Phosphoproteomics Identifies Driver Tyrosine Kinases in Sarcoma Cell Lines and Tumors
Yun Bai, Jiamong Li, Bin Fang, Arthur Edwards, Guodin Zhang, Marilyn Bui, Steven Eschrich, Soner Altiero, John Koomey, and Eric B. Haura

Precis: Global assessment of tyrosine phosphorylation, coupled with functional screens, is used to identify tyrosine kinases driving cell growth and survival in sarcoma, thereby offering insight into new therapeutic strategies for these deadly tumors.

AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer
Yoon Hui Kim, Han Liang, Xiuping Liu, Ju-Seog Lee, Jae Yong Cho, Jae-Ho Cheong, Hognuen Kim, Min Li, Thomas J. Downey, Matthew D. Dyer, Yongming Sun, Jingtao Sun, Ellen M. Beasley, Hyun Cheol Chung, Sung Hoon Noh, John N. Weinstein, Chang-Gong Liu, and Garth Powis

Precis: The requirement for c-Src in tumor invasion evoked by oncogenic Ras has implications for the development of therapies to target the Ras pathway, long a goal of the field.

Cyclophosphamide Creates a Receptive Microenvironment for Prostate Cancer Skeletal Metastasis
Serk In Park, Jinhui Liao, Janice E. Berry, Xiaoming Li, Amy J. Kob, Megan E. Michalski, Matthew R. Eber, Fabiana N. Soki, David Sadler, Sudha Sud, Sandra Tisdelle, Stephanie D. Daignault, Jeffrey A. Nemeth, Linda A. Snyder, Thomas J. Wronska, Kenneth J. Pienta, and Laurie K. McCauley

Precis: The chemotherapeutic drug cyclophosphamide, used in the treatment of many kinds of cancer, is found unexpectedly to exert a prometastatic effect within bone.
Hepatocyte–Stellate Cell Cross-Talk in the Liver Engenders a Permissive Inflammatory Microenvironment That Drives Progression in Hepatocellular Carcinoma
Cédric Coulouarn, Anne Corlu, Denise Glaise, Isabelle Guénon, Snorri S. Thorgeirsson, and Bruno Clément

Précis: Molecular characterization of the cross-talk between cell types in the liver plays a major role in the progression of hepatocellular carcinoma and may offer novel therapeutic targets for epigenetic modulation.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Parkin Pathway Activation Mitigates Glioma Cell Proliferation and Predicts Patient Survival

Précis: This study provides mechanistic insight into the tumor suppressor function of parkin, a gene that is often mutated in genetic Parkinson disease, but is shown here to play a role in the pathogenesis of gliomas.

KRas Induces a Src/PEAK1/ErbB2 Kinase Amplification Loop That Drives Metastatic Growth and Therapy Resistance in Pancreatic Cancer
Jonathan A. Kelber, Theresa Reno, Sharmeeal Kaushal, Cristina Metlidí, Tracy Wright, Konstantin Stoleтов, Jessica M. Weems, Frederick D. Park, Evangeline Mose, Yingchun Wang, Robert M. Hoffman, Andrew M. Lowy, Michael Bouvet, and Richard L. Klemke

Précis: In serving as a novel diagnostic and prognostic biomarker in pancreatic ductal carcinoma, the novel tyrosine kinase PEAK1 may mediate cancer progression and multiple therapy-resistant phenotypes and thus represents an important new therapeutic target.

Mitochondrial Bcl-2 Family Dynamics Define Therapy Response and Resistance in Neuroblastoma
Kelly C. Goldsmith, Michelle Gross, Susan Peirce, Dema Luyindula, Xuexuan Liu, Annette Vu, Michael Slozberg, Bong Guo, Huaqing Zhao, C. Patrick Reynolds, and Michael D. Hogarty

Précis: Mitochondrial profiling reveals that acquired therapy resistance in neuroblastoma is due to repression at the level of Bax/Bax-mediated apoptosis, and this may offer a basis to stratify patients who could benefit most from treatment with Bcl-2/Bcl-xL antagonists.

Loss of Cell-Surface Laminin Anchoring Promotes Tumor Growth and Is Associated with Poor Clinical Outcomes
Armin Akhavan, Obi L. Griffin, Liliana Soroceanu, Dmitri Leonoudakis, Maria Gloria Luciani-Torres, Anneleen Daemen, Joe W. Gray, and John L. Muschler

Précis: Defects in the cell surface anchoring of laminin in cancer cells of diverse origin is common and strongly associated with aggressive phenotypes, suggesting a common tethering point to understand how laminins in the tumor microenvironment direct malignant progression, as well as how novel generalized therapies might be directed to this aspect.

Interleukin-17 Promotes Formation and Growth of Prostate Adenocarcinoma in Mouse Models
Quyang Zhang, Sen Liu, Dongxia Ge, Qingsong Zhang, Yun Xue, Zhenggang Xiong, Asim B. Abdel-Mageed, Leann Myers, Steven M. Hill, Brian G. Rowan, Oliver Sartor, Jonathan Melamed, Zhenbang Chen, and Zongheng You

Précis: Findings in a mouse model of prostate cancer indicate that proinflammatory cytokine IL-17 drives the transition of premalignant lesions to frank adenocarcinoma, suggesting a molecular mechanism to underpin the concept that reducing prostate inflammation could help prevent emergence of this disease.

Dinitroazetidines Are a Novel Class of Anticancer Agents and Hypoxia-Activated Radiation Sensitizers Developed from Highly Energetic Materials
Shoucheng Ning, Mark BednarSKI, Bryan Oronsky, Jan Scicinski, Gordon Saul, and Susan J. Knox

Précis: Findings characterize a novel compound based on a highly energetic chemical scaffold that selectively targets hypoxic tumors and enhances the effects of radiotherapy.

Coxsackievirus B3 Is an Oncolytic Virus with Immunostimulatory Properties That Is Active against Lung Adenocarcinoma
Shohei Miyamoto, Hirohiko Inoue, Takahumi Nakamura, Meiko Yamada, Chika Sakamoto, Yasuo Urata, Toshihiko Okazaki, Tomotoshi Marumoto, Atsushi Takahashi, Koichi Takayama, Yoichi Nakanishi, Hiroyuki Shimizu, and Kenzaburo Tani

Précis: While oncolytic viruses have failed as yet to realize clinical potential, this study defines a potent virus that by exerting adjuvant immunostimulatory properties may yield a unique and more effective antitumor activity.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2622</td>
<td>Activation of Ras/PI3K/ERK Pathway Induces c-Myc Stabilization to Upregulate Argininosuccinate Synthetase, Leading to Arginine Deiminase Resistance in Melanoma Cells</td>
<td>Wen-Bin Tsai, Isamu Aiba, Yan Long, Hui-Kuan Lin, Lynn Feun, Niramol Savaraj, and Macus Tien Kuo</td>
</tr>
<tr>
<td></td>
<td>Precis: Findings offer mechanistic insight into how resistance emerges to arginine deprivation therapy and how inhibitors of the Ras/ERK and PI3K/AKT pathways might restore therapeautic responses.</td>
<td></td>
</tr>
<tr>
<td>2634</td>
<td>Mitochondria-Targeted Drugs Synergize with 2-Deoxyglucose to Trigger Breast Cancer Cell Death</td>
<td>Gang Cheng, Jacek Zielonka, Brian P. Dranka, Donna McAllister, A. Craig Mackinnon Jr, Joy Joseph, and Balaraman Kalyanaraman</td>
</tr>
<tr>
<td></td>
<td>Precis: This important study may crack the long-standing challenge of how to employ the glycolytic inhibitor 2-deoxyglucose for generalized anticancer therapy, by combining it with mitochondria-targeted cationic compounds that can improve cancer cell cytotoxicity without toxic liabilities to normal tissue.</td>
<td></td>
</tr>
<tr>
<td>2645</td>
<td>Smac Mimetic LBW242 Sensitizes XIAP-Overexpressing Neuroblastoma Cells for TNF-α-Independent Apoptosis</td>
<td>Georg Eschenburg, Angelika Eggert, Alexander Schramm, Holger N. Lesle, and Patrick Hundsdorfer</td>
</tr>
<tr>
<td></td>
<td>Precis: Smac mimetics offer a potential adjuvant approach to sensitize or resensitize tumors to chemotherapy, as illustrated by this preclinical proof-of-concept study in a commonly deadly type of pediatric cancer.</td>
<td></td>
</tr>
</tbody>
</table>

ABOUT THE COVER

Interleukin-17 (IL-17) is a key proinflammatory cytokine involved in many inflammatory and autoimmune diseases. Mice with conditional knockout of PTEN tumor suppressor gene developed invasive prostate adenocarcinomas at ages of 9 to 30 weeks. When IL-17 signaling was blocked by knockout IL-17 receptor C (IL-17RC) in the PTEN-null mice, the number and size of prostate tumors were reduced compared to mice that expressed IL-17RC, because IL-17RC knockout reduced cellular proliferation, increased apoptosis, inhibited inflammatory infiltration, and diminished expression of matrix metalloproteinase 7 in the mouse prostates. For details, see article by Zhang and colleagues on page 2589 of this issue.

TUMOR AND STEM CELL BIOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2657</td>
<td>Epidermal Growth Factor Receptor Variant III Contributes to Cancer Stem Cell Phenotypes in Invasive Breast Carcinoma</td>
<td>Catherine A. Del Vecchio, Kristin C. Jensen, Ryan T. Nitta, A. Hunter Shain, Craig P. Giacomini, and Albert J. Wong</td>
</tr>
<tr>
<td></td>
<td>Precis: By identifying breast cancer stem cells that express a variant EGFR receptor, this study has implications for how to improve treatment for patients who harbor this variant receptor.</td>
<td></td>
</tr>
<tr>
<td>2672</td>
<td>HER3 is Required for HER2-Induced Preneoplastic Changes to the Breast Epithelium and Tumor Formation</td>
<td>David B. Vaught, Jamie C. Stanford, Christian Young, Donna J. Hicks, Frank Wheeler, Cammie Rinehart, Violeta Sánchez, John Koland, William J. Muller, Carlos L. Arteaga, and Rebecca S. Cook</td>
</tr>
<tr>
<td></td>
<td>Precis: Findings offer a preclinical proof-of-concept for a new strategy to treat or prevent HER2-amplified breast cancers, which represent nearly 30% of all breast cancers, by targeting an important heterodimeric partner of HER2.</td>
<td></td>
</tr>
</tbody>
</table>

Real-Time Monitoring of Rare Circulating Hepatocellular Carcinoma Cells in an Orthotopic Model by In Vivo Flow Cytometry Assesses Resection on Metastasis

Zhi-Chao Fan, Jun Yan, Guang-Da Liu, Xiao-Ying Tan, Xiao-Fu Weng, Wei-Zhong Wu, Jian Zhou, and Xun-Bin Wei

Precis: In vivo flow cytometry may offer a breakthrough technology to elucidate mechanisms of hematogenous metastasis and to monitor the efficacy of cancer therapy.
Cancer Research

72 (10)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/10

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.