Therapeutics, Targets, and Chemical Biology

Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming

Abstract

NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of- and loss-of-expression assays, we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA-mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC. Cancer Res; 71(7); 2686–96. ©2011 AACR.

Introduction

Mechanistic study of cancer-associated translocations has led to the development of effective therapies that target fusion oncoproteins, particularly constitutively active tyrosine kinases (1–3). In contrast, although successes such as targeting of PML-RARα fusion proteins with all-trans retinoic acid and arsenic trioxide have been described (4–6), discovery of ligands that directly target fusion proteins that function as transcriptional cofactors has proven to be challenging.

Because of this difficulty, there is great interest in targeting the enzymatic components of higher-order gene regulatory complexes, such as histone deacetylases (HDACs; ref. 7), but clinical application of this approach has been limited. Examples include the use of DNA methyltransferase inhibitors (DNMTi) in myelodysplastic syndrome (MDS; ref. 8) and HDAC inhibitors in cutaneous T-cell lymphoma (CTCL; ref. 9).

NUT midline carcinoma (NMC) is a distinctive, aggressive human cancer defined by rearrangements of the gene NUT (10). These poorly differentiated carcinomas usually arise in midline structures of the nasopharynx or mediastinum. Although rare, NMCs occur throughout life and are often mistaken for other entities, including thymic carcinoma, squamous cell carcinoma of the head and neck, lung carcinoma, Ewing sarcoma, and acute leukemia. Advanced local disease is frequently accompanied by distant hematogenous metastases. Commonly used therapies include surgical debulking, consolidative radiotherapy, and cytotoxic chemotherapy, but even with multimodality therapy the median survival from diagnosis is only 9.5 months.

In the majority of NMCs, most of the coding sequence of NUT on chromosome 15q14 is fused in-frame to the 5′ portions of BRD4 or BRD3, creating chimeric genes that encode BRD-NUT fusion proteins (11, 12). The fusion proteins retain BRD-encoded bromodomains, which bind acetylated histones and recruit chromatin-remodeling complexes (13). BRD4 facilitates transcriptional elongation and is associated with mitotic chromosomes, a property that may act to
preserve epigenetic marks in daughter cells (14–16). NUT encodes an unstructured polypeptide of unknown function that is highly expressed in normal spermatids (11). A major oncogenic effect of the BRD4-NUT fusion protein appears to lie in its ability to arrest the differentiation of NMC cells (12). Based on the recently reported observation (17) that NUT directly binds to the histone acetyltransferase (HAT), p300, it was hypothesized that BRD4-NUT sequesters HAT activity. Here, we present data consistent with this model in which BRD-NUT fusion proteins act by inducing global histone hypoacetylation and transcriptional repression, effects that can be reversed by HDAC inhibitors, which show promise as targeted therapeutic agents for NMC.

Materials and Methods

Mammalian cells

The NMC cell lines TC797 (18), PER-403 (19), 00–143 (20), TY82 (21), and 10326 (12), and the non-NMC squamous cell carcinoma cell lines, HTB-43 (pharyngeal squamous cell carcinoma; ref 22) and HCC-95 (lung squamous cell carcinoma; ref. 23), have been described. Patient tumor tissue was minced, digested with collagenase, and cultured in WT medium optimized for carcinoma cells as described (24). 293T and U2OS cells were obtained from the American Type Culture Collection. A derivative of 293Ts, 293Trex, which contains a single genomic FRT recombination site (25), was a gift from Dr. Jeffrey D. Parvin. A tetracycline-inducible isogenic derivative, 293Trex-FLAG-BRD4-NUT was created by recombination with the plasmid pcDNA5 FRT/TO-FLAG-BRD4-NUT (below) using Flp-In technology (Invitrogen).

TC797, 00–143, TY82, 10326, U2OS, and 293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) supplemented with 10% bovine growth serum (Hyclone), 2 mM/L L-glutamine, 100 U of penicillin G/mL, and 100 μg of streptomycin/mL (Invitrogen) at 37°C under 5% CO2. PER-403 was maintained in the same medium with 1 mM/L sodium pyruvate (Mediatech), 0.1 mM/L non-essential amino acids (Invitrogen), and 40 μg/mL β-mercaptoethanol (American Bioanalytical). U2OS and 293T cells were transfected with Lipofectamine 2000 (Invitrogen). All work with human discarded tissues and live cells was performed in accordance with IRB protocol 2000-P-001990/6; BWH. Trichostatin A (used at a concentration of 25 mM/L; Figs. 2 and 3) or 100 mM/L (Supplementary Figure S1) was obtained from Sigma-Aldrich, and dimethyl sulfoxide (DMSO) from American Bioanalytical.

TREX inducible cells

The FLAG-BRD4-NUT-inducible derivative of 293Trex was created from commercially available 293Trex cells according the manufacturer’s instructions (Invitrogen).

Expression plasmids

cDNAs encoding proteins of interest were assembled in the vectors pcDNA5 FRT/TO (Invitrogen) and confirmed by DNA sequencing.

Histology and immunohistochemistry

Formalin-fixed, paraffin-embedded cell blocks of cultured cells were prepared as described (12, 26) using Histogel (Richard-Allan Scientific). Sections were stained with hematoxylin and eosin or by immunohistochemistry (IHC), which was performed on 5 μm sections prepared from formalin-fixed, paraffin-embedded primary tumors, or cell blocks. Immunohistochemical stains were performed using anti-NUT rabbit polyclonal antibody (27), anti-NUT rabbit monoclonal antibody (26), Ki-67 (MIB-1 clone; DAKO USA; ref. 12), and PanKeratin (ref. 12; clone MNF116, DAKO USA) as described.

Fluorescence in situ hybridization

Dual-color fluorescence in situ hybridization (FISH) assays for BRD4 and NUT breakpoints were performed on formalin-fixed, paraffin-embedded, 4 μm tissue sections as described (20). Probes used for the 15q14 NUT breakpoint, flanking a 181kb region containing NUT, included the 3’ telomeric BAC clones 1H8 and 64o3, and the 5’ centromeric clones 412e10 and 3d4. Probes used for the 19p13.1 BRD4 breakpoint were the 5’ centromeric BAC clone 187I3 and the 3’ telomeric BAC clone 87m17.

High content screening

NMC cells were plated at a concentration of 1,000 cells per well in black, clear-bottom, 384-well microtiter plates. Small-molecule HDAC inhibitors were transferred from library plates arrayed in a dose–response format using robotic pin transfer. Following compound incubation for 48 or 72 hours, cells were fixed with paraformaldehyde (3.8%) and stained with Hoechst, anti–acetyl-lysine (Cell Signaling Technologies), or anti-cytokeratin (clone AE1/AE3, DAKO USA). Secondary antibodies included rhodamine donkey anti-rabbit IgG (1:100, Jackson Immuno Labs) and FITC pig anti-rabbit IgG (1:100, DAKO USA). Three-color fluorescence images were acquired using automated epifluorescence microscopy (ImageXpress-MICRO; Molecular Devices) and analyzed using MetaXpress (Molecular Devices), GraphPad Prizm, and SpotFire DecisionSite software.

Small interfering RNA and transient transfection

The design, synthesis, and electroporation of siRNA duplexes specific for human NUT were as described (12). Scrambled siRNA (Silencer Negative Control #1 siRNA Template, Applied Biosystems/Ambion, Austin) was used as a negative control.

Immunoblotting

Proteins in cell extracts prepared with high-salt RIPA buffer (50 mM/L Tris, pH 8.0, containing 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 250 mM/L NaCl, and 5 mM/L EDTA) were separated by SDS-PAGE, electrophoretically transferred to Immobilon membranes (Millipore), and stained with anti-NUT polyclonal antibody, or anti-FLAG (Sigma-Aldrich). Acid extraction of histones was performed as per instructions (Millipore). Acid extracts were electrophoretically separated, blotted as above, and stained with anti-acetyl...
histone H4 (Millipore), anti-α-acetyl-histone H4 K8 (Abcam), anti-α-acetyl-histone H3 K18 (Abcam), or anti-histone H3 polyclonal antibody (Abcam). Staining was developed using a chemiluminescent method (SuperSignal, West Pico; Pierce).

Microarray analysis
Total RNA was isolated 24 hours post-siRNA transfection (duplicate separate samples per cell line) or treatment with trichostatin A (25 nmol/L, triplicate separate samples per cell line) from TC797 and PER-403 cells using TRIzol reagent (Invitrogen). RNAs were further processed, labeled, and hybridized to Human Genome U133A Plus 2.0 microarray chips (Affymetrix) in the Partners Healthcare Center for Genetics and Genomics Gene Chip Microarray Facility, as described in the Affymetrix GeneChip Expression Analysis Technical Manual (revised version 4). After manually inspecting the quality of arrays, GeneChip RNA (GCRMA) was used to normalize and summarize expression as log2 values. Probe sets were filtered based on minimum expression \(\log_2(100)\) and minimum variance (interquartile range >0.5). Probe sets satisfying those criteria were analyzed using the LIMMA (Linear Models for Microarrays Data) package (28) to identify differentially expressed probe sets using a \(q\)-value cutoff of 0.05 (Benjamini and Hochberg corrected). Probe sets showing significant up-regulation in TSA-treated cells (1,000 permutations per GSEA).

Radiologic imaging
Standard 18(F)-FDG PET and CT were performed at the Department of Radiology at The Children’s Hospital Boston, MA.

Cell growth assay
Cells were plated in a 96-well plate at a density of 5,000 cells/well and incubated for 2, 3, or 7 days in the presence of 0-1 μmol/L SAHA or DMSO. Relative cell numbers were determined in 6 replicates using Cell Titer Glo (Promega) according to the manufacturer’s instructions.

Gene set enrichment analysis
Genes whose expression was significantly up-regulated upon knockdown of BRD4-NUT in both TC-797 and PER-403 cells were used as the comparison gene set in the gene set enrichment analysis (GSEA; ref. 30) of expression changes in TC-797 and PER-403 cells following TSA (25 nmol/L) treatment. Gene permutation was used to estimate the significance of enrichment for the BRD4-NUT gene set within the ranked list of genes up-regulated in TSA-treated cells (1,000 permutations per GSEA).

In vivo studies
Xenograft tumors were generated from 2 established NMC cell lines (TC-797 and PER-403) and from 1 low-passage primary tumor (8645). Cells were transduced with a lentivirus encoding Firefly luciferase, mCherry, and puromycin phospho transferase (31), followed by selection in 2 μg/mL of puromycin. A total of 10⁵ cells in 100 μL of 30% Matrigel/70% PBS were injected subcutaneously into the flanks of 6-week-old female NCr nude mice (Charles River Labs). Mice were serially imaged after injection of 75 mg/kg d-luciferin using an IVIS Spectrum instrument (Caliper Life Sciences). Tumor volumes were calculated from caliper measurements using the formula \(V = \frac{1}{2} \times \text{length} \times \text{width}^2\). Established xenograft tumors were defined as tumors with increasing bioluminescence and measurable tumor volume. Cohorts of mice with established tumors were divided into groups with statistically equivalent tumor burden, and treated daily with vehicle or 10 mg/kg of LBH589 by intraperitoneal injection. Tumor burden was determined by serial bioluminescence imaging and tumor volume measurements. For survival studies, mice were sacrificed when tumors reached 2 cm in the largest diameter. Statistical significance was evaluated by log rank test. Samples for histopathological analysis were fixed in 10% buffered formalin. All animal studies were performed under IACUC approved protocols.

Quantitative reverse transcriptase polymerase chain reaction
Total RNA from TC-797 cells was harvested 24 hours after siRNA electroporation or Trichostatin A (25 nmol/L) treatment using TRIzol (Invitrogen) and further purified with an RNeasy Mini Kit (Qiagen). One microgram of RNA was used for cDNA synthesis using an iScript cDNA synthesis kit (Bio-Rad). qPCR was performed in duplicate on a Bio-Rad iCycler in 96 well plate format with IQ SYBR Green supermix (Bio-Rad) and 1 μL of cDNA template per reaction. Amplification curves and Ct values were generated using MyiQ Single-Color Real-Time software (Bio-Rad). Transcript levels were normalized to the RPL3 transcript as a cDNA input control. Data from 3 independent experiments are shown.

Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR)
ChIP was performed using the SimpleChIP Enzymatic Chromatin IP Kit from Cell Signaling Technologies. For each IP, approximately 1.5 × 10⁵ cells were crosslinked with 1% formaldehyde for 10 minutes at 37°C, fixed, and processed as per manufacturer instructions. Total H3 was immunoprecipitated with 10 μL of H3 antibody provided in the SimpleChIP Kit, and acetylated histone H3K18 was immunoprecipitated with 10 μL of ab1191 from Abcam. Negative control ChIP was performed using rabbit IgG (Jackson ImmunoResearch). qPCR was performed as described earlier using primers designed to amplify promoter-proximal regions of the target genes. For each PCR reaction, 2 μL of ChIP DNA was used. The ratio of H3K18Acet to total H3 was calculated for each promoter and used to determine relative changes in H3 acetylation upon Trichostain A (25 nmol/L) treatment.

Results
Expression of BRD4-NUT is associated with a global decrease in histone acetylation and overall repression of gene expression
Recent findings indicating that NUT binds to, and activates the HAT activity of p300 (17), prompted us to determine the
effects of BRD4-NUT on bulk chromatin acetylation. We found that expression of BRD4-NUT in 293T cells markedly diminished H3K18, H4, and H4K8 acetylation, histone marks associated with gene expression. Conversely, siRNA-mediated knockdown of BRD4-NUT in NMC cell lines increased, to a more variable degree, acetylation of these same residues within 24 hr (Fig. 1A). Changes in chromatin marks induced by BRD4-NUT knockdown preceded morphologic changes indicative of squamous differentiation (Fig. 1B), which is marked by increases in nuclear size, open chromatin, and cytoplasmic volume. In line with the observed increases in activating histone marks, transcriptional profiling 24 hours after siRNA knockdown of BRD-NUT, before morphologic changes indicative of squamous differentiation, revealed that among 369 genes that changed expression significantly in the NMC line Per-403, a disproportionate fraction (87%) was up-regulated, consistent with a repressive effect on gene transcription. Similarly, 68% of genes that changed expression following the knockdown of BRD4-NUT in the NMC line TC-797 were up-regulated.

Figure 1. BRD4-NUT expression is associated with blocked differentiation, and repression of histone acetylation. A, effects on histone acetylation resulting from induced expression of flag-BRD4-NUT in 293TRex cells, and siRNA-induced knockdown of BRD4-NUT in 2 NMC cell lines after 24 hours. B, siRNA-induced knockdown of BRD4-NUT using an siRNA targeting NUT in 2 NMC cell lines. Hematoxylin and eosin staining (H&E) as well as the immunohistochemical (IHC) detection of keratin with antibody AE1/AE3 are shown for each cell line 24, 48, and 72 hours following knockdown. Magnification (scale bar, 25 μm) is identical for all panels.
of cells, accumulation of abundant, keratin-positive, eosinophilic cytoplasm, nuclear enlargement, and decreased nuclear staining consistent with an increase in euchromatin (Fig. 2C), all features that are also induced by BRD4-NUT knockdown. The induction of differentiation and arrested growth by TSA was unique to NMC cells, as non-NMC squamous cell carcinoma cell lines were unresponsive to treatment (Fig. 2B and C). Even a higher concentration of TSA (100 nmol/L) that was lethal to the NMCs caused no changes in differentiation or growth of the non-NMCs (Supplementary Fig. S1). Comparative analysis of 7 selected genes associated with squamous differentiation revealed that all 7 changed in expression similarly following BRD4-NUT knockdown and TSA treatment in TC-797 NMC cells as measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR; Fig. 3A). The mechanism by which HDACi increased expression of
these genes appears to be due to promoter acetylation, as quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) with α-acetyl H3K18 antibody revealed enrichment of 5 of the squamous differentiation associated gene promoters in TSA-treated NMC chromatin extracts (Fig. 3B).

To gain a broader view of the effects of siRNA and TSA on gene expression, we performed GSEA using microarray data from NMC cell lines treated with BRD4-NUT siRNA, or TSA. GSEA revealed that genes that increased in expression following BRD4-NUT knockdown were highly enriched among those that increased following TSA treatment (Fig. 3C, $P < 0.001$ for both cell lines). Together, these findings suggest that the NMC response to TSA is mediated through interference with BRD4-NUT function.

HDAc abrogate the growth of NMC cells in vitro and in vivo

The correlates above suggested that HDAc should only promote NMC differentiation at concentrations that cause histone hyperacetylation, irrespective of their potency against individual HDACs. To test this idea, we scored a library of structurally dissimilar HDAc for effects on NMC cells using a miniaturized high content assay that quantifies changes in bulk chromatin acetylation and expression of keratin. Supplementary Figure S2A shows an example of this analysis using NMC cells treated with the FDA-approved HDAc inhibitor vorinostat (SAHA), a clinically approved substance with prior pediatric experience. NMC cells treated with SAHA exhibit increased histone hyperacetylation and keratin expression by immunofluorescence microscopy (Supplementary Fig. S2A). Automated measurement of these phenotypes revealed a dose-dependent induction of hyperacetylation and differentiation that was inversely associated with cellular proliferation (Supplementary Fig. S2B). The effects of 9 structurally unrelated HDAc inhibitors on histone acetylation and cell growth in 2 different NMC cell lines (Table 1) were highly correlated ($R^2 = 0.96$; Supplementary Fig. S2C, Table 1), strongly suggesting that the growth inhibitory effects of these drugs is mediated through increased histone acetylation.
positive immunohistochemical staining for NUT and the pre-resection of this mass led to the diagnosis of NMC, based on inal mass invading the left atrium and pulmonary vein. Partial Hospital of Boston for management of an aggressive mediast-

able, a 10-year-old child was transferred to the Children’s are extremely limited. As the research above was being com-

frequently threaten vital structures and therapeutic options

progresses through cytotoxic chemotherapy. Metastases

antitumor activity in a pediatric patient with NMC

An FDA-approved HDAC inhibitor, vorinostat, exhibits

To determine the in vivo efficacy of HDACi in NMC, we created 2 luciferized NMC cell line xenograft models (TC-797, PER-403). Tumor burden was assessed by bioluminescence imaging (Fig. 4) and tumor volume. Mice with established xenografts, defined as increasing bioluminescence and measurable tumor volumes, were divided into groups that were treated with vehicle or HDACi. For this study, we used the HDACi, LBH-589 (Novartis), an advanced second-generation investigational HDACi used extensively in mice (32) that is formulated for intravenous injection, and thus easier to administer compared with SAHA (an oral medication). Significant suppression of tumor growth, as assessed by tumor volume or bioluminescence, was apparent in both models (Fig. 4A–C). In the PER-403 xenografts where survival analysis was performed, significant survival benefit was seen in HDACi-treated mice \(P = 0.001; \) Fig. 4C (bottom graph)]. Tumors in LBH-589 treated mice showed increased levels of histone acetylation and morphologic and immunohistochemical changes (increased keratin expression) consistent with squamous differentiation (Fig. 5). Taken together, the findings indicate that HDACi induce differentiation and growth arrest of NMC cells in vitro and in vivo, providing a strong rationale for their therapeutic use in this disease.

An FDA-approved HDAC inhibitor, vorinostat, exhibits antitumor activity in a pediatric patient with NMC

NMC commonly presents in pediatric patients and invariably progresses through cytotoxic chemotherapy. Metastases frequently threaten vital structures and therapeutic options are extremely limited. As the research above was being completed, a 10-year-old child was transferred to the Children’s Hospital of Boston for management of an aggressive mediastinal mass invading the left atrium and pulmonary vein. Partial resection of this mass led to the diagnosis of NMC, based on positive immunohistochemical staining for NUT and the presence of a BRD4-NUT fusion gene by FISH (Fig. 6A). Based on the above findings, treatment of this patient with HDACi was considered, and the only clinically approved HDACi with experience in children was vorinostat (SAHA). Culture of patient-derived NMC cells (designated 8645) established in a medium optimized for the growth of carcinoma cells (24) confirmed that vorinostat induced 8645 cells to undergo squamous differentiation (Fig. 6B and C) and growth arrest (Fig. 6B–D) as assessed by Ki-67 staining and cell counts. The IC50 (based on Ki-67 fraction) and EC50 (based on keratin expression) were calculated to be 230 nmol/L, well below the known \(C_{\text{max}}\) of vorinostat of 1.5–2 \(\mu\text{mol}/\text{L}\). Following institutional approval and informed consent, the open-label administration of single-agent, oral vorinostat was initiated (400 mg daily). At the conclusion of 5 weeks of drug therapy, a marked decrease in tumor avidity for \(^{18}\text{F}-\text{fluorodeoxyglucose}\) was observed by positron emission tomography (PET; Fig. 6E). The responsiveness of the patient’s tumor to HDACi was confirmed by treating xenografted tumor cells from the patient with LBH-589, which produced strong growth inhibition \((P = 0.0003, \) Fig. 6F). Tumor response in the patient was accompanied by marked thrombocytopenia (17,000/\(\mu\text{L};\) normal range \(150,000–400,000/\(\mu\text{L}\)), an established dose-limiting toxicity of vorinostat (33). Because of severe (NCI Grade 3) nausea and emesis, the patient was unable to tolerate further vorinostat therapy, and tumor recurrence was noted on PET scans performed 5 weeks later (Fig. 6E). He was subsequently treated with a combination chemotherapy protocol, and died due to recurrent and metastatic disease 11 months after initial diagnosis.

Discussion

NMC is an incurable cancer with an average survival of 9 months or less that is defined by the presence of NUT fusion genes (11). We show here that BRD4-NUT expression is

| Table 1. Dose–responses of NMC cell lines to treatment with 9 structurally different HDAC inhibitors |
|---|---|---|---|---|
| Rank | Compound | AcLys EC50 (\(\mu\text{mol}/\text{L}\)) | Viability IC50 (\(\mu\text{mol}/\text{L}\)) |
| | | TC-797 | 00-143 | Ty-82 | TC-797 | 00-143 | Ty-2 | PER-403 | 10326 |
| 1 | LBH-589 | 0.010 | 0.026 | 0.009 | 0.006 | 0.036 | 0.009 | 0.038 | 0.001 |
| 2 | TSA | 0.002 | 0.031 | 0.015 | 0.003 | 0.043 | 0.015 | 0.025 | 0.003 |
| 3 | CRA-024781 | 0.07 | 0.42 | 0.17 | 0.04 | 0.44 | 0.20 | 0.35 | 0.07 |
| 4 | ITF-2357 | 1.71 | 1.28 | 0.57 | 0.03 | 1.17 | 0.52 | 1.14 | 0.13 |
| 5 | PXD101 | 0.28 | 1.38 | 0.88 | 0.04 | 2.09 | 0.68 | 0.48 | 0.21 |
| 6 | SAHA | 0.21 | 2.45 | 1.48 | 0.26 | 3.02 | 1.78 | 1.94 | 0.65 |
| 7 | MGCD0103 | 1.29 | 3.47 | 0.87 | 0.32 | 3.54 | 1.44 | 2.38 | 0.18 |
| 8 | MS-275 | 0.57 | 4.09 | 1.96 | 0.28 | 4.74 | 2.96 | 5.56 | 0.39 |
| 9 | CI-994 | 3.2 | 28.2 | 10.1 | 3.3 | 19.9 | 15.3 | 19.3 | 2.1 |

Abbreviations: AcLys, nuclear acetyl-lysine; EC50, concentration of drug that increases nuclear acetylation by 50% (1.5-fold induction) relative to vehicle control; IC50, concentration of drug that results in a 50% reduction in cell number relative to vehicle control.
associated with global histone hypoacetylation and transcriptional repression. The data are consistent with a recently postulated model (17) in which BRD4-NUT binds to and activates p300, thereby sequestering HAT activity to localized regions of BRD4-NUT–acetyl-chromatin binding. This in turn results in a relative overabundance of HDAC activity outside of these regions, leading to global hypoacetylation and inadequate expression of genes required for differentiation. We hypothesize that HDACi correct this imbalance by favoring HAT activity, restoring chromatin acetylation, and increasing the transcription of pro-differentiative genes.

This sequestration model is novel within the context of epithelial cancer, but precedents are found in certain leukemias (34) and neuronal degenerative diseases. Expanded polyglutamine repeats in the Huntingtin and androgen receptor proteins bind and sequester CBP/p300, resulting in global histone hypoacetylation and transcriptional repression (35–38). Moreover, the sequestration and inactivation of transcriptional cofactors in these complexes is reversible by HDAC inhibitors (36, 37).

Regardless of the precise mechanism, the reversal of BRD4-NUT–induced global hypoacetylation with HDACi is a novel
means of targeted “differentiation therapy” in cancer. The striking in vitro and in vivo induction of differentiation and inhibition of NMC growth by HDACi is of particular importance in this disease because there are currently 2 FDA-approved HDACi reagents, vorinostat and romidepsin, which are available for immediate clinical investigation. There is an urgent need for novel therapy in this disease because there is currently no effective therapy for NMC, which has been refractory to a number of different chemotherapeutic regimens (39). Increased recognition of NMC, enabled in part by new diagnostic tests that rely on routine IHC (26), should enhance the clinical evaluation of HDAC inhibitor drugs in this malignancy, alone and in combination with other cytotoxic agents.

Another recently reported potential means to target BRD4-NUT are small molecule bromodomain inhibitors (Brdi; ref. 40). Brdi specifically abrogate binding of acetylated histones to the bromodomains of BRD4 and BRD3, and cause differentiation of NMC cells in vitro and in mice. Nevertheless, it is not clear what toxicity these molecules will have, as they also inhibit acetyl–histone binding of native BRD4 and BRD3, which are ubiquitously expressed proteins that may confer epigenetic "memory" on cells (41, 42). This new class of molecules is in the earliest stages of investigation and, unlike HDACi, has not been used in humans.

The most specific targeting of BRD4-NUT would be directed at NUT, which is not normally expressed outside testis or ovaries (11). This will require mapping of protein:protein interactions involving NUT at high resolution, and development of NUT-directed inhibitors. Although the development of deliverable small molecule inhibitors of this type has proven difficult, the advent of stapled peptides shows some promise to facilitate progress in this field (43).
Disclosure of Potential Conflicts of Interest

T.A. Ince: consultant, Stemgent Inc. The other authors disclosed no potential conflicts of interest.

Acknowledgments

The authors thank Dr. Stuart Schreiber and the Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA, for use of equipment, and Sara Guterman, from the Clinical Trials Office at the Dana-Farber Cancer Institute, for her help on a moment's notice. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Service, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US government.

Grant Support

This work was supported by a Dana Farber/Harvard Cancer Center Nodal Award 5P30CA06516-44 (C.A. French and J.E. Bradner), US National Institutes of Health grant 1R01CA124633 (C.A. French), the Stanley L. Robbins Memorial Award (M.D. Hofer), the National Institutes of Health grant 1K08CA128972 (J.E. Bradner), the Burroughs-Wellcome Foundation (J.E. Bradner), and funds from the National Cancer Institute’s Initiative for Chemical Genetics (Contract No. N01-CO-12400).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 27, 2010; revised January 7, 2011; accepted January 7, 2011; published OnlineFirst March 29, 2011.

References

Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming

Cancer Res 2011;71:2686-2696. Published OnlineFirst March 31, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-3513

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/03/28/0008-5472.CAN-10-3513.DC1

Cited articles
This article cites 41 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/7/2686.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/71/7/2686.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.