctionally activated and, therefore, disease stimulatory. It is clear that atherosclerosis (19) and, consequently, coronary and peripheral arterial disease, kidney disease and uremia (20), diabetes mellitus and metabolic syndromes (21), rheumatoid arthritis, hypertension (22), preeclampsia, and many other pathologic states strongly correlate with endothelial dysfunction, which can function as a surrogate for disease severity. The fact that endothelial state could now explain diverse elements of tumor biology is intriguing (3, 23, 24).

Endothelial Cell State and Substratum Interactions

Endothelial state is both manifested in and regulated by the composition of the underlying ECM. The basement membrane on which endothelial cells reside provides critical adhesion molecule ligand-binding sites (25) and serves as a depot for signaling molecules and growth factors that regulate endothelial and neighboring cells (26). Turnover or degradation of basement membrane by matrix-digesting enzymes can cause profound changes in the local environment (27). It is not surprising, then, that particular ECM molecules can promote endothelial reparative capabilities, for example, the heparan sulfate proteoglycan perlecan (6), and modification or degradation of these molecules or increasing the activity of opposing molecules can promote dysfunction. Destructive stimuli causing endothelial dysfunction may, therefore, target both the cell and matrix components.

Embedding endothelial cells within porous polymeric scaffolds stabilizes endothelial phenotype by controlling cell–substratum interactions. Regulatory units of precise number and with controlled biosecretion patterns can be created for facile implantation in a variety of culture and animal models. Our laboratory has used such cellular devices as reparative endothelium and shown the power of this engineered tissue in models of hyperplastic disease (28, 29). Unlike injections of isolated cells that require time for homing, engraftment, accommodation, maturation, and other functions, a matrix-embedded endothelial cell construct is immediately effective. Regulatory effects and potency are sustained long after constructs erode without generating a significant inflammatory or immune response, even when allogeneic or xenogeneic cells are used (30). Matrix-embedded endothelial cells placed perivascularly provide long-term inhibition of intimal hyperplasia following vascular injury and inhibit thrombosis in a manner directly dependent on embedded cell expression of perlecan (6). Such cell implants also promote healing of other structures, including the trachea (29) and now solid tumors (3). Matrix-embedded endothelial cell implants in disease models can provide unique insights not easily obtainable by delivery of isolated factors.

Classical Views of Endothelial Cells in Cancer: Role in Tumor Angiogenesis

"The presence of a tumor-angiogenesis factor suggests a transfer of information from tumor cells to capillary endothelial cells. The relationship between tumor cells and endothelial cells may be interdependent."

Folkman and colleagues, 1971 (31)

Vascularization is essential for the development of physiologic and pathologic tissues. The calor, tumor, and rabor of inflammation arise from vascularization, and modern schemata of cancer biology must include vessels for continued growth and eventual metastasis. The paradigm first described by Folkman (32) posited that, because growing tumors need a blood supply for perfusion, interruption of the blood supply should interrupt tumor growth. Normally, equilibrium between proangiogenic and antiangiogenic factors maintains vessel homeostasis and balances vascular network expansion and pruning. Tumor vessels’ unchecked expansion is likely driven by the incorporation of endothelial cells derived from existing local vessels and, perhaps, circulating cells as well (33). Without a vasculature, tumors are unable to grow to more than ~1 mm³ in volume, remaining small and dormant. Once a tumor flips the ‘angiogenic switch,’ new vessels are recruited that first increase tumor microvascular density and later increase tumor growth and invasiveness.

Jain extended the concepts surrounding perfusion-mediated effects of tumor vessels by realizing that these vessels, mainly composed of endothelial cells, possess abnormal architecture because of an imbalance of pro- and antiangiogenic factors (34). This architectural dysregulation includes heightened
permeability, which contributes to intratumoral hypoxia and/or acidosis and elevated interstitial pressure, facilitating the outward spread of cancers and impeding soluble molecule flux into the tumor. Jain suggests that "normalization" of the tumor vasculature by doses of antiangiogenesis agents insufficient to destroy the vasculature instead restores the balance of pro- and antiangiogenic factors and partially explains the efficacy of such therapies. Other tumor endothelial phenotypic abnormalities include an "activated" integrin expression pattern (35), dysregulated leukocyte adhesion (36), abnormal responses to oxidative stress (37), and abnormal mechanosensing (38). Similar derangements have been characterized in dysfunctional endothelial cell phenotypes in vascular disease (7, 39).

Most of the explosive research in tumor angiogenesis concentrated on how vessels are recruited (40) and structurally distorted (34) to promote tumor growth. Some have proposed a more direct role for the endothelial cells themselves in cancer regulation, including contact-dependent and contact-independent regulation (41, 42). Yet, the homology to vascular repair has not been fully recognized, and interest in such has partially receded. Moreover, the endothelial cell has been rarely (43), and inconsistently, mentioned as part of the population of stromal cells, such as fibroblasts (44) and myeloid cells (45), which are increasingly recognized as essential elements of tumor biology. As "angiocrine" paradigms for stromal regulatory endothelial cells have begun to appear (23), it is worth considering how endothelial cell–derived paracrine regulatory models in the biology of vascular homeostasis and repair (7) can contribute to cancer sciences (3).

The genetically normal stromal cells of the cancer microenvironment are potentially attractive therapeutic targets, offering the potential for lower toxicity and intervention at multiple and shared events in tumor evolution (46). Furthermore, endogenous stroma may be used to inhibit, rather than support, cancer aggression (47-48). Strategies toward this goal could include both pharmacologic and biophysical cues to normalize the tumor microenvironment or the placement of healthy regulatory cells within or adjacent to the deranged tumor milieu (3).

The impact of antiangiogenic therapy on cancer is revealing. Drugs designed to limit tumor vascularization have mixed effects on patient survival (49). Some researchers have even proposed that specific modes of antiangiogenic therapy that target VEGF might accelerate tumor invasion and metastasis while shrinking primary tumors (50, 51), although the implications of these preclinical studies have not yet been fully evaluated in human specimens (52). Thus, elusive details remain about the cross-talk between cancer cells and endothelial cells, and the effects of endothelial cell state, for example, quiescent, reparative, or dysfunctional, on such processes must be taken into consideration. Along this line, it is intriguing that the cholesterol-lowering drugs that inhibit HMG-CoA reductase (statin drugs) and nonsteroidal antiinflammatory drugs both improve vascular integrity and endothelial health (53, 54) and are associated with improved cancer prognoses (55).

The Emerging "Angiocrine" Paradigm: Dysfunctional Tumor-Associated Endothelial Cells

Butler and colleagues recently proposed a model (23) that combines the cancer–stroma interaction and angiogenesis paradigms. They proposed that endothelial cells are recruited to tumors to provide "angiocrine" support for tumor growth and spread. This model has been used to identify, for example, that the endothelial cell EphA2 receptor negatively regulates the secretion of a cancer-stimulatory angiocrine factor Slit2 (24). This notion is consistent with the increasingly appreciated roles of inflammation and stromal regulatory elements present in the tumor milieu (56), which could in combination cause endothelial cell dysfunction.

State dependence might deepen this perspective (Fig. 1B). The notion that endothelial cells promote physiologic repair when healthy and disease processes when dysfunctional more likely represents points on a regulatory spectrum of the remarkably plastic endothelium (57). Precisely as in atherosclerotic vascular disease, in which reparative endothelial cells inhibit disease processes like inflammation, hyperplasia, or thrombosis, and dysfunctional endothelial cells stimulate the same, endothelial cells may regulate cancer pathophysiology in a state-dependent manner. Reparative endothelial cells should suppress cancer cell malignant properties like proliferation and invasion, and dysfunctional endothelial cells stimulate the same. Regulatory factors identified in vascular disease and repair may also contribute to cancer biology. Although advanced cancers must eventually recruit and corrupt the cells in their microenvironment, it may be possible to pharmacologically reverse the phenotype of endogenous tumor endothelial cells, from dysfunctional to quiescent and even reparative, and regain control over the tumor milieu.

As in vascular disease, the ECM should contribute to tumor biology by regulating endothelial state and, thereby, affect adjacent cancer cells within a tumor. Control over cell–matrix interactions may help to ensure that endothelial cells placed within or adjacent to the tumor milieu retain their regulatory phenotype to overcome or resist the disruptive stimuli and promote homeostasis. We recently showed that factors released from reparative endothelial cells suppress cancer proliferation, invasiveness, and inflammatory signaling in vitro and tumor growth and experimental metastasis in vivo (3). In these experiments, the intact endothelial secretome, as opposed to constituent isolated factors, was used because combinations of individual factors can elicit even qualitatively different responses from target cells depending on dose and presence of cofactors. For example, prior work from our laboratory identified context-dependent roles for endothelial heparan sulfate proteoglycans in inhibiting vascular smooth muscle cell proliferation and showed how other factors emitted by endothelial cells either augment or reverse such inhibition (5). Our use of matrix-embedded endothelial cell implants to control the behavior of solid tumors in animals was another example in which prior work in vascular repair presaged experiments in cancer. Reparative matrix-embedded endothelial cell implants...
reduced tumor growth and normalized tumor structure (3), just as such implants help to guide repair after vascular (28) and tracheal (29) injury. Although we have found that it is the synergistic action of endothelial cell–secreted factors that most efficiently guides repair (5), manipulation of specific endothelial cell–secreted products can help to elucidate partial mechanisms of endothelial-derived regulation. We previously showed that silencing endothelial expression of perlecan, the predominant endothelial-secreted heparan sulfate proteoglycan, abrogated the ability to inhibit occlusive vascular thrombosis, but not intimal hyperplasia, after vascular injury (6). We concluded that perlecan expression is critical for maintenance of the disease-inhibitory endothelial cell phenotype and hypothesized that endothelial perlecan expression may bolster endothelial anti-cancer effects. Indeed, knockdown of perlecan caused transcriptional upregulation of interleukin-6 and eliminated the ability of endothelial cells to inhibit cancer cell invasion and metastasis (5), supporting our vascular–cancer paradigm homology. Thus, the phenotype of tumor-associated endothelium may be modified either by direct action of molecular mediators on the endothelial cells themselves or by modification of the subendothelial ECM.

The transfer of regulatory paradigms from vascular repair to cancer may be useful in identifying previously unrecognized processes in endothelial–cancer cross-talk. High-throughput gene expression studies have offered abundant data (58), but few tumor endothelial genes have been identified as paracrine regulators. Intriguingly, of the genes that have been identified, many encode ECM or matrix-remodeling molecules (58), which could support the notion that particular modifications of the ECM contribute to tumor progression by modification of the endothelial phenotype.

Summary: Paracrine Context-Dependent Regulatory Roles of Endothelial Cells in Cancer

"Perhaps you will be kind enough to look on what I have said today as one more interim report on endothelium. Our knowledge is still far from being definitive, and I should expect to see the next ten years yield a rich harvest of new knowledge about the cells which stand between the blood and lymph streams and the cells of the tissue. I would expect to see exemplified the dicta that the introduction of a new technique is certain to be followed by new discoveries and that the pushing of a known technique to greater heights of technical achievement will produce new accretions of knowledge."

Lord Florey, 1966 (1)

The uniquely privileged and ubiquitous anatomic position of microvascular endothelial cells might enable a global paradigm for disease regulatory control dictated by endothelial phenotype. The list of diseases affected by endothelial anti- and proinflammatory regulation is immense and, perhaps now, should prominently include cancer (3, 23, 24). As with the foundational work of Virchow, Florey, and all of those who came before us, our views will be refined with continued investigation. We have attempted to merge traditionally distinct fields of study into an updated report of the roles of the endothelium in health and disease. We hope that studies using matrix-embedded endothelial cells as convenient and controllable cellular implants will help define the extent of cancer–endothelial cross-talk. Such work may enable the design of pharmacologic therapies to reverse tumor endothelial phenotype from dysfunctional to reparative and guide the design of cellular implants that are able to resist the pressures present in the tumor milieu to effectively and permanently “heal” tumors.

Disclosure of Potential Conflicts of Interest

J.W. Franses and E.R. Edelman are coinventors on a patent owned by Massachusetts Institute of Technology that describes the use of cell implants to modulate cancer behavior. E.R. Edelman is a founder of Pervasis Therapeutics, which has licensed the patent application.

Acknowledgments

The authors thank Dr. Morris Karnovsky for critical review of the manuscript and Drs. Sangreeta Bhattacharya, Angelo Cardoso, Gary Gilliland, David Houseman, and David Scadden for early discussions and insight into these issues.

Grant Support

Financial support was provided by NIH R01 GM-49039 to E.R. Edelman and by NIH Medical Scientist Training Program (MSTP) to J.W. Franses.

Received June 7, 2011; revised August 9, 2011; accepted August 11, 2011; published OnlineFirst December 5, 2011.

References

The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair

Joseph W. Franses and Elazer R. Edelman

Cancer Res 2011;71:7339-7344. Published OnlineFirst December 5, 2011.

Updated version

Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-1718

Cited articles

This article cites 57 articles, 17 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/24/7339.full.html#ref-list-1

Citing articles

This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/71/24/7339.full.html#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.