Breaking Advances

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1509</td>
<td>Highlights from Recent Cancer Literature</td>
</tr>
</tbody>
</table>

Reviews

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1511</td>
<td>Ironing Out Cancer</td>
</tr>
<tr>
<td>1515</td>
<td>p95HER2 and Breast Cancer</td>
</tr>
</tbody>
</table>

Priority Reports

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1520</td>
<td>Anti-DLL4 Inhibits Growth and Reduces Tumor-Initiating Cell Frequency in Colorectal Tumors with Oncogenic KRAS Mutations</td>
</tr>
<tr>
<td></td>
<td>Marcus Fischer, Wan-Ching Yen, Ann M. Kapoun, Min Wang, Gilbert O'Young, John Lewicki, Austin Gurney, and Timothy Hoey</td>
</tr>
<tr>
<td></td>
<td>Précis: Findings provide a preclinical rationale for clinical targeting of a Notch receptor ligand to improve treatment of colon cancers with oncogenic KRAS mutations, which are refractory to existing treatments.</td>
</tr>
<tr>
<td>1526</td>
<td>Detection of Circulating Tumor Cells in Human Peripheral Blood Using Surface-Enhanced Raman Scattering Nanoparticles</td>
</tr>
<tr>
<td></td>
<td>Xu Wang, Ximei Qian, Jonathan J. Beittler, Zhuo Georgia Chen, Fadlo R. Khuri, Melinda M. Lewis, Hyung Ju C. Shin, Shuming Nie, and Dong M. Shin</td>
</tr>
<tr>
<td></td>
<td>Précis: This study reports a rapid, simple, and inexpensive assay to detect cancer cells in blood, offering a potentially important tool for clinical management of cancer and cancer relapse.</td>
</tr>
</tbody>
</table>

Microenvironment and Immunology

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1533</td>
<td>A Germline Variant in the Interferon Regulatory Factor 4 Gene as a Novel Skin Cancer Risk Locus</td>
</tr>
<tr>
<td></td>
<td>Jiali Han, Abrar A. Qureshi, Hongmei Nan, Jiangwen Zhang, Yiqing Song, Qun Guo, and David J. Hunter</td>
</tr>
<tr>
<td></td>
<td>Précis: A single nucleotide polymorphism identified in a key immune regulatory transcription factor associates with elevated risk of the most common types of skin cancer.</td>
</tr>
<tr>
<td>1540</td>
<td>Increased Efficacy of Breast Cancer Chemotherapy in Thrombocytopenic Mice</td>
</tr>
<tr>
<td></td>
<td>Mélanie Demers, Benoît Ho-Tin-Noé, Daphne Schatzberg, Janie J. Yang, and Denis A. Wagner</td>
</tr>
<tr>
<td></td>
<td>Précis: Depleting platelets in tumor-bearing mice preferentially increases the leakiness of the tumor vasculature, leveraging the efficacy of administered chemotherapies without worsening toxic side effects.</td>
</tr>
<tr>
<td>1550</td>
<td>Gap Junction–Mediated Import of MicroRNA from Bone Marrow Stromal Cells Can Elicit Cell Cycle Quiescence in Breast Cancer Cells</td>
</tr>
<tr>
<td></td>
<td>Philip K. Lim, Sarah A. Bliss, Shyam A. Patel, Marcelo Taborga, Meneka A. Dave, Larissa A. Gregory, Steven J. Greco, Margarette Bryan, Prem S. Patel, and Pranela Rameshwar</td>
</tr>
<tr>
<td></td>
<td>Précis: Cellular exchange of microRNAs is emerging as a fascinating new mechanism by which tumor stromal cells can influence the tumor cell pathophysiology.</td>
</tr>
<tr>
<td>1561</td>
<td>LOXL2-Mediated Matrix Remodeling in Metastasis and Mammary Gland Involution</td>
</tr>
<tr>
<td></td>
<td>Holly E. Barker, Joan Chang, Thomas R. Cox, Georgina Lang, Demelza Bird, Monica Nicolau, Holly R. Evans, Alison Gartland, and Janine T. Erler</td>
</tr>
<tr>
<td></td>
<td>Précis: Findings offer preclinical evidence that breast cancer metastasis can be blocked by targeting an important oxidase in the tumor microenvironment.</td>
</tr>
</tbody>
</table>
Reduced VEGF Production, Angiogenesis, and Vascular Regrowth Contribute to the Antitumor Properties of Dual mTORC1/mTORC2 Inhibitors

Beverly L. Falcon, Sharon Barr, Prafulla C. Gokhale, Jeyling Chou, Jennifer Fogarty, Philippe Depeille, Mark Miglarese, David M. Epstein, and Donald M. McDonald

Précis: Small molecule inhibitors now in clinical development to block both mTORC kinases can leverage the antiangiogenic actions of VEGF inhibitors.

Stromal Deletion of the APC Tumor Suppressor in Mice Triggers Development of Endometrial Cancer

Pradeep S. Tanwar, LiHua Zhang, Drucilla J. Roberts, and Jose M. Teixeira

Précis: This interesting mouse model study suggests that tumor suppressor alterations in stromal tissue may be sufficient to drive progression of some types of cancer.

Natural Killer Cells Efficiently Reject Lymphoma Silenced for the Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing

Loredana Cifaldi, Elisa Lo Monaco, Matteo Forloni, Edo Giorda, Silvia Lorenzi, Stefania Pettrini, Elisa Tremante, Daniela Pende, Franco Locatelli, Patrizio Giacomini, and Doriana Fruci

Précis: Findings highlight a novel immunotherapeutic target that is tractable for small molecule inhibition and that could be broadly relevant to many types of human cancer.

TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer

Bruno Salaun, Laurence Zitvogel, Carine Asselin-Paturel, Yannis Morel, Karine Chemin, Clarisse Dubois, Catherine Massacrier, Rosa Conforti, Marie Pierre Chenard, Jean-Christophe Sabourin, Aicha Goubar, Serge Lebecque, Michel Pierres, Donata Rimoldi, Pedro Romeo, and Fabrice Andre

Précis: Toll receptors that control innate immune response are not only expressed by immune cells but also by many human cancer cells, which might be targeted directly by Toll receptor agonists in certain disease settings.

The HIF-1–Inducible Lysyl Oxidase Activates HIF-1 via the Akt Pathway in a Positive Regulation Loop and Synergizes with HIF-1 in Promoting Tumor Cell Growth

Floriane Pez, Frédéric Dayan, Jérôme Durivault, Bastien Kanievski, Géraldine Amoned, Gabrielle S. Le Provost, Blandine Deux, Philippe Clézardin, Pascal Sommer, Jacques Pouyssegur, and Caroline Reynaud

Précis: Findings reveal a regulatory cycle that can act synergistically to favor cancer cell proliferation in hypoxic tumor microenvironments.
The Role of Calcium in the Activation of Estrogen Receptor-Alpha
Shailaja D. Divekar, Geoffrey B. Storchan, Katherine Sperle, David J. Veselik, Earl Johnson, Sivanesan Dakshanamurthy, Yuse N. Lajiminmuhip, Rebecca E. Nakles, Li Huang, and Mary Beth Martin

Précis: Results shed light on a potentially important mechanism involved in estrogen mimicry at the estrogen receptor-alpha, with implications for understanding breast cancer risk and the development of novel therapeutics for treatment of endocrine independent breast cancer.

Ulcerative Colitis–Associated Colorectal Cancer Arises in a Field of Short Telomeres, Senescence, and Inflammation
Rosa Ana Risques, Lisa A. Lai, Cigdem Himmetoğlu, Aносheh Ebare, Lin Li, Ziding Feng, Mary P. Bronner, Bassel Al-Lahham, Kris V. Kowdley, Keith D. Lindor, Peter S. Rabinovitch, and Teresa A. Brentnall

Précis: In patients with ulcerative colitis, cell senescence acts as a tumor suppressor mechanism that is abrogated during the transition from low-grade to high-grade dysplasia.

MicroRNAs miR-199a-5p and -3p Target the Brm Subunit of SWI/SNF to Generate a Double-Negative Feedback Loop in a Variety of Human Cancers
Kouhei Sakurai, Chihiro Furukawa, Takeshi Haraguchi, Ken-ichi Inada, Kazuya Shioyama, Takanobu Tagawa, Shuji Fujita, Yoshihito Ueno, Aya Ogata, Mai Ito, Yutaka Tsutsumi, and Hideo Iba

Précis: Findings describe an microRNA-based mechanism constituting a double feedback loop for control of a pivotal chromatin remodeling factor in cancer cells.

Cyclin D1 Inhibits Mitochondrial Activity in B Cells
Guergana Tchakarska, Mikel Roussel, Xavier Troussard, and Brigitte Sola

Précis: Results identify a new function of cyclin D1 that could help explain its important pathophysiologic roles in lymphomas and solid tumors.

Select Heterozygous Keap1 Mutations Have a Dominant-Negative Effect on Wild-Type Keap1 In Vivo
Takafumi Suzuki, Jonathan Maher, and Masayuki Yamamoto

Précis: A single-hit mutation in Keap1, a key regulator of the important cytoprotective gene Nrf2, is sufficient to generate a selective advantage in the cancer microenvironment.
LONG-TERM USE OF CHOLESTEROL-LOWERING DRUGS AND CANCER INCIDENCE IN A LARGE UNITED STATES COHORT

Eric J. Jacobs, Christina C. Newton, Michael J. Thun, and Susan M. Gapstur

PRÉCIS: In this large prospective study, long-term use of cholesterol-lowering drugs was associated with lower risk of melanoma, endometrial cancer, and non-Hodgkin lymphoma.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

USING A STEM CELL–BASED SIGNATURE TO GUIDE THERAPEUTIC SELECTION IN CANCER

Igor Shats, Michael L. Gatza, Jeffrey T. Chang, Seiichi Mori, Jialiang Wang, Jeremy Rich, and Joseph R. Nevins

PRÉCIS: Findings suggest strategies for therapeutic targeting of a stem-like phenotype in a relevant cohort of cancer patients.

DEOXYCYTIDINE KINASE MODULATES THE IMPACT OF THE ABC TRANSPORTER ABCG2 ON CLOFARABINE CYTOTOXICITY

Shinjiro Nagai, Kazumasa Takenaka, Deepa Nachagari, Charles Rose, Kali Domoney, Dazi Sun, Alex Sparreboom, and John D. Schuetz

PRÉCIS: Findings show how an cellular efflux transporter can circumvent a major pathway to activate therapeutic nucleoside mimetic drugs.

ACTIVATION OF TYRO3/AXL TYROSINE KINASE RECEPTORS IN THYROID CANCER

Elvira Avilla, Valentina Guarino, Carla Visciano, Federica Liotti, Maria Svelto, GnanaPrakasam Krishnamoorthy, Renato Franco, and Rosa Marina Melillo

PRÉCIS: Findings prompt clinical study of a tractable therapy for thyroid cancer based on disruption of a functionally critical cell surface receptor signaling complex.

USE OF MACROPHAGES TO TARGET THERAPEUTIC ADENOVIRUS TO HUMAN PROSTATE TUMORS

PRÉCIS: Findings describe the use of macrophages to target an oncolytic adenovirus to hypoxic areas of prostate tumors, to improve viral inhibition of primary and secondary tumor growth.

INTERFERENCE SCREENS IDENTIFY PINK1 AS A POTENTIAL THERAPEUTIC TARGET FOR THE TREATMENT OF DNA MISMATCH REPAIR–DEFICIENT CANCERS

Sarah A. Martin, Madeleine Hewish, David Sims, Christopher J. Lord, and Alan Ashworth

PRÉCIS: A kinase originally linked to Parkinson’s disease may offer a potential therapeutic target in treatment of cancers characterized by a specific deficiency in DNA repair.

A kinase originally linked to Parkinson’s disease may offer a potential therapeutic target in treatment of cancers characterized by a specific deficiency in DNA repair.

Chromosomal Instability Confers Intrinsic Multidrug Resistance

Alvin J.X. Lee, David Endesfelder, Andrew J. Rowan, Axel Walther, Nicolai J. Birkbak, P. Andrew Futreal, Julian Downward, Zoltan Szallasi, Ian P.M. Tomlinson, Michael Howell, Maik Kschischo, and Charles Swanton

PRÉCIS: Determining the chromosome instability status of patient tumors may provide useful information on the clinical response to many cytotoxic agents and small molecules.
Trastuzumab Has Preferential Activity against Breast Cancers Driven by HER2 Homodimers

Précis: Findings suggest that the dimeric state of an oncogenic receptor in cancer cells may impact their therapeutic response to antireceptor antibodies.

Distinct TRAIL Resistance Mechanisms Can Be Overcome by Proteasome Inhibition but not Generally by Synergizing Agents

Christina Menke, Lianghua Bin, Jacqueline Thorburn, Kian Behbakht, Heide L. Ford, and Andrew Thorburn

Précis: This study rationalizes anticancer combinations that not only synergize but also overcome drug resistance, a primary challenge in cancer care.

Functional Activation of the Estrogen Receptor-α and Aromatase by the HDAC Inhibitor Entinostat Sensitizes ER-Negative Tumors to Letrozole

Gauri J. Sabnis, Olga Goloubeva, Saranya Chumsri, Nguyen Nguyen, Saraswati Sukumar, and Angela M.H. Brodie

Précis: This incisive and important preclinical study shows how using histone deacetylase inhibitors to restore ER expression in ER-negative tumors can be used to sensitize them to the therapeutic effects of aromatase inhibitors.

6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1

Bifeng Yuan, Jing Zhang, Hongxia Wang, Lei Xiong, Qian Cai, Tina Wang, Steven Jacobsen, Sriharsa Pradhan, and Yinsheng Wang

Précis: This study reveals a vital mechanistic connection between the widely employed cancer drug 6-thioguanine and its effects on DNA hypomethylation, with implications for understanding therapeutic efficacy.

The Epithelial-Mesenchymal Transition Mediator S100A4 Maintains Cancer-Initiating Cells in Head and Neck Cancers

Jeng-Fan Lo, Cheng-Chia Yu, Shih-Hua Chio, Chih-Yang Huang, Chia-Inq Jan, Shu-Chun Lin, Chung-Ji Liu, Wen-Yuan Hu, and Yau-Hua Yu

Précis: A calcium-binding molecule that is prognostic in several cancers is found to be critical to maintain stemness properties, with implications for new cancer targeting strategies.

Prediction and Genetic Demonstration of a Role for Activator E2Fs in Myc-Induced Tumors

Kenichiro Fujiwara, Inez Yuwanita, Daniel P. Hollern, and Eran R. Andreczek

Précis: This study establishes the root causal relationships between Myc and E2F, two key transcription factors involved in virtually all human cancers.

The ΔNp63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer

Précis: Findings define an important transcriptional target of BRCA1 that may provide insight into the pathogenesis of basal-like breast cancers, an aggressive but poorly understood disease.

Ron Kinase Transphosphorylation Sustains MET Oncogene Addiction

Silvia Benvenuti, Luca Lazzari, Addolorata Arnesano, Giulia Li Chiavi, Alessandra Gentile, and Paolo M. Comoglio

Précis: Insights into how oncogenic addiction is maintained to the MET kinase, which drives a powerful program of invasive growth in cancer cells, suggest strategies to strengthen cancer therapies based on MET inhibition.
Systematic Analysis of MicroRNAs Targeting the Androgen Receptor in Prostate Cancer Cells

Päivi Ostling, Susi-Katri Leivonen, Anna Aakula, Pekka Kohonen, Rami Mäkelä, Zandra Hagman, Anders Edsjö, Sara Kangaspeska, Henrik Edgren, Daniel Nicorici, Anders Bjartell, Yvonne Ceder, Merja Perälä, and Olli Kallioniemi

Précis: A comprehensive survey defines a set of microRNAs that are important regulators of androgen receptor levels and prostate cancer cell proliferation.

Identification of N-Terminally Truncated Stable Nuclear Isoforms of CDC25B That Are Specifically Involved in G2/M Checkpoint Recovery

Denis Jullien, Beatrix Bugler, Christine Dozier, Martine Cazales, and Bernard Ducommun

Précis: Findings prompt a rethinking of CDC25B regulation and function and how its impaired expression in cancer may affect susceptibility and chemotherapeutic response.

Identification of a Clinically Relevant Androgen-Dependent Gene Signature in Prostate Cancer

Hannelore V. Heemers, Lucy J. Schmidt, Zhifu Sun, Kevin M. Regan, S. Keith Anderson, Kelly Duncan, Dan Wang, Song Liu, Karla V. Ballman, and Donald J. Tindall

Précis: Findings prompt new insights into how androgen signaling might be selectively blocked in prostate cancer cells while sparing normal androgen-dependent processes.

LPS-Induced TLR4 Signaling in Human Colorectal Cancer Cells Increases β1 Integrin-Mediated Cell Adhesion and Liver Metastasis

Rich Y.C. Hsu, Carlos H.F. Chan, Jonathan D. Spicer, Mathieu C. Rousseau, Betty Giannias, Simon Rousseau, and Lorenzo E. Ferri

Précis: Infectious complications during colon cancer surgery may contribute to liver metastasis, suggesting benefits to inhibiting these complications during the perioperative period.

High Basal Nuclear Levels of Nrf2 in Acute Myeloid Leukemia Reduces Sensitivity to Proteasome Inhibitors

Stuart A. Rushworth, Kristian M. Bowles, and David J. MacEwan

Précis: Findings suggest a strategy to render AML cells sensitive to proteasome inhibitory drugs, which are presently ineffective in this disease.

Negative Regulation of the Hippo Pathway by E3 Ubiquitin Ligase ITCH Is Sufficient to Promote Tumorigenicity

Zaidoun Salah, Gerry Melino, and Rami I. Aqeilan

Précis: A key regulator of the Hippo tumor suppressor pathway functions as a potent oncogene.

CORRECTIONS

Correction: Antitumoral Immune Response by Recruitment and Expansion of Dendritic Cells in Tumors Infected with Telomerase-Dependent Oncolytic Viruses

Correction: Serum microRNA Profiles Serve as Novel Biomarkers for HBV Infection and Diagnosis of HBV-Positive Hepatocarcinoma

Correction: TGF-β-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases

Correction: Physical Oncology: A Bench-to-Bedside Quantitative and Predictive Approach
ABOUT THE COVER

Photograph showing skinfold chambers with implanted mammary carcinoma in mice with normal (large image) and low (small image) platelet counts. Thrombocytopenia resulted in specific bleeding of the tumor. The lack of platelets induced breaches in the tumor vasculature that promoted extravasation of red blood cells and specifically increased the delivery of chemotherapeutic agents into the tumor. Thus, by favoring accumulation of the drug at the tumor site, low platelet count improved its effects and reduced tumor growth. For details, see the article by Demers and colleagues on page 1540 of this issue.