High PTP4A3 Phosphatase Expression Correlates with Metastatic Risk in Uveal Melanoma Patients

Cécile Laurent1,7,10,11,12,13, Fabien Valet1,2,7,13, Nathalie Planque1,8,10,11,12, Licia Silveri1,3,10,11,12, Aline Anezo1,10,11,12, Philippe Hupel1,7,9,13, Corine Plancher1,2,7,13, Cécile Reyes1,3, Benoît Albaud1,3, Audrey Rapinat1,3, David Gentien1,3, Jérôme Couturier1,4, Xavier Sastre-Garau1,4, Laurence Desjardins1,5, Jean-Paul Thiery1,4, Sergio Roman-Roman1,3, Bernard Asselain1,2,7,13, Emmanuel Barillot1,7,13, Sophie Piperno-Neumann1,6, and Simon Saule1,10,11,12

Abstract
A high percentage of uveal melanoma patients develop metastatic tumors predominantly in the liver. We studied the molecular profiles derived from gene expression microarrays and comparative genomic hybridization microarrays, to identify genes associated with metastasis in this aggressive cancer. We compared 28 uveal melanomas from patients who developed liver metastases within three years of enucleation with 35 tumors from patients without metastases or who developed metastases more than 3 years after enucleation. Protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL3), was identified as a strong predictor of metastasis occurrence. We demonstrated that the differential expression of this gene, which maps to 8q24.3, was not merely a consequence of 8q chromosome overrepresentation. PTP4A3 overexpression in uveal melanoma cell lines significantly increased cell migration and invasiveness in vivo, suggesting a direct role for this protein in metastasis. Our findings suggest that PTP4A3 or its cellular substrates could constitute attractive therapeutic targets to treat metastatic uveal melanomas.

Introduction
Uveal melanoma is the most common intraocular cancer in adults. Up to 50% of patients develop metastases within a median of 36 months, with a median survival of 6 months after metastasis (1). Several clinical and histopathological features have been correlated with survival, including patient age (>60), anterior location of the tumor, tumor cell histology, largest diameter of the tumor, mitotic activity, and chromosome 3 monosomy. The most frequent chromosomal imbalances in uveal melanoma are loss of chromosome 3 and gains of 8q and 6p (2). Several gene expression profiling studies have identified two molecular classes strongly associated with metastatic risk (3–5). The application of one recently described gene classifier (6) to our data set (Supplementary Fig. 1) separates two classes, but 21% of metastasizing tumors remain associated with the low-grade group (class 1), justifying further analyses of gene expression to identify genes more specifically associated with metastasis.

We present here an analysis of gene expression in 63 primary tumors. The genes differentially expressed between meta1 (patients who developed metastasis within 3 years of enucleation) and meta0 (late- or nonmetastasizing tumors) tumors included a gene encoding protein tyrosine phosphatase type IV A member 3 (PTP4A3), which maps to 8q24.3. High levels of expression of this gene are highly predictive of metastasis. DNA copy number analysis has shown that 8q is overrepresented in high-risk tumors (2). However, the expression profile of PTP4A3 differed considerably from that of the neighboring genes in the genome, demonstrating that this gene was not simply a passenger gene. We further investigated the role of PTP4A3 in the development of tumor metastases, by characterizing the migration and invasiveness of uveal melanoma cell lines overexpressing this gene. Our results strongly suggest that the prognosis marker PTP4A3 may play a causal role in metastasis development in uveal melanoma tumors.

Materials and Methods

Tumor samples and clinical data
A series of 63 tumor samples obtained by enucleation in untreated patients was provided by the Biological Resource Centre of Institut Curie. The study was approved by the ethics committee of Institut Curie and conformed to the Helsinki Declaration. In line with French regulations, informed consent was obtained from the patients concerned. Clinical,
pathological, and molecular features of the tumors are presented in Supplementary Table 1.

We compared tumors displaying early and late or no metastasis (the meta1 and meta0 groups, respectively), by investigating patients with a minimum follow-up of 36 months, providing a subset of 57 cases. DNA copy number data were available for 45 of these patients (2). The others were assessed for chromosome 3 monosomy by FISH. Twenty-eight of these 57 patients developed liver metastasis in the first 36 months after diagnosis (meta1 in our study), seven developed liver metastasis after 36 months and 22 had not developed liver metastasis at the time of analysis (noted meta0).

Expression microarray analysis
Labeled cRNA was produced from total RNA, and hybridization, scanning and image analysis were carried out as recommended by the manufacturer of the microarray (Affymetrix), with a two-round amplification protocol. Specimens were analyzed on GeneChip Human Genome U133 Plus 2.0 microarrays (Affymetrix). We used GeneChip Operating Software and the MAS 5.0 algorithm (Affymetrix) to control raw microarray data for the quality of hybridization and synthesis.

Analysis of gene expression data
The data set, corresponding to 63 uveal melanoma primary tumors, is available from the GEO database (http://www.ncbi.nlm.nih.gov/geo/), under accession number GSE22138. These data were analyzed with R software (version 2.9.0) and Bioconductor (release 2.4, refs. 7 and 8). Gene expression values for 63 uveal melanoma primary tumors were normalized with the GC-Robust Multi-array Average (GC-RMA) algorithm (9) and filtered, to remove probe sets with expression levels below the interquartile range values (difference between the third and the first quartile) below the median value were removed. For additional filtering, we discarded half the probe sets displaying low levels of variability in expression levels: probe sets with interquartile range values (difference between the third and the first quartile) below the median value were removed. We then used univariate Cox models to detect probes significantly associated with the endpoint. We carried out multivariate Cox model analysis to identify, among these selected variables, a group of clinical variables significantly associated with the endpoint. Univariate and multivariate selections were based on Wald tests, with statistical significance fixed at 5%. The final multivariate model is referred to as the clinical model.

For additional filtering, we discarded half the probe sets displaying low levels of variability in expression levels: probe sets with interquartile range values (difference between the third and the first quartile) below the median value were removed. We then used univariate Cox models to detect probes significantly associated with the endpoint. We carried out multivariate Cox model analysis to identify, among these selected variables, a group of clinical variables significantly associated with the endpoint. Univariate and multivariate selections were based on Wald tests, with statistical significance fixed at 5%. The final multivariate model is referred to as the clinical model.

Survival analysis on 63 patients
Univariate Cox models were first applied, to identify clinical variables (from Supplementary Table 1) significantly associated with the endpoint (metastasis-free survival). We then carried out stepwise multivariate Cox model analysis to identify, among these selected variables, a group of clinical variables significantly associated with the endpoint. Univariate and multivariate selections were based on Wald tests, with statistical significance fixed at 5%. The final multivariate model is referred to as the clinical model.

For additional filtering, we discarded half the probe sets displaying low levels of variability in expression levels: probe sets with interquartile range values (difference between the third and the first quartile) below the median value were removed. We then used univariate Cox models to detect probes significantly associated with the endpoint. We carried out multivariate Cox model analysis to identify, among these selected variables, a group of clinical variables significantly associated with the endpoint. Univariate and multivariate selections were based on Wald tests, with statistical significance fixed at 5%. The final multivariate model is referred to as the clinical model.

The predicted scores (fitted values) from these two models were used to identify groups of patients with significantly different prognoses. For the clinical and genomic models, we propose the use of the first and third quartiles to distinguish between patients with good, intermediate, and poor prognoses. For the genomic model, we propose the use of the median score threshold to distinguish between patients with good and poor prognoses. The median threshold for the genomic model was also validated on an external data set of 21 primary tumors (3). A log-rank test was used to compare the prognoses of the various groups defined by the models.

Gene expression analysis on the 57 primary tumors
We carried out a principal component analysis (PCA) on the tumor samples, based on the 12 discriminatory genes previously described (6). Because of differences between the platforms used, the mean value of the probe sets for the 12 published genes was used for the PCA.

Genes differentially expressed between the 29 meta0 and the 28 meta1 tumors were identified by the significance analysis of microarrays (SAM) method (11). The analysis parameter delta was fixed so as to give a false discovery rate (FDR) ≤5%. Genome-transcriptome correlation analysis (GTCA) was performed, by Pearson’s correlation method, on 45 tumors for which both DNA copy number and RNA transcriptome information were available. We evaluated the correlation between the expression levels of neighboring genes along the genome, with the Transcriptome Correlation Map (TCM) method proposed by Reyal et al. (12). The correlation was calculated with a moving window of 20 genes around each gene.

Generation of OCM-1 cells stably producing EGFP-PTP4A3
Human OCM-1 uveal melanoma cells were obtained in 2003 from Dr. Frederic Mouriaux, (from ref. 13). These cells were analyzed for this study on GeneChip Human Genome U133 Plus 2.0 and Human Exon 1.0 ST Arrays (Affymetrix) and expressed MITF and the pigmentation genes. They were transfected with pEGFPc1 (Clontech) plasmids encoding the wild-type form of PTP4A3, the catalytic mutant C104S (both kindly provided by Prof. Qi Zeng, IMCB Institute, Singapore) or EGFP as a control. Transformants were selected on G418 for 12 days. EGFP-PTP4A3 production was checked by Western blot analysis with the anti-PTP4A3 serum ab26947 (Abcam). The pVNC7 expression vector, encoding the native PTP4A3 and constructed by insertion of the EcoRI/BamHI ORF fragment, was also used to transfect OCM-1 cells (Fig. 3A, OCM-1-VNC7-PTP4A3).

Time-lapse video microscopy
We dispensed 50,000 cells into the wells of six-well plates coated with 50 µg/mL collagen type I (BD Biosciences). Cell migration was monitored by time-lapse video microscopy under bright white light and UV light, with an inverted phase contrast microscope (Leica DM IRB) equipped with an
incubation chamber (37°C, humidified atmosphere containing 5% CO₂), an x-γ-z stage controller and a charge-coupled device (CCD) CoolSnap camera (Photometrics). Images were acquired at 4-minute intervals over a 12 hours time period, with the Metamorph software (Molecular Devices). Movies were reconstructed with a plug-in for ImageJ software (http://rsweb.nih.gov/ij/) developed by F. Cordelière at Institut Curie (Orsay, France). Cells were tracked manually and parameters were calculated with another plug-in also developed by F. Cordelière.

Immunostaining and immunohistochemistry

For the staining of focal adhesions, cells were fixed by incubation for 20 minutes at room temperature in 4% paraformaldehyde and labeled with antibodies against p-FAK (Tyr 397)-R (Santa Cruz Biotechnology) at a dilution of 1/500. Samples were counterstained with hematoxylin after immunostaining.

Chick embryo metastasis assay

Fertilized chick eggs (EARL Morizeau) were incubated at 38°C, 80% humidity, for 8 days. We then inoculated the choroidallantoic membrane (CAM) with 0.25 × 10⁶ OCM-1-EGFP-PTP4A3, OCM-1-EGFP-PTP4A3(C104S), or OCM-1-EGFP cultured melanoma cells, which were allowed to disseminate during incubation for a further 8 days. The cell lines were introduced in 50 μL of inoculum through a small incision made in the shell of the egg. The CAMs were prepared from paraffin-embedded tissues and processed for immunohistochemistry by an automated procedure. A polyclonal rabbit antibody, PTP4A3 (P0498 Sigma), was used at a dilution of 1:150.

Immunostaining and immunohistochemistry

Sections (3 µm) were prepared from experimental samples and processed for immunohistochemistry by an automated procedure. A polyclonal rabbit antibody, PTP4A3 (P0498 Sigma), was used at a dilution of 1:150. Samples were counterstained with hematoxylin after immunostaining.

Results

Survival analysis on the 63 patients

Univariate Cox analysis highlighted significant associations between the endpoint (metastasis-free survival) and monosomy 3 (P = 0.001), retinal detachment (P = 0.014), and epithelioid versus nonepithelioid tumors (P = 0.027). In the multivariate Cox clinical model, only monosomy 3 (P = 0.001) and retinal detachment (P = 0.023) were found to be significantly associated with metastasis-free survival (Table 1).

Filtering based on expression values below 3.5 and the removal of half the probe sets (those with the smallest interquartile range), resulted in 37,389 of the initial 54,675 probe sets being discarded. We identified 514 of the remaining 17,286 probe sets as significantly associated with metastasis-free survival. PTP4A3 was found to be the probe related to metastasis-free survival with the lowest P value (corrected P = 0.003).

Table 1. Summary of survival analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Clinical model</th>
<th>Genomic model</th>
<th>Clinical and genomic model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR [95% CI] P</td>
<td>RR [95% CI] P</td>
<td>RR [95% CI] P</td>
</tr>
<tr>
<td>Monosomy 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>5.93 [2.02 – 17.46] 0.001</td>
<td>3.18 [0.96 – 10.53] 0.058</td>
<td></td>
</tr>
<tr>
<td>Retinal detachment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>2.74 [1.15 – 6.55] 0.023</td>
<td>2.25 [0.94 – 5.42] 0.069</td>
<td></td>
</tr>
<tr>
<td>PTP4A3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< Median (7)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>≥ Median (7)</td>
<td>4.39 [2.09 – 9.22] <0.001</td>
<td>3.33 [1.29 – 8.58] 0.013</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: RR, relative risk.
Figure 1. Kaplan-Meier analysis and PTP4A3 levels. A–C, Kaplan-Meier plots of metastasis-free survival. A, identification of groups of patients with different prognoses based on the score predicted by the clinical-genomic model (monosomy 3, retinal detachment, and PTP4A4 as a binary variable), B, identification of two groups of patients with different prognoses based on the predicted score from the genomic model (PTP4A4 as a binary variable). C, validation of the median as a threshold in the genomic model for the identification of two different groups, for an external data set (21 primary tumors) (3). D, PTP4A3-ordered expression level (log2) on 63 primary tumors. Black points, metastatic tumors. White points, nonmetastatic tumors. Gray points, tumors metastasizing late (after 36 months, considered meta0 in our analysis). Crossed points, tumors with less than 36 months of follow-up. The heatmap below shows known chromosome alterations. L3, loss of chromosome 3; G8q, gain of the 8q region, and G6p, gain of the 6p region. Green, no alteration. Red, alteration. Blue, partial alteration. White, not available data about chromosomal alterations in these tumors.
PTP4A3 treated as a binary variable (median expression level, equal to 7, used as a threshold) was also strongly associated with metastasis-free survival ($P < 0.001$) and remained significant when the multivariate Cox model was adjusted for the parameters of the clinical model ($P = 0.013$, Table 1).

The scores provided by the clinical and genomic models made it possible to define three significantly different groups with a "good," "intermediate," and "poor" prognosis (Fig. 1A) of developing metastases (log-rank test, $P = 1.9 \times 10^{-6}$). As shown in Figure 1B, the scores provided by the genomic model (with only PTP4A3 as a binary variable) identified two groups of patients with significantly different risks of metastasis development (log-rank test, $P = 2.2 \times 10^{-5}$). Similar significant results were obtained with an external data set (ref. 3; Fig. 1C; log-rank test, $P = 6.7 \times 10^{-5}$).

Differential expression of PTP4A3 is not linked to the overrepresentation of chromosome 8

An analysis of differential expression between 29 meta0 and 28 meta1 tumors identified 983 probe sets as differentially

![Figure 2. PTP4A3 is not a chromosome 8 passenger gene. A–C, boxplots representing the distribution of log2 expression values (A, C) or log-ratio DNA copy number for PTP4A3 (B). P values were obtained for a Wilcoxon rank-sum test. A, tumors with 8q region overrepresentation ($N = 32$, meta0 = 15, meta1 = 17). B and C, tumors displaying homogeneous overrepresentation of 8q ($N = 15$, meta0 = 5, meta1 = 10). ***, $P < 10^{-3}$, **, $P < 5 \times 10^{-2}$. D, transcriptome correlation map for tumors with 8q region overrepresentation ($N = 32$). The TC score indicates the significance of the correlation between the expression of a given gene and that of its neighbors (20 neighbors in this case).]
We therefore investigated a subgroup of 32 tumors with 8q overrepresentation. However, not all uveal melanomas expressed, with an FDR of 5%, PTP4A3 was one of the most strongly differentially expressed genes \((P < 10^{-5}) \).

PTP4A3 is located in 8q24.3, a region significantly overrepresented in metastatic tumors \((2) \). High levels of PTP4A3 mRNA may therefore simply be a consequence of chromosome overrepresentation. However, not all uveal melanomas with 8q overrepresentation overexpress this gene \((1D) \). We therefore investigated a subgroup of 32 tumors with 8q overrepresentation and looked for significant differences in PTP4A3 RNA levels between meta0 and meta1 tumors in this subgroup \((2A) \). PTP4A3 was significantly more strongly expressed in the meta1 group \((P < 0.01) \), but PTP4A3 gene copy number level varied in these tumors. We performed the same analysis on a subgroup of 15 tumors \((5 \text{ meta0, 10 meta1}) \) with identical DNA copy numbers for this gene \((P = 0.86, \text{Fig. 2B}) \). PTP4A3 was again found to be significantly more strongly expressed in meta1 than in meta0 tumors in this subgroup \((P = 0.028, \text{Fig. 2C}) \). Thus, PTP4A3 overexpression is not simply a consequence of chromosome overrepresentation.

We investigated whether PTP4A3 was coexpressed with other genes from the 8q region by studying the correlation between the expression of PTP4A3 expression and that of its nearest neighbors in the same orientation (similar results were obtained without this selection of DNA orientation). TCM analysis \((12) \) showed that the expression of PTP4A3 was not correlated with that of its neighbors \((\text{Fig. 2D}) \). Indeed, PTP4A3 was the only gene in this region differentially expressed between meta0 and meta1 tumors at the chosen level of significance (data not shown). Thus, the overexpression of PTP4A3 in meta1 tumors cannot be accounted for by PTP4A3 acting as an 8q passenger gene.

As chromosome 6p overrepresentation is associated with a lower risk of metastasis development \((\text{in our 45 tumors, } P = 0.0078) \) and of cutaneous melanoma \((16) \), we separated tumors displaying chromosome 8q overrepresentation \((N = 32) \) from those with a normal chromosome 6 \((N = 14) \) and those with an overrepresented 6p \((N = 18) \). In the subgroup of tumors with 6p overrepresentation, PTP4A3 expression levels were significantly lower \((P = 0.01) \) than in tumors bearing normal amounts of 6p. In tumors in which both 6p and 8q were overexpressed, PTP4A3 expression level was not a significant marker of meta1 tumors \((N = 18, \text{with meta0 = 12 and meta1 = 6; } P = 0.1) \). This suggests that the protective effect of chromosome 6p overrepresentation against melanoma metastasis may be in part linked to a reduced PTP4A3 RNA level.

PTP4A3 Predicts Metastatic Risk in Uveal Melanoma

We investigated whether protein levels were correlated with mRNA levels for PTP4A3 in uveal melanoma tumors, we performed immunodetection of this protein in sections from meta0 and meta1 tumors. A Western blot analysis of OCM-1 cells displaying PTP4A3 upregulation was carried out, to validate the antibody against PTP4A3 used for immunohistochemistry. OCM-1 cells were transiently transfected to overexpress PTP4A3. We then subjected 20 μg of cell lysate/lane to SDS-PAGE and Western blotting with the PTP4A3 antibody. A specific band of about 22 kDa was detected in OCM-1 cells overexpressing PTP4A3 \((\text{Fig. 3A}) \). Under the experimental conditions used, endogenous PTP4A3 protein levels in OCM-1 cells were below the detection limit. We then used tumor cell lysates obtained from mouse xenografts \((17) \) with high \((\text{MM074}) \) or low \((\text{MP047}) \) PTP4A3 RNA levels, as determined by RT-qPCR (data not shown and Fig. 3A). Sections of these tumors were used to set up the immunodetection conditions. The results obtained with human tumor sections
are shown in Figure 3B, positive staining appears in red and nuclei were counterstained with hematoxylin. Left column, PTP4A3 negative meta0 tumors (e.g., in panel a PTP4A3 log2 expression: 4.67) and right column PTP4A3 positive meta1 tumors (e.g., in panel 1, PTP4A3 log2 expression: 10.41).

PTP4A3 overexpression increases migration in uveal melanoma cells

PTP4A3 is known to promote cell migration and invasion in several types of cancer cell in vitro and in vivo (18–22). OCM-1 uveal melanoma cell lines stably producing wild-type PTP4A3 or the catalytic mutant C104S (ref. 19, Fig. 4A) were established. As PTP4A3 has been reported to interact with integrin α1 and to regulate integrin B1 phosphorylation (23), we performed random migration assays, in which migration on collagen I matrix was compared with that on uncoated tissue culture dishes. Time-lapse video microscopy experiments revealed that OCM-1 cells producing the wild-type PTP4A3 migrated faster, paused for shorter periods and traveled further on collagen I matrix than did cells producing the mutant protein or EGFP alone (Fig. 4B and videos 1–3 in Supplementary data). OCM-1 cells producing the wild-type PTP4A3 had a significantly larger number of focal adhesions covering a significantly smaller surface area than cells producing the mutant form of the phosphatase (Fig. 4C).

PTP4A3 overproduction increases the invasiveness of uveal melanoma cell lines

The chick embryo can be used as a naturally immuno-deficient host capable of sustaining graft tissues and cells without species-specific restrictions. The use of these embryos makes it possible to carry out a comprehensive analysis of the dissemination of cancer cells, including tumor cell
intravasation in a model of spontaneous metastasis (24). Uveal melanoma OCM-1 cell lines producing EGFP-PTP4A3, EGFP-PTP4A3(C104S), or EGFP were grafted
in ovo. One week after inoculation, femurs were dissected and DNA extracted for qPCR experiments with human alu and chicken GAPDH primers.
The number of cells present was calculated from the standard curve. Similar data were obtained in two independent experiments. Number of
inoculated embryos: OCM-1-EGFP-PTP4A3 = 5, OCM-1-EGFP-PTP4A3(C104S) = 8, and OCM-1-EGFP = 3. Errors bars indicate the coefficient of
variation; **P = 0.01.

Discussion

Our study showed that a new predictive gene, PTP4A3, is differentially expressed between meta0 and meta1 primary tumors and strongly associated with the occurrence of metastasis in uveal melanoma. PTP4A3 is located on 8q, but its overexpression in meta1 tumors was not due to 8q overrepresentation. Moreover, PTP4A3 was no longer linked to metastasis risk in the presence of chromosome 6p gain, potentially accounting for the protective effect of 6p overrepresentation. Our analysis was carried out on large tumors only, as only such tumors are obtained by enucleation. Our
results indicate that PTP4A3 may be more than a simple marker of prognosis in terms of metastasis. Instead, it may play a causal role in the development of metastases in uveal melanoma. PTP4A3 is therefore a good candidate target for treatment strategies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We would like to thank Laetitia Marisa, Pascale Trouillet, André Nicolas, Anna Almeida, Fariba Nemati, Pierre Gestraud, and Pierre Neuviel for their
contributions to this work.

Grant Support

This work was supported by grants from the Department of Translational Research, Institut Curie, CNRS, INSERM, Cancéropolis Ille-de-France, Association pour la Recherche sur le Cancer, Retina France, and Ligue Nationale Contre le Cancer.

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 18, 2010; Revised November 4, 2010; accepted November 5, 2010; published OnlineFirst December 6, 2010.

www.aacrjournals.org
Cancer Res; 71(3) February 1, 2011

Copyright © 2011 American Association for Cancer Research.
References

High PTP4A3 Phosphatase Expression Correlates with Metastatic Risk in Uveal Melanoma Patients

Cécile Laurent, Fabien Valet, Nathalie Planque, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-0605

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/12/06/0008-5472.CAN-10-0605.DC1

Cited articles
This article cites 25 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/3/666.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/71/3/666.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.