Human Xeno-Autoantibodies against a Non-Human Sialic Acid Serve as Novel Serum Biomarkers and Immunotherapeutics in Cancer

Vered Padler-Karavani1, Nancy Hurtado-Ziola3, Minya Pu1, Hai Yu4, Shengshu Huang4, Saddam Muthana4, Harshal A. Chokhawala4, Hongzhi Cao4, Patrick Secrest1, Dinorah Friedmann-Morvinski2, Oded Singer2, Darius Ghaderi3, Inder M. Verma2, Yu-Tsueng Liu1, Karen Messer1, Xi Chen4, Ajit Varki1, and Richard Schwab1

Abstract

Human carcinomas can metabolically incorporate and present the dietary non-human sialic acid Neu5Gc, which differs from the human sialic acid N-acetylneuraminic acid (Neu5Ac) by 1 oxygen atom. Tumor-associated Neu5Gc can interact with low levels of circulating anti-Neu5Gc antibodies, thereby facilitating tumor progression via chronic inflammation in a human-like Neu5Gc-deficient mouse model. Here we show that human anti-Neu5Gc antibodies can be affinity-purified in substantial amounts from clinically approved intravenous IgG (IVIG) and used at higher concentrations to suppress growth of the same Neu5Gc-expressing tumors. Hypothesizing that this polyclonal spectrum of human anti-Neu5Gc antibodies also includes potential cancer biomarkers, we then characterize them in cancer and noncancer patients' sera, using a novel sialoglycan microarray presenting multiple Neu5Gc-glycans and control Neu5Ac-glycans. Antibodies against Neu5GcTn–GalNAc³⁰-⁴⁰-⁴⁰-Ser/Thr (GcSTn) were found to be more prominent in patients with carcinomas than with other diseases. This unusual epitope arises from dietary Neu5Gc incorporation into the carcinoma marker Sialyl-Tn, and is the first example of such a novel mechanism for biomarker generation. Finally, human serum or purified antibodies rich in anti-GcSTn-reactivity kill GcSTn-expressing human tumors via complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. Such xeno-autoantibodies and xeno-autoantigens have potential for novel diagnostics, prognostics, and therapeutics in human carcinomas. Cancer Res; 71(9): 3352–63. ©2011 AACR.

Introduction

Altered glycosylation is common in cancer (1). One relatively tumor-specific alteration is metabolic incorporation of diet-derived N-glycolyneuraminic acid (Neu5Gc) into human cancers (2–5). N-Acetylneuraminic acid (Neu5Ac) and its hydroxylated form, Neu5Gc, are the 2 major Sias on mammalian cell surfaces. Humans cannot synthesize Neu5Gc due to an inactive CMP-Neu5Ac hydroxylase (CMAH; ref. 6), and lack of an alternate synthetic pathway (7). However, consumption of Neu5Gc-rich foods (particularly red meats) leads to foreign Neu5Gc incorporation into human tissue cell surfaces, especially carcinomas (2, 3), generating "xeno-autoantigens". The humoral response against various Neu5Gc glycans shows a diverse polyclonal profile of xeno-autoantibodies in all normal human sera (5), likely induced via dietary-Neu5Gc uptake by commensal bacteria (8). Circulating anti-Neu5Gc antibodies interact with Neu5Gc-positive tumors to generate chronic inflammation and facilitate tumor progression in a mouse model of human-like Neu5Gc-deficiency (9). This is keeping with previous reports of antibody-mediated tumor stimulation via chronic inflammation in other systems (10, 11). Of course, antitumor antibodies are also reported as cancer therapeutics (12–14). These opposing findings can be potentially reconciled by Prehn's hypothesis of a biphasic dose-dependent response of tumors to immune reactants (15).

Epithelial cancers (carcinomas) cause significant morbidity and mortality and survival rates improve with early diagnosis. Indeed, physical cancer screening methods have reduced mortality (16, 17), encouraging further early detection biomarker research, and guiding codevelopment of targeted therapies, e.g., trastuzumab (Herceptin) developed to target the biomarker HER-2/neu (12, 18). Most current biomarkers, including autoantibodies against tumor-associated antigens that appear at an early stage, lack sufficient sensitivity and
specificity for early cancer diagnosis (18–22). Common approaches for biomarker discovery include global genomics, proteomics, and more recently glycomics, seeking malignancy-associated differentially expressed targets (23).

We reasoned that Neu5Gc consumption by cancer patients could metabolically replace Neu5Ac by Neu5Gc, generating glycan-xeno-autoantigens. Although the corresponding xeno-autoantibodies could be involved in tumor stimulation via chronic inflammation (9), we hypothesized that they could also be novel and unique tumor biomarkers and immunotherapeutics, in line with the Prehn hypothesis of dualistic effects (15). Here we affinity-purified human anti-Neu5Gc antibodies from IVIG and use them to treat Neu5Gc-expressing tumors in vivo. Using a novel high-throughput sialoglycan microarray containing multiple Neu5Gc-glycans with control Neu5Ac-matched glycans, we then show that human serum antibodies against Neu5Gc-siallyl-Tn (GsSTn; Neu5Gc-t2–6GalNAc-t1-O-Ser/Thr) are enriched in carcinoma patients over controls. Furthermore, human serum or purified antibodies with anti-GcSTn reactivity can kill GcSTn-positive human tumor cells.

Materials and Methods

Affinity purification of anti-Neu5Gc antibodies from IVIG

Anti-Neu5Gc antibodies were purified from IVIG (GAMMA-GARD LiQUID) on sequential affinity columns with immobilized human or chimpanzee serum sialoglycoproteins, as described (5; chimpanzee serum obtained from Yerkes National Primate Research Center, Emory University, GA). Aliquots of IVIG diluted 1:3 in PBS were precleared through a column of immobilized human serum sialoglycoproteins (Neu5Ac containing), and the flow-through applied to a column of immobilized chimpanzee serum sialoglycoproteins (Neu5Gc containing), columns differing primarily in the single oxygen atom that differentiates Neu5Gc from Neu5Ac (Fig. 1A). Bound antibodies were sequentially eluted with 5 mmol/L glucuronic acid in PBS (removing nonspecific charge-related binding), 0.5 mmol/L 2-O-methyl-α-Neu5Gc (Neu5Gc2Me) in PBS, 2 mmol/L Neu5Gc2Me in PBS, and a weak acid (0.1 mol/L citric acid, pH 3), with collected fractions showing anti-Neu5Gc reactivity only when eluted by Neu5Gc2Me [Fig. 1B; Neu5Gc2Me maintains the Sia ring-form in the α-β-Sia anomer (5)]. Elution with 10-fold higher concentrations of free Neu5Gc (5 and 20 mmol/L, respectively) gave similar results (data not shown).

Minimizing cross-species reactivity in tumor experiments

To avoid off-target effect of human antibodies in the experimental mice, we affinity-purified IVIG over mice sera (negative for anti-human antibodies reactivity) instead of human/chimpanzee sera (Supplementary Fig. S1). Immobilized sera sialoglycoproteins from the “human-like” Cmah−/− mice (7) were bred in a congenic C57BL/6 background and maintained according to Institutional Animal Care and Use Committee guidelines for laboratory animals. To avoid uncontrolled clearance of the human antibodies, only mice free of mouse anti-human IgG antibodies (as determined by ELISA) were used.

Before use, MC38 or MC38si cells were released by incubation in PBS with 2 mmol/L EDTA at 37°C for 10 minutes, and washed in PBS with Ca2+, Mg2+, and glucose before suspending in the same buffer for subcutaneous (s.c.) injection. Mice were injected s.c. in the flank with 1 × 106 MC38 cells (right flank) and MC38si cells (left flank). These mice were divided into 2 groups and on day 5, affinity-purified human anti-Neu5Gc antibodies or vehicle control (PBS) were injected i.p. at 25 μg/g weight (n = 5 and n = 6, respectively). Tumor growth was monitored and measured daily (tumor volume was calculated by the formula 0.5 × xzy). Next, tumors were removed from the flank and weighed.
Feeding of human cell lines
To deplete any remaining Neu5Gc from FCS, the Jurkat T cells were split and cultured (before feeding experiments) for at least 4 days in RPMI medium 1640 supplemented with 5% heat-inactivated human serum (RPMI/5HuS) instead of FCS, resulting in chase-out of all existing Neu5Gc. Subsequently, cells were fed with 3 mmol/L Neu5Ac/Neu5Gc in RPMI/5HuS (26).

Peripheral blood mononuclear cell isolation
Studies were preapproved by the institutional review board of University of California San-Diego. Healthy human donor peripheral blood mononuclear cell (PBMC) were isolated using Vacutainer CPT tubes (Becton Dickinson), washed extensively with PBS to remove intrinsic human antibodies and resuspended in culture medium RPMI 1640.

Complement-dependent cytotoxicity and antibody-dependent cellular-mediated cytotoxicity assays
Complement-dependent cytotoxicity (CDC) and antibody-dependent cellular-mediated cytotoxicity (ADCC) were evaluated by measuring lactate dehydrogenase (LDH) release using LDH Cytotoxicity Detection kit (Roche Applied Science) according to the manufacturer’s instructions. All assays (3 hours at 37°C) included maximum release controls (1% Triton X-100) and percentage cytotoxicity was calculated as: (test release – spontaneous release)/(maximum release – spontaneous release) x 100. For CDC: Target cells (T; Jurkat cell fed with Neu5Ac/Neu5Gc) were washed extensively with PBS to remove residual human antibodies from the culture media, then plated (in triplicates) at 2 x 10^4 cells/well in 96-well round-bottom plates and supplemented with heat inactivated (HI) human serum S34 (10%/well or 1%/well in RPMI) or purified anti-Neu5Gc antibodies [40 μg/mL/well or 20 μg/mL/well diluted in 1%/well HI human serum S30 in RPMI that has low levels of anti-Neu5Gc antibodies (5)] and incubated at room temperature for 30 minutes. Then complement was added (10%/well fresh human serum S30 in RPMI). The plates were incubated for 3 hours at 37°C, then supernatants were transferred to a 96-well flat-bottomed plates and LDH release was determined.

For ADCC: washed Target cells (T; Jurkat cells fed with Neu5Ac/Neu5Gc) were plated at 2 x 10^4 cells/well in a 96-well flat-bottom plate and supplemented with 10% HI human sera S34, S30 or S30 containing purified 10 μg/mL/well anti-Neu5Gc IgG and incubated at room temperature for 30 minutes. Then, effector (E) PBMCs in RPMI were added at various E:T ratios, incubated for 3 hours at 37°C, then supernatants were collected and LDH release was determined.

Serum samples for glycan-microarray assays
A total of 386 cancer cases and control human sera were studied as described in Supplementary Table S1, with approval...
from the Institutional Review Board of the University of California, San Diego. Written, informed consent was obtained in advance. We tested sera from 175 breast cancer patients and other types of carcinomas including prostate (39), ovary (29), lung (14), colon (22), pancreas (16), endometrium (11), as well as controls (80) matched for gender and, as possible, for age. Sera were tested on glycan microarray and analyzed while blinded to the case/control status of the samples.

Sialoglycan microarray

20 Sialoglycans pairs (Neu5Ac versus Neu5Gc; Table 1) were synthesized as described (27–29) and printed on Epoxide slides (Thermo Fisher Scientific) in 250, 125, 62.5, and 12.5 μmol/L at 4 replicates each in an optimized print buffer (300 mmol/L phosphate buffer, pH 8.4), and sera binding to arrays tested and analyzed as detailed in the Supplemental Methods.

General statistical analyses

Statistical analyses (described in context) were carried out using GraphPad Prism 5.0, with \(P < 0.05 \) considered significant. Array statistical analysis is detailed in the Supplemental Methods.

Results

Anti-Neu5Gc IgG can be affinity-purified from IVIG

Individual human serum samples show variable levels of anti-Neu5Gc antibodies against several Neu5Gc-epitopes (5). To better assess their prevalence in the human population, we examined IVIG, a clinically used human IgG purified from pooled-plasma of thousands of donors (30). Aliquots of IVIG were used to affinity purify anti-Neu5Gc IgG using columns differing primarily in the single oxygen atom that differentiates Neu5Gc from Neu5Ac (Fig. 1A; as detailed in the Materials and Methods section). Bound antibodies were sequentially eluted with increasing concentrations of 2-O-methyl-α-Neu5Gc (Neu5Gc2Me) resulting in low-affinity and high-affinity anti-Neu5Gc IgG (Fig. 1B). The overall yield was \(\sim 0.075\% \) (0.76 ± 0.29 mg/g IgG loaded), which is in the range described for some individual serum titers (5). These affinity-purified antibodies recognized multiple Neu5Gc-glycans (Fig. 1C). We achieved similar purifications using sequential
Table 1. List of glycans studied on the slide microarray

<table>
<thead>
<tr>
<th>Glycan type</th>
<th>O-acetylation status</th>
<th>Glycan no.</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>1</td>
<td>Neu5,9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>2</td>
<td>Neu5Gc9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>3</td>
<td>Neu5,9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>4</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>5</td>
<td>Neu5Acc2-6GalNAc[ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>6</td>
<td>Neu5Gc9Ac2-6GalNAc[ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>7</td>
<td>Neu5,9Ac2-3Gal[1-3GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>8</td>
<td>Neu5Gc9Ac2-3Gal[1-3GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>9</td>
<td>Neu5,9Ac2-3GalNAc[ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>10</td>
<td>Neu5Gc9Ac2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>11</td>
<td>Neu5Acc2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>12</td>
<td>Neu5Gc9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>13</td>
<td>Neu5Acc2-3Gal[1-3GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>14</td>
<td>Neu5Gc9Ac2-3Gal[1-3GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>15</td>
<td>Neu5Acc2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>16</td>
<td>Neu5Gc9Ac2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>17</td>
<td>Neu5Acc2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>18</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>19</td>
<td>Neu5Acc2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>20</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>21</td>
<td>Neu5Acc2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>22</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>23</td>
<td>Neu5,9Ac2-6GalNAc[ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>24</td>
<td>Neu5Gc9Ac2-6GalNAc[ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>25</td>
<td>Neu5Acc2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>26</td>
<td>Neu5Gc9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>27</td>
<td>Neu5Acc2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>28</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>29</td>
<td>Neu5,9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>30</td>
<td>Neu5Gc9Ac2-3Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>31</td>
<td>Neu5,9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>32</td>
<td>Neu5Gc9Ac2-6Gal[1-4GlcNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>–</td>
<td>33</td>
<td>Neu5Acc2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>–</td>
<td>34</td>
<td>Neu5Acc2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>35</td>
<td>Neu5,9Ac2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>36</td>
<td>Neu5Gc9Ac2-3Gal[1-3GalNAc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>37</td>
<td>Neu5,9Ac2-6Gal[1-4Glc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>38</td>
<td>Neu5Gc9Ac2-6Gal[1-4Glc][ProNH2]</td>
</tr>
<tr>
<td>Ac</td>
<td>9OAc</td>
<td>39</td>
<td>Neu5,9Ac2-3Gal[1-4Glc][ProNH2]</td>
</tr>
<tr>
<td>Gc</td>
<td>9OAc</td>
<td>40</td>
<td>Neu5Gc9Ac2-3Gal[1-4Glc][ProNH2]</td>
</tr>
</tbody>
</table>

NOTE: Twenty Glycan pairs that differ by a single oxygen atom were synthesized and printed on epoxide-coated slides. Glycans are numbered according to terminal Sia; odd numbers indicate Neu5Ac (Ac) and even numbers are Neu5Gc (Gc). ProNH2 = O(CH2)2CH2NH2.

columns of immobilized Cmah−/− or WT mouse serum sialoglycoproteins (Supplementary Fig. S1).

Human anti-Neu5Gc IgG attenuates Neu5Gc-expressing tumor outgrowth in vivo

As Neu5Gc is expressed on many human carcinomas (2, 3), it is a potential target for immunotherapy (4). To address this in vivo, we exploited the "human-like" Cmah−/− mouse model, carrying the syngeneic murine carcinoma MC38 tumors that naturally express Neu5Gc at low levels, similar to human tumors (9). Tumor-engrafted mice were injected with affinity-purified human anti-Neu5Gc IgG (purified on Cmah−/− and WT mouse serum glycoproteins to minimize cross-species reactivity; Supplementary Fig. S1). As a control, we also...
generated MC38si cells, in which a lentiviral vector coding a CMAH siRNA was stably integrated in MC38 cells, generating ~80% inhibition of CMAH mRNA (Fig. 2A) and reduced expression of Neu5Gc in those cells, especially on the cell surface (Fig. 2B).

Cmah−/− mice were injected subcutaneously with MC38 (right flank) and MC38si (left flank), and affinity-purified human anti-Neu5Gc IgG or vehicle control was injected intraperitoneally on day 5 after tumors were established (documented histologically, data not shown). The dose of 25 µg/g body weight would result in 125.4 ± 5.2 ng/µL circulating human IgG with residual of 53 ± 1.6 ng/µL by day 16 (mean ± SEM; Supplementary Fig. S2A). Tumor growth was measured daily, and on day 16 tumors were removed and weighed. Compared to control-treated tumors, smaller tumors developed in anti-Neu5Gc IgG-treated MC38 tumors (expressing surface Neu5Gc), yet not in MC38si tumors (diminished surface Neu5Gc), as confirmed by reduced tumor volumes and terminal weights (Fig. 2C). This attenuated tumor growth was antibody dependent and specific to Neu5Gc, as direct comparison of the effects of anti-Neu5Gc IgG on these tumors in the same mice revealed attenuated MC38 tumors compared to the control MC38si tumors (P = 0.0392, 2-way ANOVA). Furthermore, no growth inhibition was observed when mice were treated with 25 µg/g of lower affinity human anti-Neu5Gc IgG (eluted with 0.3 mmol/L Neu5Gc2Me instead of 20 mMol/L Neu5Gc; data not shown). The MC38 tumors escape by day 14 (Fig. 2C). In this regard, the injected antibody half-life is ~8 days (Supplementary Fig. S2A) and is predicted to drop by day 13. Similar tumor outgrowth inhibition was observed in anti-Neu5Gc IgG treated Cmah−/− mice engrafted with MC38siBR, containing stably integrated irrelevant siRNA that did not interfere with Neu5Gc cell surface expression (Supplementary Fig. S2B and C). Taken together, these data show Neu5Gc-specific antitumor reactivity of human anti-Neu5Gc antibodies from IVIG.

Thus, while a low dose of human anti-Neu5Gc antibodies (1 µg/g) promotes progression of Neu5Gc-expressing tumors in Neu5Gc-deficient mice (9), a higher dose (25 µg/g) mediates tumor suppression. This further supports the theory of dualistic responses to immune reactants (15), leading us to also hypothesize that tumor-reactive antibodies against specific Neu5Gc-glycans might serve as biomarkers of human cancer.

Sialoglycan microarray for biomarker discovery

A microarray approach permits high-throughput analysis of multiple samples and is valuable for comparative human serum profiling (31). To screen multiple anti-Neu5Gc IgGs in human sera, we used a highly efficient chemoenzymatic approach (27–29) to synthesize 40 sialylated glycans representing potentially common sialylglycans on tumor cells. These 20 matched sialoglycan-pairs terminated with Neu5Gc or Neu5Ac, (Table 1; differing by 1 oxygen atom, Fig. 1A) and some of their 9-O-acetylated forms, were printed on epoxide-coated slides in a range of concentrations. Slide print quality was monitored with polyclonal affinity-purified chicken anti-Neu5Gc IgY (ref. 32; Fig. 3A), and with a positive control human serum [Fig. 3B using SH4 (5)], both showing specific high reactivity to multiple Neu5Gc-glycans but not Neu5Ac-glycans. Next, sera from cancer or noncancer patients were tested on the sialoglycan microarray, and the potential of anti-Neu5Gc IgGs as cancer biomarkers assessed.

Validating the classifier using independent breast cancer cases and controls

The validation data consisted of 74 new nonmetastatic breast cancer cases and 25 new controls. The analysis plan was formalized prior to data delivery to the statistical team. Glycans 2, 6, 20, and 34 were assessed for significance as above, using cross-validation mean AUC as a measure of predictive power. We were able to independently replicate our results for 2 of the 4 glycans (6 and 20), as having estimated mean cross-validated AUCs above 0.55 in these independent data (Supplementary Table S2). Multivariate models (when all possible
combinations of the 4 glycans were tested: 15 models in total) did not improve on univariate results, and the 2 final best models were those using glycans 6 and 20 alone. However, the multivariate models with the highest mean AUCs all included glycan 6 (data not shown); therefore, the classifier built using glycan 6 alone was considered to be the most promising candidate for further analysis.

As a summary, ROC curves for glycan 6 are presented in Figure 4, using logistic regression models estimated on training and validation data (results from the cross-validation are given in Supplementary Fig. S3A–C). For the breast cancer training data (Fig. 4A), which were used to select glycan 6 from among the 20 glycans, using anti-Neu5Gc antibody response as a classifier gave an AUC of 0.67. In the breast cancer validation data, which were used to replicate results, the estimated AUC was 0.60 (Fig. 4B) with a mean AUC of 0.58 after 10-fold cross-validation (Supplementary Fig. S3B; 95% CI = 0.167–0.917, IQR = 0.458–0.708). These AUC values compare favorably with some common protein-based screens used today for cancer detection (33, 34). In these breast cancer validation data, the estimated mean specificity was 0.86 (95% CI = 0.37–1.00) at a sensitivity of 0.20 and 0.76 (95% CI = 0.27–1.00) at a sensitivity of 0.30, respectively.

Replication of results for glycan 6 using other types of carcinoma cases versus controls

To further validate the predictive value of glycan 6, we used a second set of independent validation data that included 55 controls (including 25 controls from the breast cancer validation and 30 new controls) and 99 cases with other types of nonmetastatic cancer (Supplementary Table S1). In these data, the estimated AUC was 0.59 (Fig. 4C) with a mean AUC of 0.57 after 10-fold cross-validation (Supplementary Fig. S3C; 95% CI = 0.283–0.817, IQR = 0.483–0.683). When the sensitivity was 0.2
Table 2. Selection of significant Neu5Gc-glycans for validation testing

<table>
<thead>
<tr>
<th>Glycan no.</th>
<th>Compound</th>
<th>Cross-validated mean AUC: training data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Neu5Gc9Ac2-3Galβ1-4GlcNAcβ1-ProNH2</td>
<td>0.63 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>4</td>
<td>Neu5Gc9Ac2-6GalNAcβ1-ProNH2</td>
<td>0.64 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>6</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.46 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>8</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.37 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>10</td>
<td>Neu5Gc9Ac2-3Galβ1-4GlcNAcβ1-ProNH2</td>
<td>0.52 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>12</td>
<td>Neu5Gc9Ac2-3Galβ1-4GlcNAcβ1-ProNH2</td>
<td>0.53 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>14</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.54 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>16</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.48 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>18</td>
<td>Neu5Gc9Ac2-6Galβ1-4GlcNAcβ1-ProNH2</td>
<td>0.59 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>20</td>
<td>Neu5Gc9Ac2-6Lacβ1-ProNH2</td>
<td>0.51 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>22</td>
<td>Neu5Gc9Ac2-3Galβ1-4Glcβ1-ProNH2</td>
<td>0.51 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>24</td>
<td>Neu5Gc9Ac2-6GalNAcβ1-ProNH2</td>
<td>0.51 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>26</td>
<td>Neu5Gc9Ac2-3Galβ1-ProNH2</td>
<td>0.54 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>28</td>
<td>Neu5Gc9Ac2-6Galβ1-ProNH2</td>
<td>0.54 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>30</td>
<td>Neu5Gc9Ac2-3Galβ1-ProNH2</td>
<td>0.30 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>32</td>
<td>Neu5Gc9Ac2-3Galβ1-ProNH2</td>
<td>0.30 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>34</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.57 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>36</td>
<td>Neu5Gc9Ac2-3Galβ1-3GlcNAcβ1-ProNH2</td>
<td>0.41 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>38</td>
<td>Neu5Gc9Ac2-6Galβ1-4Glcβ1-ProNH2</td>
<td>0.54 (57 cases, 25 controls)</td>
</tr>
<tr>
<td>40</td>
<td>Neu5Gc9Ac2-3Galβ1-4Glcβ1-ProNH2</td>
<td>0.51 (57 cases, 25 controls)</td>
</tr>
</tbody>
</table>

NOTE: For each glycan, the 2 antibody response summary variables α and β, obtained from a mixed-effects model, were used to discriminate cases from controls using logistic regression. ROC curves and corresponding AUCs were calculated for 500 10-fold cross-validation runs. Glycans with mean AUC above 0.55 (2, 6, 20, and 34) were selected as the glycans of interest to carry into validation. ProNH2 = O(CH2)2CH2NH2.

and 0.3, the estimated mean specificity was 0.89 (95% CI = 0.50–1.00) and 0.81 (95% CI = 0.33, 1.00), respectively (Supplementary Fig. S3C). Univariate logistic regression of glycan 6 according to cancer type (Supplementary Table S3) revealed predictive value in carcinomas from prostate, ovarian, lung, and endometrium, whereas it was not correlated with colon and pancreatic cancers; however, the number of cases tested in each of these cancers was very small, hence conclusions based on these small size results should be made with caution.

In summary, an unbiased glycan-microarray approach and a relatively large set of human sera allowed stringent statistical analysis to indicate that antibodies to glycan 6 show promise to classify cancer cases from controls with relatively high specificity (true negative), albeit with low sensitivity (true positive).

Novel biological rationale supports anti-GcSTn IgG as a unique human carcinoma-associated biomarker

Interestingly, glycan 6 resembles the carcinoma-associated biomarker Sialyl-Tn (STn; Neu5Acα2-3Galβ1-4GlcNAcβ1-O-Ser/Thr), except that Neu5Ac is replaced with Neu5Gc (GcSTn; Neu5Gcα2-6GalNAcβ1-O-Ser/Thr). STn is quite rare in normal mouse (35) or human tissues (36–38) or is cryptic due to Sia O-acetylation (39). In contrast, STn is relatively tumor specific and abundant in many carcinomas (37) including those of the colon (39), ovary (40), breast (41), and pancreas (42). This high cancer specificity is attributed to somatic mutations in Cosmc, the X-chromosome–encoded chaperone (Fig. 4D; refs. 43, 44). This leads to a loss of T-synthase activity and inability to modify the Tn precursor (GalNAcβ1-O-Ser/Thr) with β1–3-linked Gal for further O-glycan elongation, shifting the pathway toward Tn (43, 44), and in the presence of ST6GalNAc1 (45), toward STn expression (Fig. 4D). This mutation is particularly common in human carcinomas (36, 44). Thus, dietary Neu5Gc consumption by cancer patients could replace the terminal Neu5Ac of STn by Neu5Gc, generating the novel xeno-autoantigen GcSTn, along with its corresponding specific anti-GcSTn antibodies (Fig. 4D), as novel carcinoma biomarker (based on ~ 400 carcinoma patients and controls). These steps likely occur at an early tumor stage suggesting anti-GcSTn antibodies may potentially be useful for early detection, or future risk, of carcinomas.

Antibody-mediated CDC and ADCC of human malignant cells expressing surface GcSTn

To further explore the immunotherapeutic potential of anti-GcSTn IgG, we used Jurkat T cells, which express STn...
due to a Cosmc mutation and an active ST6GalNAc-I, the enzyme capping the Tn antigen with Sia (43, 44). These cells were fed with Neu5Gc, mimicking the in vivo diet-related exchange of Neu5Ac with Neu5Gc to generate GcSTn, confirmed by the metabolic-incorporation of Neu5Gc (Fig. 5A), and cell-surface expression with either terminal Neu5Ac or Neu5Gc (STn or GcSTn on Neu5Ac or Neu5Gc fed cells, respectively; Fig. 5A and Supplementary Fig. S4). Subsequently, we tested in vitro human-tumor killing with human serum (S34) or affinity-purified human anti-Neu5Gc IgG, both rich with anti-GcSTn reactivity (recognizing Neu5Gcα2–6GalNAc; Fig. 3B and Fig. 1, respectively), revealing that both could promote CDC in a Neu5Gc-specific manner (Fig. 5B). Human serum S34 was previously quantified to have anti-GcSTn IgG in contrast to S30, which has very low levels of anti-Neu5Gc IgG (5). Indeed, human serum S34 could promote Neu5Gc-specific ADCC, in contrast to human serum S30 (Fig. 5C). However, when human serum S30 was supplemented with the affinity-purified human anti-Neu5Gc IgG (100 ng/mL), both could promote CDC in a Neu5Gc-specific manner (Fig. 5B and C).
mL) it could promote ADCC in a Neu5Gc-specific manner (Fig. 5C). These results show anti-GcSTn antibodies as potential novel immunotherapeutic antibodies against tumors expressing GcSTn.

Discussion

The immune system can either promote tumor progression or destruction depending on the balance between these opposing pathways, mediated by innate and adaptive immunity (11, 15, 46). We show here that xeno-autoantibodies against an immunogenic non-human dietary xeno-autoantigen can mediate tumor growth inhibition, and serve as a potential biomarker for early carcinoma detection. The effects of anti-Neu5Gc IgG are dose dependent: whereas high-affinity antibodies administered at low dose can promote tumor growth (9), we show that higher doses skew the response toward tumor regression. This dose-dependent efficacy for xeno-autoantibodies warrants further testing, especially to determine the range of concentrations by which the tumor response is shifting from stimulatory to inhibitory, thereby establishing a "safe" concentration range to be used as therapeutic. These findings may also be relevant to the significant variability observed among patients' responses to current monoclonal antibody immunotherapy (13), perhaps explaining some cases of shift in patient response toward tumor immunoescape or stimulation (13). Similar issues are potentially relevant to the use of cancer vaccines, including current clinical trials of vaccinations with STn-glycopeptides (47), Neu5Gc-GM3, or anti-idiotype antibodies against it (48).

Underglycosylation due to incomplete O-linked glycosylation can occur in some nonmalignant events such as lactational mastitis and endometriosis, but it is much more common in cancer (1), specifically resulting in tumor-associated expression of the STn antigen in many carcinomas (37) that is rare in normal human tissues (36–39). In addition to
STn, the most common cancer-associated sialosides are sialyl-Le\[^a\:]. [Neu5Acα2–3Galβ1–4(Fucα1–3)GlcNAc] and its regio-

somer sialyl-Le\[^b\]: [Neu5Acα2–3Galβ1–3(Fucα1–4)GlcNAc; and 9-O-acetyl–GD1 (Neu5Acα₂–8Neu5Acα₂–3Galβ1–

4Glcβ1–1Ceramide: ref. 1)]. Here we suggest that dietary

Neu5Gc can metabolically replace Neu5Ac in STn, generating

the unique neo-tumor-associated xeno-autoantigen GcSTn, specifically recognized by xeno-autoantibodies. To our knowl-

dge, this is the first cancer biomarker related to metabolically

incorporated immunogenic dietary molecule. It is likely that

Neu5Gc can replace Neu5Ac in other tumor-associated

glycan structures, thereby generating other novel biomarkers,

e.g. Gc-sialyl-Le\[^a\]. As high doses of the same antibody biomarker

can attenuate tumor growth, such xeno-autoantibodies might

also be harnessed as novel cancer immunotherapeutics.

Novel serum biomarkers for cancer screening are needed,
since current ones lack sufficient sensitivity and especially
specificity for early diagnosis (18, 19), being reliably detected
mainly in advanced stages, and thus used more for prognosis,
staging, monitoring, and therapy selection (18). Although antibodies against tumor-associated antigens are commonly
found in cancer patients at an early stage and could potential-

ly be sensitive detectors for malignant transformation (21,

22), none of the previously described autoantibodies show
sufficient specificity in screening. Here we show that anti-

GcSTn IgG is a potentially useful biomarker for early detection
of carcinomas, with an estimated AUC of 0.6 (breast cancer
validation data). Prostate-specific antigen (PSA) is one of the
most common protein-based screens for cancer today. In the
10-year Prostate Cancer Prevention Trial (PCPT), the AUC for
PSA alone was 0.678 (95% CI = 0.666–0.689; ref. 33), and
further validated by others ranging 0.525 to 0.678 (34). Two

risk calculators to predict individual risk of a positive biopsy
(in the context of other factors) have recently been developed,
providing some improvement of AUC (34). In any case, PSA

assay sensitivity is mostly based on detection of pseudo-

disease thereby leading to an AUC that overestimates the

benefit of PSA screening (20).

In summary, we use a unique sialoglycan microarray to

describe antibodies against a diet-related antigen as a novel
type of human serum carcinoma biomarker. Such antibodies
could also mediate human tumor killing in vitro as well as in vivo.
This establishes the new concept that a diet-derived antigen can metabolically incorporate into tumors, generating
a novel antigen detected by the immune system. Eventually,
these antibodies can be harnessed for immunotherapy when
used at the appropriate dose. Given the frequency of altered
sialylation in cancer, these concepts have general potential for
other important discoveries.

Disclosure of Potential Conflicts of Interest

A. Varki is a cofounder of Sialix, Inc. (formerly Gc-Free, Inc.). N. Hurtado-Ziola and D. Ghaderi are currently employees of Sialix, Inc. The other authors disclosed no potential conflicts of interest.

Acknowledgments

The authors thank Dr. Jane Burns, UCSF Pediatrics, Rady Children’s Hospital, for remnant clinical IV Ig; and Rene Chow and Prof. Nissi Varki, Department of Pathology, UCSD, for assistance with mouse tumor experiments.

Grant Support

This work was supported by ISEF postdoctoral fellowship (V. Padler-Karavani), NIH grant U01 CA128442 (A. Varki), NCI SBIR contract HHSN26120070063C (N. Hurtado-Ziola) and R01GM076360 (X. Chen), and a Tower Cancer Research Foundation, Ronnie Lippin Fund, Grant (R.B. Schwab).

This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 12, 2010; revised February 14, 2011; accepted March 7, 2011; published OnlineFirst April 19, 2011.

References

5. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflam-

11. Prehn RT, Prehn LM. The flip side of immune surveillance: immune

Human Xeno-Autoantibodies against a Non-Human Sialic Acid Serve as Novel Serum Biomarkers and Immunotherapeutics in Cancer

Vered Padler-Karavani, Nancy Hurtado-Ziola, Minya Pu, et al.

Cancer Res 2011;71:3352-3363. Published OnlineFirst April 19, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-4102

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/04/15/0008-5472.CAN-10-4102.DC1

Cited articles
This article cites 47 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/9/3352.full.html#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at:
/content/71/9/3352.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.