miRNA-7 Attenuation in Schwannoma Tumors Stimulates Growth by Upregulating Three Oncogenic Signaling Pathways

Okay Saydam1, Ozlem Senol1, Thomas Würdinger3, Arda Mizra1, Gokhan Baris Ozdener1, Anat O. Stemmer-Rachamimov2, Ming Yi5, Robert M. Stephens5, Anna M. Krichevsky4, Nurten Saydam6, Gary J. Brenner3, and Xandra O. Breakefield1

Abstract

Micro RNAs (miRNA) negatively regulate protein-coding genes at the posttranscriptional level and are critical in tumorigenesis. Schwannomas develop from proliferation of dedifferentiated Schwann cells, which normally wrap nerve fibers to help support and insulate nerves. In this study, we carried out high-throughput miRNA expression profiling of human vestibular schwannomas by using an array representing 407 known miRNAs to explore the role of miRNAs in tumor growth. Twelve miRNAs were found to be significantly deregulated in tumor samples as compared with control nerve tissue, defining a schwannoma-typical signature. Among these miRNAs, we focused on miR-7, which was one of the most downregulated in these tumors and has several known oncogene targets, including mRNAs for epidermal growth factor receptor (EGFR) and p21-activated kinase 1 (Pak1). We found that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumor models in vivo, which correlated with downregulation of these signaling pathways. Furthermore, we identified a novel direct target of miR-7, the mRNA for associated cdc42 kinase 1 (Ack1), with the expression levels of miR-7 and Ack1 being inversely correlated in human schwannoma samples. These results represent the first miRNA profiling of schwannomas and the first report of a tumor suppressor function for miR-7 in these tumors that is mediated by targeting the EGFR, Pak1, and Ack1 oncogenes. Our findings suggest miR-7 as a potential therapeutic molecule for schwannoma treatment, and they prompt clinical evaluation of drugs that can inhibit the EGFR, Pak1, and Ack1 signaling pathways to treat this tumor type. Cancer Res; 71(3); 852–61. ©2010 AACR.

Introduction

Schwannomas arise from Schwann cells, the myelinating cells of the peripheral nervous system, and they typically result from loss of the neurofibromatosis 2 (NF2) tumor suppressor gene (1) but can also arise through other genetic mechanisms, such as inactivating mutations in PRKARIA (2) or LOH of SMARCBI (3) genes. A major feature of NF2 is the development of schwannomas around the vestibular branches of cranial nerve VIII, the auditory nerve, leading to deafness (4). Loss/downregulation of NF2 has also been found in malignant tumors, including mesotheliomas (5), gliomas (6), peripheral nerve sheath tumors (7), and prostate cancer (8).

Micro RNAs (miRNA) are a class of small noncoding RNAs that regulate gene expression posttranscriptionally (9). They have been recently implicated as drivers in several carcinogenic processes, wherein they can act either as oncogenes or as tumor suppressors (10). Decreased levels of the let-7 family of tumor suppressor miRNAs is associated with increased Ras oncogene expression and reduced survival in patients with non–small cell lung cancer (11, 12). Our recent studies revealed a novel potential tumor suppressor miRNA, miR-200a, which directly targets the β-catenin and ZEP1/SIP1 mRNAs, with reduced levels of miR-200a found in meningiomas (also caused in some cases by loss of merlin function), resulting in increases in Wnt signaling and expression of E-cadherin (13).

Authors' Affiliations: 1Departments of Neurology and Radiology, and Neuroscience Program, 2Molecular Neuro-oncology Laboratory and Department of Pathology, and 3Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School; 4Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; 5Advanced Biomedical Computing Center, National Cancer Institute, Bethesda, Maryland; and 6Department of Pediatrics, Medical University of Vienna, Austria

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Current address for O. Saydam: Department of Pediatrics, Medical University of Vienna, 1090 Austria.

Current address for T. Würdinger: Neuro-oncology Research Group, Department of Neurosurgery, VU University Medical Center, Amsterdam 1007 MB, the Netherlands.

Corresponding Author: Okay Saydam, Department of Pediatrics, Medical University of Vienna, 1090 Austria. Phone: 43-1-404003232-8; E-mail: okay.saydam@medunwien.ac.at

doi: 10.1158/0008-5472.CAN-10-1219

©2010 American Association for Cancer Research.
Previously known targets for miR-7 include messages for signaling proteins Pak1 (p21-activated kinase 1; ref. 14) and EGFR (epidermal growth factor receptor; ref. 15), known to be activated in many forms of cancer. Pak1s play an essential role in a variety of cellular functions including cell division, survival, angiogenesis, growth factor signaling, and cell migration (16–18). A new target for miR-7, found in this study, associated cdc42 kinase 1 (Ack1), is a nonreceptor protein tyrosine kinase (19), and the gene-encoding Ack1 has been recently shown to be amplified in breast, esophageal, lung, ovarian, pancreatic, and prostate cancer (20).

To identify miRNAs signature of schwannomas, we analyzed the expression levels of 407 human miRNAs in human vestibular schwannoma tumor samples compared with normal control nerve tissue. Several previously described potential tumor suppressor miRNAs (let-7, miR-451, miR-23, and miR-29) that are downregulated in malignant tumors (reviewed in refs. 21, 22) were found to be upregulated in benign schwannomas, suggesting that changes in levels of tumor suppressor miRNAs may play a transition role from benign to malignant tumors. miR-7 was found to be one of the most downregulated miRNAs (~9-fold) in schwannomas compared with control nerves. To explore the role of miR-7 in schwannomas, we conducted gain-of-function studies and found that upregulation of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumors model in vivo. Moreover, overexpression of miR-7 directly targeted and inhibited expression of Ack1, Pak1, and EGFR in schwannoma cells.

Materials and Methods

Tumor and normal tissue samples

Human vestibular schwannoma tumor samples were obtained from discarded tumor tissue at the time of surgery and normal peripheral nerve tissue samples were obtained from fresh autopsy cases within 5 to 7 hours of death. All human tissues were collected and de-identified by the Neurology Tumor Repository, snap-frozen, and stored at −80°C under Institutional Review Board protocols approved by Massachusetts General Hospital Committee on Human Research.

Cells

The Human schwannoma cell line HEI-193 was established from a benign schwannoma tumor from an NF2 patient and immortalized using a retrovirus vector encoding HPV E6-E7 (obtained from the House Ear Institute in 2006; ref. 1). Before we initiated this study, we confirmed a G to A conversion at the −1 position of the intron 14–exon 15 border of the NF2 gene in HEI-193 cells (data not shown), which eliminates a splice donor site and generates a nonfunctional NF2 protein (23). These cells were transduced with lentivirus vector expressing firefly luciferase (Fluc) and mCherry genes, termed HEI-193-Fluc-mC cells, as described (13), and were cultured, as described (1) and used in in vivo studies. Human primary schwannoma cell cultures were prepared in our laboratory from fresh tumor tissue from a schwannoma patient, as described (23) during the revision of the manuscript in 2010. The NF2S-1 mouse schwannoma cell line was generated and characterized by our laboratory in 2006, as described (24) and used at early passages (passage number P6 was used in our studies). These cells were tested for mouse chromosomes by karyotyping: NF2S-1 cells were harvested and metaphase spreads were stained by Giemsa-Trypsin-Giemsa banding and evaluated by the Dana Farber/Harvard Cancer Center Cytogenetics Core Laboratory (Boston, MA) in 2006. All cell lines showed strong immunocytochemical staining for the Schwann cell marker S100. All cells tested negative for mycoplasma by using a mycoplasma detection kit (Mycoplasma Detection Assay; Lonza) before and after use in these experiments.

Growth rate

HEI-193 cells (1 × 10^5) were seeded in each well of a 24-well plate and the following day transfected with precursor miRNAs or control miRNAs or pre-control 1, or left nontransfected. Five hours later, cells were transferred to each well of a 6-well plate. Cells per well were counted on days 1, 2, 3, and 4 by using a hemocytometer in triplicate.

Apoptosis

Apoptotic cell death was determined using the Caspase-Glo 3/7 Assay Kit (Promega) and CytoGLO Annexin V-FITC Apoptosis Detection kit (Imgenex), according to the manufacturer’s instructions.

miRNAs

Precursor miRNAs were as follows: precursor-miR-7 (Ambion; AM17100), precursor-miR-321 (Ambion; AM17133), Cy3 dye-labeled pre-miR negative control 1 (Ambion; AM17120), and pre-miR negative control 1.

Plasmids/vectors

The 3′ untranslated region (UTR) reporter plasmids p3′UTR-EGFR and p3′UTR-IRS-2 containing the full site complementary to miR-7 were kindly provided by Dr. Benjamin Purow (University of Virginia; ref. 15). The following vectors were packaged at the MGH Vector Core facility: Ack1-pWZL Neo Myr Flag TK2 (Addgene), EGFR-WT Retroviral 11011 (Addgene), and Pak1- EX-T9352-Lv105 (GeneCopoeia).

miRNA arrays

miRNA screening was carried out as described previously (13) in duplicate for 10 tumor and 2 control samples. A 2-tailed, 2-sample t test was used with differences of 2-fold or greater between samples (P < 0.05) regarded as significant. This microarray data set has been deposited in the NCBI Gene Expression Omnibus with the accession no. GSE24390 (25).

Tumor implantation and bioluminescence imaging

Five after transfection of HEI-193- Fluc-mC cells, the cells were trypsinized, rinsed, and subcutaneously implanted (2 × 10^5 cells in 100 μl Matrigel) per flank of athymic mice (nu/nu, 5-week-old females; National Cancer Institute). Sciatic nerve schwannoma tumor model were developed as described previously (26).
Quantitative RT-PCR
Quantitative real-time PCR (qRT-PCR) was carried out as described (13). U6 RNA was used as an internal control in all RT-PCRs for miRNA.

Luciferase miRNA target reporter assay
Total cDNA from HEI-193 cells was used to isolate the 3′UTR (453–840 nt) of Ack1 by PCR and then it was cloned into the pMIr-reporter plasmid (see Supplementary Materials and Methods for the cloning strategies for pMIr-reporter plasmids). HEK 293T cells were cotransfected either with the p3′UTR-EGFR or p3′UTR-IRES-2 vector or pAck1 3′UTR plasmids and pre-miR-7 or pre-control 1. Two days later, the cells were lysed and luciferase activity was measured using a luminometer. An expression cassette for Renilla luciferase (pRenilla; Promega) was cotransfected and used to normalize the Fluc values expressed from the 3′UTR report constructs.

See Supplementary Materials and Methods for primers and antibodies and Pearson correlation coefficients.

Immunoblots
Western blots were obtained, as described (13). Briefly, cells were transfected with miRNA precursors, and after 3 days, cells were harvested and total protein was separated on a SDS–8% polyacrylamide gel and blotted onto nitrocellulose.

Statistical analysis
All measurements, including cell counting, luciferase measurement, and qRT-PCR, were carried out in triplicate and the values are expressed as the mean ± SD; P values were calculated by using the Student’s t test and values of P < 0.05 were regarded as significant.

Results

miRNA expression profile of schwannomas
To explore the possible role(s) of miRNAs in schwannoma pathogenesis, we first carried out a microarray-based miRNA screen containing 407 different human miRNA-binding probes comparing 10 human vestibular schwannoma tumor samples (WHO grade I) to 2 peripheral nerve controls (obtained from fresh autopsies). Nineteen miRNAs were found which had 3-fold or greater differences in levels in most (≥7) schwannoma tumor samples as compared with control nerves (Supplementary Table 1). To validate the deregulated miRNAs, we also carried out multiplex RT-PCR by using 4 control and 10 randomly selected tumor samples. The data were normalized to the level of U6 RNA in each sample. Twelve validated up- and downregulated miRNAs values are shown as the mean ± SD relative to the control mean. P < 0.0001, Student’s t test.

Figure 1. miRNA signature of schwannomas. miRNA expression profiles of human vestibular schwannomas were compared with peripheral nerve tissue controls. miRNA screening was carried out in duplicate for 10 tumor and 2 control samples by microarray analysis (Supplementary Table 1). To validate the deregulated miRNAs, we also carried out multiplex RT-PCR by using 4 control and 10 randomly selected tumor samples. The data were normalized to the level of U6 RNA in each sample. Twelve validated up- and downregulated miRNAs values are shown as the mean ± SD relative to the control mean. P < 0.0001, Student’s t test.

The effect of dysregulated miRNAs on schwannoma cell growth
Among several interesting miRNAs, we focused on the two most downregulated miRNAs, miR-321 and miR-7, as these have been implicated as potential tumor suppressors (10). Because of difficulty in culturing primary Schwann cells, we compared downregulated miRNA levels in the human...
schwannoma line HEI-193 (23) with those in the control nerves used in our microarray screening and qRT-PCRs studies. HEI-193 cells have 6- and 5-fold lower levels of miR-7 and miR-321, respectively, compared with control nerves (Fig. 2A). Transfection of these cells with precursor miRNA, 10 nmol/L pre-miR-321 or 15 nmol/L pre-miR-7, yielded 13- and 15-fold increases in miR-321 and miR-7 levels, respectively, after 5 hours after transfection. These concentrations and time were used in further studies. HEI-193 cells were transfected with pre-miR-321, pre-miR-7, or pre-control 1, and 5 hours after transfection these cells were replated and cell counts were determined 1, 2, 3, and 4 days later. The growth of HEI-193 cells was significantly reduced by about 70% on day 4 after transfection with pre-miR-7 as compared with control transfected cells (Fig. 2C), whereas miR-321 had no effect on the growth of these cells. These small oligonucleotides, the transfection efficiency of HEI-193 cells was 99% as determined by transfection of pre-control 1-Cy3 (Ambion) and fluorescence microscopy (data not shown). The effect of transfection with pre-miR-7 was also tested in a mouse schwannoma cell, NF2S-1, and we observed a pronounced inhibition of cell growth by elevated miR-7 in this cell line (data not shown). Taken together, our data show that increased levels of miR-7 can inhibit the growth of schwannoma cells in culture, consistent with the hypothesis that decreased levels of miR-7 support schwannoma tumor growth.

We next investigated whether the reduced cell numbers in the presence of elevated miR-7 expression were due to arrest of cell division or cell death (15). Activities of caspases-3 and -7 were measured in transfected and nontransfected cell 2 days after transfection. Pre-miR-7-transfected cells showed a significant increase in caspase 3/7 activity as compared with controls and pre-miR-321-transfected cells (Fig. 2D), indicating that elevated miR-7 promotes apoptosis in schwannoma cells. We also found 4- and 7-fold increases in the apoptosis marker, Annexin V, in HEI-193 and human primary schwannoma cells, respectively, at 2 days after transfection with pre-miR-7 compared with control transfected cells (Supplementary Fig. 1).

miR-7 inhibits schwannoma tumor growth in vivo

We further evaluated whether increased levels of miR-7 could inhibit schwannoma tumor growth in vivo. HEI-193-Fluc schwannoma cells were transfected either with pre-miR-7 or pre-control 1, and 5 hours later implanted subcutaneously into flanks of nude mice (2 × 10^6 cells per injection site; 7 mice per group). Two independent in vivo studies were conducted.
Tumor growth was monitored by in vivo bioluminescence imaging on days 1, 5, and 10 after implantation. Schwannoma cells transfected with control precursor, pre-control 1, formed tumors 10 days after implantation, whereas schwannoma cells transfected with pre-miR-7 failed to grow, with a marked reduction in size at day 10 postimplantation. Bioluminescence images of tumors in these mice in 2 independent experiments are shown in Figure 3A, with quantification of average of photon counts in Figure 3B. In control groups, in vivo imaging was terminated 2 weeks after implantation because of excessive size of tumors. In the pre-miR-7–treated group, in vivo imaging was carried out for an additional 6 weeks and none of the mice developed tumors. These data indicate that elevated miR-7 levels in schwannoma cells markedly reduce their ability to form tumors.

We have recently developed a novel imaging-compatible sciatic nerve schwannoma model in which the immortalized human schwannoma cell line HEI-193 has been stably transduced with fluorescent protein and luciferase reporters and implanted within the sciatic nerve of nude mice (25). We used this model to test whether elevated miR-7 could also inhibit schwannoma tumor growth in an orthotopic tumor model, under parallel experimental conditions to those described earlier, and also found a significant reduction in photon counts for tumors in pre-miR-7 group as compared with the control group (Supplementary Fig. 2). The HEI-193 cell line was immortalized with a retrovirus encoding the human papilloma virus–immortalizing proteins E6-E7 (23). These viral proteins are known to inhibit tumor suppressor activity of p53 and RB proteins (27). It seems probable that dysfunctional RB, which is among the predicted targets of miR-7 (26), might make schwannoma cells more sensitive to the tumor-suppressive effect of miR-7. In fact, LOH at the RB locus is seen in a substantial number of vestibular schwannoma samples, implicating loss of RB function in these tumors (28).

Multiple oncogenic targets of miR-7

Ack1 emerges as a novel target for miR-7. In light of previous observations that miR-7 targets the EGFR and Pak1, as well as IRS-2 mRNAs (14, 15, 29), we first tested whether miR-7 targeted messages for EGFR, IRS-2, and Pak1 in schwannomas. Because of their higher transfection efficiency...
with plasmid DNA, HEK 293T cells were cotransfected with the pEGFR-3'UTR-Reporter or the pIRS-2-3'UTR-Reporter and pre-miR-7 or pre-control 1. These reporter plasmids contain an expression cassette for the Fluc gene fused to the full site complementary 3'UTR of EGFR or IRS-2 mRNAs (15). pRenilla was used to normalized the transfection efficiency in all experiments. Two days after transfection, Fluc activity was measured in cell lysates and normalized to Renilla luciferase (Rluc) activity. We observed a significant reduction in Fluc activity in both pEGFR-3'UTR- and pIRS-2-3'UTR-Reporter transfected cells with pre-miR-7 as compared with pre-control 1 (Supplementary Fig. 3A), confirming that miR-7 targets EGFR and IRS2 mRNAs. In a parallel experiment, we monitored transcript levels of EGFR and IRS-2 by qRT-PCRs normalized to the levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA (Supplementary Fig. 3B) and found a significant decrease in both EGFR and IRS-2 mRNA levels resulting from increased expression of miR-7.

We also tested whether elevated miR-7 could reduce levels of EGFR and Pak1 in schwannoma cells. We used HEI-193 and human primary schwannoma cells and found that upregulation of miR-7 markedly reduced levels of both EGFR and Pak1 as normalized to actin (Supplementary Fig. 3C).

On the basis of previous findings describing the intermolecular interactions between Ack1, EGFR, and Pak1 (30–32), we investigated whether miR-7 also targets mRNA for Ack1. We analyzed the 3'UTR of Ack1 mRNA for potential binding sites for miR-7 and found 3 top-level computationally predicted target sequences in the 3'UTR of the Ack1 mRNA (ref. 26; Fig. 4A). To investigate the interaction between miR-7 and

Figure 4. Identification of miR-7 binding sites in the 3' UTR of the Ack1 mRNA. A, schematic representation of the Ack1 mRNA with 3 3'UTR miR-7 binding sites (A, B, and C), as predicted by PicTar. B, schematic representation of Fluc reporter vectors for miR-7 target sites, partial wt pAck1 3'UTR containing all 3 putative binding sites (453–840 nt), and partial Ack1 3'UTR sites containing sites pAck1 A, pAck1 B, or pAck1 C, C, the mature miR-7 sequence with its binding sites and wt and mt (mt, lower case) forms of the Ack1 mRNA 3'UTR miR-7 target sites are shown. D, the pMIR-Report vector containing all 3 binding sites in the 3'UTR of the Ack1 mRNA with pre-miR-7 or pre-control 1 and an expression cassette for Rluc were cotransfected into HEK 293T cells. Two days later, Fluc activity in the cells was measured and normalized to Rluc activity. E, in a similar experiment, pMIR vectors containing pAck1 3'UTR sites A, B, or C and their mutated counterparts were cotransfected into HEK 293T cells and luciferase activities were measured, as previously. These experiments were carried out in triplicate and results are shown as the mean ± SD. *P < 0.01; **P < 0.001, Student's t test. F, HEI-193 cells were transfected either with pre-control 1 or pre-miR-7, and 3 days after transfection, Western blots were obtained for Ack1 and actin (1 of 2 similar blots is shown).
its predicted Ack1 mRNA 3'UTR target sites, we generated a series of reporter vectors containing sequences homologous to the 3 potential seed sequences for miRNA in the 3'UTR downstream of a luciferase expression construct (Fig. 4B). These included a sequence with perfect complementarity to all 3 seed miR-7 sequences (pAck1 3'UTR 453–840 nt) and the 3 isolated wild-type (wt) Ack1 3'UTR sequences pAck1 A, pAck1 B, and pAck1 C, as well as the same 3 Ack1 sequences with 3 point mutations to disrupt miR-7 binding in each of the seed match regions (Fig. 4C, bottom case). Cotransfection of the wt pAck1 3'UTR construct (453–840 nt) and pre-miR-7 resulted in significantly decreased luciferase activity compared with transfection with pre-control 1 (Fig. 4D). We next investigated the relative contribution of each putative miR-7 target site in the Ack1 3'UTR. miR-7 reduced the expression of all 3 reporters carrying the different putative target sites A and B, and C but not of the corresponding mutant (mt) reporters (Fig. 4E). The most significant reduction in luciferase activity was observed for target site C, which is the most conserved miR-7 binding site in the 3'UTR of the Ack1 mRNA (ref. 26; Fig. 4E). Target sites A and B resulted in less reduction than site C but still showed significant reduction. Together, these data indicate that the Ack1 3'UTR is a specific target of miR-7 and that all 3 predicted miR-7-binding sites in the Ack1 mRNA 3'UTR are likely to be specific and direct targets of miR-7 with a marked total effect on expression. We next examined the effect of miR-7 on the endogenous mRNA and protein levels of Ack1. Human primary schwannoma cells and HEI-193 cells were transfected with either pre-miR-7 or pre-control 1, and 2 days later, we carried out qRT-PCR for mRNA and Western blots for the protein expression. We found that miR-7 transfection decreased both mRNA (data not shown) and protein levels (Fig. 4F) of Ack1 compared with GAPDH mRNA and actin in both cell types. Elevated miR-7 levels in a mouse schwannoma cell line, NF2S-1, also produced a marked reduction in the protein levels of Ack1, Pak1, and EGFR (Supplementary Fig. 4).

To investigate which target(s) of miR-7 are involved in miR-7-mediated growth inhibition of schwannoma cells, HEI-193 cells were first infected with viral vectors expressing Ack1 or Pak1 or EGFR and then 24 hours later transfected with pre-miR-7. Cells were counted at daily intervals thereafter. These experiments were carried out in triplicate and results are shown as the mean ± SD. *, P < 0.05, **, P < 0.01, Student’s t test.

The expression profiles of Ack1, Pak1, and EGFR in schwannoma tissues

We next examined the levels of Ack1, EGFR, and Pak1 messages in human vestibular schwannoma tumor samples. We carried out qRT-PCR for the messages in 10 tumor samples used in our miRNA screening experiments as compared with the average for control nerves. Levels of miR-7 in these tumor samples were determined by qRT-PCR and normalized to U6 RNA (Fig. 6A). Interestingly, Ack1 mRNA was found to be significantly upregulated in 9 of 10 tumor samples (Fig. 6B) and a significant increase in Pak1 mRNA (Fig. 6C) was found in all tumor tissues. In contrast, EGFR mRNA was only significantly upregulated in 5 of 10 schwannoma tumor samples compared with the controls (Fig. 6D). A significant inverse correlation was found between levels of miR-7 and that of Ack1 and Pak1 mRNAs in schwannoma tissue samples (Supplementary Fig. 5). No significant correlation was found between miR-7 downregulation and EGFR mRNA upregulation (Supplementary Fig. 5), suggesting that in schwannoma samples not all miRNA–mRNA interactions result in degradation of mRNA. These results show that miR-7 is a major regulator in schwannoma growth by regulation of Ack1 and Pak1 expression.

Discussion

In the present study, we define a schwannoma-typical miRNA signature by miRNA microarray expression profiling...
of human vestibular schwannomas as compared with control nerves. This signature includes 12 miRNAs that are deregulated in most schwannoma tumor samples. Of these 12 miRNAs, 8 were confirmed to be significantly upregulated in schwannomas (5- to 20-fold) and 4 miRNAs downregulated (5- to 12-fold). In this study, we focused on miR-7, one of the most downregulated miRNA, and found that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft and orthotopic schwannoma tumor models in vivo. Our studies describe a novel target of miR-7, which directly targeted the sequences in the 3′UTR of the Ack1 mRNA, with upregulation of miR-7 decreasing levels of Ack1 mRNA and protein in schwannoma cells. A significant inverse correlation was also found between miR-7 downregulation and Ack1 and Pak1 upregulation in human schwannoma tumor samples compared with control nerve tissue.

The overexpression or genomic amplification of Ack1 has been recently shown for breast, esophageal, lung, ovarian, pancreatic, and prostate cancer (20). In prostate cancer, Ack1 stimulates tumorigenesis, in part, by negatively regulating the proapoptotic tumor suppressor, the WW domain containing oxidoreductase (Wwox; ref. 33). Ack1 interacts with Wwox and triggers its ubiquitination and degradation. The same study also elucidated an oncogenic role of Ack1 in vivo, with Ack1 overexpression promoting anchorage-independent growth and tumor formation in vivo (33). It remains to be investigated how upregulation of Ack1 by decreased miR-7 contributes to schwannoma tumorigenesis.

On the basis of the relative fold increase as assessed by qRT-PCR assays, the most upregulated miRNAs in schwannomas were let-7d (about 22-fold), miR-451 (about 17-fold), and miR-23b (about 15-fold). The let-7 family has been the most studied of the potential “tumor suppressor” miRNAs and contains 11 family members (reviewed in ref. 21). This family acts as tumor suppressors to control several oncogenic pathways, including the Ras pathway (12), as well as oncogenes such as c-Myc (34). The second most upregulated miRNA in schwannomas, miR-451 was also recently shown to function as a potential tumor suppressor in human gastric and colon cancer cells, with its overexpression decreasing proliferation and increasing response to ionizing radiation in culture (22). In human malignant prostate cancers, miR-23a and miR-23b were shown to be downregulated compared with normal prostate tissues (35). In summary, several previously known downregulated “tumor suppressor miRNAs” in malignant tumors, such as let-7d, miR-451, miR-23a, and miR-29, were found to be upregulated in schwannomas. On the basis of these observations and given the fact that let-7d, let-7b, and let-7g tumor suppressor miRNAs are also upregulated in benign meningiomas (13), it seems likely that these miRNAs may function as a pivotal point in tumor progression between benign and malignant states by regulating certain oncogenic pathways.

In conclusion, growth inhibitory/apoptotic effects of elevated miR-7 levels were found in human primary and immortalized schwannoma cells as well as in a nonimmortalized mouse schwannoma cell line. miRNA expression profiling and functional studies of miR-7 in schwannoma tumor tissue and
cells in culture suggest that miR-7 acts as a potential tumor suppressor in schwannomas, at least in part, through direct targeting of IRS-2 (15), Ack1, Pak1, and EGFR. Studies supporting a role for Pak1 (36, 37), EGFR (38), and Ack1 (this study) activation-overexpression in schwannoma growth suggest alternative strategies and rationale for the development of new therapies for these tumors on the basis of overexpression of miR-7 or inhibition of Ack1, Pak1, and EGFR pathways. Given the fact that schwannomas, as many other cancers, are not always responsive to anti-EGFR treatment (39), our study suggests that Pak1 and/or Ack1 may prove critical therapeutic targets for schwannomas.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

miRNA-7 Attenuation in Schwannoma Tumors Stimulates Growth by Upregulating Three Oncogenic Signaling Pathways

Okay Saydam, Ozlem Senol, Thomas Würdinger, et al.