Priority Report

Novel Human Single Chain Antibody Fragments That Are Rapidly Internalizing Effectively Target Epithelioid and Sarcomatoid Mesotheliomas

Arun K. Iyer1, Xiaoli Lan1, Xiaodong Zhu2, Yang Su1,2, Jinjin Feng1, Xiaojun Zhang2, Dongwei Gao1, Youngho Seo1,3, Henry F. VanBrocklin1,3, V. Courtney Broaddus3,4, Bin Liu2,3, and Jiang He1,3

Abstract

Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with 99mTc (99mTc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. 99mTc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68% to 92% internalized within 1 hour. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT as early as 1 hour postinjection of 99mTc-M40. Tumor uptake measured as percent of injected dose per gram tissue (%ID/g) at 3 hours was 4.38 and 5.84 for M28 and VAMT-1 tumors, respectively, significantly greater than all organs or tissues studied (liver, 2.62%ID/g; other organs or tissues <1.7%ID/g), except the kidneys (130.7%ID/g), giving tumor-to-blood ratios of 5:1 and 7:1 and tumor-to-muscle ratios of 45:1 and 60:1, for M28 and VAMT-1, respectively. The target-mediated uptake was confirmed by a nearly 70% reduction in tumor activity following administration of 10-fold excess of unlabeled scFv. Taken together, these results indicate that M40 can rapidly and specifically target epithelioid and sarcomatoid tumor cells, demonstrating the potential of this agent as a versatile targeting ligand for imaging and therapy of all subtypes of mesothelioma.

Introduction

Malignant mesothelioma (MM), caused primarily by exposure to asbestos, is a highly aggressive tumor arising from serosal surfaces of the pleura, peritoneum, and pericardium (1, 2). MM has 3 major subtypes; epithelioid (EM) that is more likely to respond to treatment and accounts for 50% to 70% of all cases, sarcomatoid (SM) that rarely responds to any treatment and represents 7% to 20%, and mixed/biphasic for the remaining 20% to 30%. Patients with MM have a median survival time of 8 to 14 months (3). There is an urgent unmet need to develop new diagnostics and therapeutics for MM (4) as the disease has a long latency period with past and ongoing exposure to asbestos contributing to the development of new cases worldwide.

One approach to detect and treat cancer is to conjugate imaging and/or therapeutics to molecules which can recognize internalizing antigens, receptors or cell surface markers that are overexpressed on tumor cells, leading to efficient localization and tumor cell killing (5, 6). However, presently there are very few MM-associated cell surface antigens that are overexpressed by all subtypes of MM, especially the SM (7). One well-established marker—mesothelin, a 40 kDa cell surface glycoprotein, has been reported to be expressed by EM cells (8), but not SM (9). Recently we have identified a panel of internalizing human scFv antibodies by phage display selection that target cell surface antigens associated with both EM and SM (6). The selected scFvs bind to human mesothelioma cells in situ, thereby recognizing clinically represented tumor antigens (6) and thus offer the potential to deliver high levels of imaging probes to tumor cells but not to nontarget normal tissues based on intracellular delivery strategies. By screening the yeast surface human cDNA display library with mesothelioma targeting phage antibody, we have further identified MCAM/CD146/MUC18 as one of the target antigens for MM cells that was overexpressed in more than 80% of EM and SM tissues, but not other tissues (10). In the present study, we investigated both the in vitro and in vivo tumor targeting and imaging potential of an additional scFv (M40) for both EM (M28) and SM (VAMT-1) subtypes.
Figure 1. In vitro cell binding and internalization of \(^{99m}\text{Tc}\)-M40. A and B, binding (−) and internalization (−) curves of \(^{99m}\text{Tc}\)-M40 at varying concentrations ranging from 1 to 80 nmol/L in M28 cells (A) and VAMT-1 cells (B) at 37°C for 1 hour. C, the \(^{99m}\text{Tc}\)-M40 at a concentration of 20 nmol/L was incubated with 1 × 10\(^6\) cells of M28, VAMT-1, or control (BPH-1) cells for 1 hour at 37°C and 4°C. Blocking study was performed using 10-fold excess unlabeled M40 1 hour prior to incubation with the \(^{99m}\text{Tc}\)-M40 at 37°C. Inset, internalization of total cell accumulation for \(^{99m}\text{Tc}\)-M40 after a 1-hour incubation with M28 and VAMT-1 at 37°C. D, fluorescence microscopy of Cy5.5-M40 (red) on mesothelioma tumor cells (VAMT-1), and control cell line (BPH-1) at 1 hour incubation. The cells were stained with lysotracker (green) to demarcate the lysosomal compartments.

Materials and Methods

Expression and purification of M40

The M40 was produced as previously reported (6, 11–13).

\(^{99m}\text{Tc}\) radiolabeling of M40

The scFv was radiolabeled as previously reported (14, 16). The carbonyl-Kit (IsoLink Tyco/Mallinckrodt) was used to prepare the [\(^{99m}\text{Tc}\)(CO)\(_3\)] moiety. An aliquot (40–60 μg) of M40 was mixed with 100 to 500 μL of [\(^{99m}\text{Tc}\)(CO)\(_3\)(OH\(_2\))\(_3\)]\(^+\) solution and the mixture was heated at 37°C for 60 minutes. The product was purified using a PD-10 column. Labeling efficiency and purity were determined by size exclusion HPLC and thin-layer chromatography (TLC).

Fluorescence labeling of M40 (Cy5.5-M40)

The M40 was labeled with Cy5.5 by incubation with 3:1 molar excess of Cy5.5-NHS ester in a carbonate/bicarbonate buffer (pH 7.2–8.5) for 1 hour followed by purification using PD-10 column.

In vitro cell culture assay

Internalization experiments were performed as described previously (12, 15, 16). Briefly, 1 million VAMT-1, M28, or BPH-1 cells (control) were incubated with 0.05 to 2 μCi \(^{99m}\text{Tc}\)-M40 in various concentrations for 1 or 3 hours. All cell lines had been tested for mycoplasma contamination and characterized by cell proliferation and morphology evaluation (6). The cells were washed to determine cell surface–bound (acid releasable) and internalized (acid resistant) radioligand/radioactivity expressed as the percentage of applied activity normalized to 1 million cells. For nonspecific uptake, the aforementioned procedure was repeated after addition of 10-fold excess unlabeled M40. For microscopy study, 1 μmol/L (10 μL) of Cy5.5-M40 was incubated with tumor cells for 1 and 3 hours. The cells were washed with PBS and then imaged using a TE2000-E Fluorescence Microscope (Nikon Inc.) at 20× magnification.

Biodistribution studies

Animal procedures were performed according to a protocol approved by the UCSF Animal Care and Use Committee. Six-week-old male nu/nu mice were purchased from Charles River Laboratories. For tumor inoculation, 10\(^6\) M28 and VAMT-1 cells in 200 μL of PBS were administered subcutaneously into the right and left shoulders of the animal, respectively. The mice were studied when tumor size reached approximately 3 to 5 mm in diameter (~20–60 mm\(^3\) in volume). Tumor mice in groups of 4 animals were injected each with 18.5 to 37 MBq (0.5–1.0 mCi) of \(^{99m}\text{Tc}\)-M40 containing approximately 2 to 4 μg of scFv. A control group (blocking study) were injected with 10-fold excess unlabeled M40 1 hour before \(^{99m}\text{Tc}\)-M40. The biodistribution at 1, 3, or 6 hours of the study group was determined and compared with that of the control group.
SPECT/CT imaging
Mice were imaged with a small animal SPECT/CT system (GE healthcare). For anatomical correlation, CT was first performed after injection. SPECT imaging was initiated 1 and 3 hours after injection.

PET/CT imaging
Mice were fasted overnight prior to 18F-FDG injection of 3.7 to 7.4 MBq (100–200 μCi) and imaged with a microPET/CT system (Siemens Medical Solutions USA, Inc.) 1 hour after injection for a 20-minute acquisition time.

Results

In vitro characterization of 99mTc-M40
The 99mTc labeling yield of M40 (from [99mTc(CO)3(OH2)3]⁺) was 70% to 85%. The radiochemical purity of the 99mTc-M40 was greater than 95%. The final 99mTc-M40 had a high specific activity of approximately 9.3 MBq/μg (6.3 x10⁵ Ci/mol). The 99mTc radiolabeling was stable in phosphate buffer for at least the duration investigated (24 hours), as reported previously (14, 16).

The binding affinity of 99mTc-M40 to the mesothelioma cells exhibited an apparent Kd of 20 to 21 nmol/L and the antigen density for M40 derived from the saturation cell binding assay was comparable on both tumor cells (Fig. 1A, 1B). M40 was rapidly internalized over the concentrations tested with about 68% to 92% of total cell-associated uptake, following 1 hour incubation at 37°C (Fig. 1C), whereas the binding and uptake in the control BPH-1 cells was much less (Fig. 1C). Specificity was further demonstrated by blocking of uptake/ internalization into both M28 and VAMT-1 (>95%) cells with a 10-fold excess of unlabeled M40 (Fig. 1C).

Fluorescence microscopy
As shown in Figure 1D, Cy5.5-M40 was rapidly internalized into mesothelioma cells within 1 hour after incubation at 37°C, whereas there was negligible uptake in the control (BPH-1) cells under identical conditions.

In vivo SPECT/CT imaging and biodistribution of 99mTc-M40
Mice were imaged with small animal SPECT/CT at 1 and 3 hours after injection with concomitant assessment of ex vivo biodistribution at 1, 3, and 6 hours (Fig. 2A). Imaging with SPECT/CT showed high tumor uptake (Fig. 2B) as early as 3 hours postinjection. At 3 hours, tumor uptake was 4.38%ID/g and 5.84%ID/g for M28 and VAMT-1 tumors, respectively (Table 1), greater than for all organs/tissues studied (liver 2.62%ID/g, other organs/tissues <2%ID/g) except the kidney (50.7%ID/g), giving M28 and VAMT-1 tumor/muscle ratios of 45:1, 60:1, and tumors/blood ratios of 5:1 and 7:1, respectively (Fig. 2A). In contrast, the control blocking study with 10-fold excess of unlabeled M40 at 3 hours reduced by more than 70% of tumor uptake of the 99mTc-M40 to 0.9%ID/g and 1.6%ID/g for M28 and VAMT-1, respectively (Table 1 and Fig. 2C).

Micro-PET/CT imaging of 18F-FDG
18F-FDG PET imaging was performed to confirm the distinct identity of the 2 subtypes of tumors in a single animal. As
shown in Figure 2D, the ¹⁸F-FDG PET/CT image at 1 hour detected SM (VAMT-1) preferentially.

Discussion

We report here the in vitro and in vivo tumor targeting and imaging potential of a rapidly internalizing human scFv (M40) selected from a panel of scFvs targeting internalizing epitopes present on both EM and SM cells (6). Several important findings have been uncovered in this study. First, the ⁹⁹ᵐTc-M40 showed strikingly rapid and selective binding and internalizing ability in vitro into the mesothelioma tumor cells but not into the control nontumorigenic cells, consistent with our previous findings (6). Although we did not perform the Lindmo assay (17) to determine what percentage of our labeled antibodies retained reactivity (the immunoreactive fraction), our results nonetheless demonstrate that the M40 binds with high affinity to both subtypes of mesothelioma cells and that either the site-specific labeling of M40 with ⁹⁹ᵐTc through the hexahistidine tag or conjugation to Cy5.5 does not significantly affect its targeting ability. Second, although the M40 accumulated in the tumors, its clearance from blood and other normal organs was rapid (except from the kidney which is the site for all scFv clearance) making it feasible to label the M40 with positron-emitting residualizing radiometal isopes with short half-lives such as gallium-68 (⁶⁸Ga) for quantitative PET imaging. Finally, unlike other available antibodies against MM, this antibody has the ability to target both EM and SM. If such dual targeting can be maintained in the clinical setting, this antibody would have a major imaging and therapeutic potential.

The ⁹⁹ᵐTc-M40 had a high uptake in the kidneys as observed with other ⁹⁹ᵐTc-scFvs (10, 16), consistent with the route of scFv clearance in vivo. Nonetheless, additional engineering of M40 may further increase the kidney clearance rate and improve the contrast. In addition, developing other forms of the antibody such as diabody, minibody, or Affibody (Affibody AB) could further improve the tumor binding and homing efficiency as well as overall pharmacokinetic profile (10, 18).

The ⁹⁹ᵐTc-M40 rapidly accumulated into both M28 and VAMT-1 cells as early as 3 hours with comparable tumor uptake at 4.38 ±0.39%ID/g and 5.84±0.72%ID%/g, respectively. Because we observed the difference of ¹⁸F-FDG uptake in our system between the 2 cell types, M28 and VAMT-1, with approximately 8%ID/g and 16%ID/g, respectively. Because we observed the difference of ¹⁸F-FDG uptake in our system between the 2 cell types, M28 and VAMT-1, with approximately 8%ID/g and 16%ID%/g, respectively. Because we observed the difference of ¹⁸F-FDG uptake in our system between the 2 cell types, M28 and VAMT-1, with approximately 8%ID/g and 16%ID%/g, respectively.

Table 1. Biodistribution of ⁹⁹ᵐTc-M40

<table>
<thead>
<tr>
<th>Organ</th>
<th>1 hour (μCi/g)</th>
<th>3 hours (μCi/g)</th>
<th>6 hours (μCi/g)</th>
<th>Blocking (3 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2.43 ± 0.08</td>
<td>2.62 ± 0.34</td>
<td>2.48 ± 0.22</td>
<td>2.40 ± 0.21</td>
</tr>
<tr>
<td>Heart</td>
<td>0.26 ± 0.10</td>
<td>0.28 ± 0.03</td>
<td>0.23 ± 0.01</td>
<td>0.21 ± 0.07</td>
</tr>
<tr>
<td>Kidney</td>
<td>100.5 ± 4.45</td>
<td>130.7 ± 32.75</td>
<td>95.3 ± 19.31</td>
<td>146.6 ± 12.1</td>
</tr>
<tr>
<td>Lung</td>
<td>0.42 ± 0.13</td>
<td>1.61 ± 0.24</td>
<td>0.51 ± 0.22</td>
<td>0.65 ± 0.34</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.55 ± 0.21</td>
<td>1.02 ± 0.36</td>
<td>0.48 ± 0.12</td>
<td>0.66 ± 0.42</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.11 ± 0.01</td>
<td>0.25 ± 0.04</td>
<td>0.18 ± 0.15</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.36 ± 0.21</td>
<td>0.45 ± 0.13</td>
<td>0.33 ± 0.12</td>
<td>0.29 ± 0.21</td>
</tr>
<tr>
<td>Sm. Int.</td>
<td>0.32 ± 0.16</td>
<td>0.31 ± 0.04</td>
<td>0.40 ± 0.03</td>
<td>0.53 ± 0.44</td>
</tr>
<tr>
<td>Ig. Int.</td>
<td>0.25 ± 0.06</td>
<td>0.25 ± 0.07</td>
<td>0.31 ± 0.08</td>
<td>0.25 ± 0.26</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.06 ± 0.02</td>
<td>0.10 ± 0.05</td>
<td>0.10 ± 0.03</td>
<td>0.17 ± 0.11</td>
</tr>
<tr>
<td>Fat</td>
<td>0.11 ± 0.01</td>
<td>0.13 ± 0.03</td>
<td>0.06 ± 0.01</td>
<td>0.11 ± 0.10</td>
</tr>
<tr>
<td>Blood</td>
<td>1.20 ± 0.21</td>
<td>0.82 ± 0.13</td>
<td>0.81 ± 0.15</td>
<td>2.40 ± 0.21</td>
</tr>
<tr>
<td>Tumor (VAMT-1)</td>
<td>3.74 ± 0.07</td>
<td>5.84 ± 0.72</td>
<td>2.60 ± 0.19</td>
<td>1.62 ± 0.16</td>
</tr>
<tr>
<td>Tumor (M-28)</td>
<td>2.68 ± 0.24</td>
<td>4.38 ± 0.39</td>
<td>2.17 ± 0.21</td>
<td>0.91 ± 0.22</td>
</tr>
</tbody>
</table>

NOTE: The biodistribution of ⁹⁹ᵐTc-M40 was assessed at 1, 3, and 6 hours after injection in tumor-bearing nude mice. A control (blocking) study was performed with 10-fold excess unlabeled M40 injected 1 hour prior to injection of ⁹⁹ᵐTc-M40 in tumor-bearing nude mice (n = 4). Data are %ID/g ± SD.

aOrgans with significant difference in uptake at 3 hours after injection between study group and blocking control group (P < 0.05).

References

Acknowledgments

The authors are grateful to Dr. Mary E. Dyszlewski at Tyco/Mallinckrodt for providing the carbonyl-kit (IsoLink). This work is supported partially by NIH R01 CA135358 and the American Cancer Society (IRG-97-150-10) to Jiang He, and R01 CA118919 and R01 CA129491 to Bin Liu.

Received September 24, 2010; revised January 6, 2011; accepted January 19, 2011; published OnlineFirst March 29, 2011.
Novel Human Single Chain Antibody Fragments That Are Rapidly Internalizing Effectively Target Epithelioid and Sarcomatoid Mesotheliomas

Cancer Res 2011;71:2428-2432. Published OnlineFirst March 31, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-3484

Cited articles
This article cites 20 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/7/2428.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.