Loss of Cell-Surface Laminin Anchoring Promotes Tumor Growth and Is Associated with Poor Clinical Outcomes

Armin Akhavan1, Obi L. Griffith2, Liliana Soroceanu1, Dmitri Leonoudakis1, Maria Gloria Luciani-Torres1, Anneleen Daemen2, Joe W. Gray2,3,4, and John L. Muschler1,3

Abstract
Perturbations in the composition and assembly of extracellular matrices (ECM) contribute to progression of numerous diseases, including cancers. Anchoring of laminins at the cell surface enables assembly and signaling of many ECMs, but the possible contributions of altered laminin anchoring to cancer progression remain undetermined. In this study, we investigated the prominence and origins of defective laminin anchoring in cancer cells and its association with cancer subtypes and clinical outcomes. We found loss of laminin anchoring to be widespread in cancer cells. Perturbation of laminin anchoring originated from several distinct defects, which all led to dysfunctional glycosylation of the ECM receptor dystroglycan. In aggressive breast and brain cancers, defective laminin anchoring was often due to suppressed expression of the glycosyltransferase LARGE. Reduced expression of LARGE characterized a broad array of human tumors in which it was associated with aggressive cancer subtypes and poor clinical outcomes. Notably, this defect robustly predicted poor survival in patients with brain cancers. Restoring LARGE expression repaired anchoring of exogenous and endogenous laminin and modulated cell proliferation and tumor growth. Together, our findings suggest that defects in laminin anchoring occur commonly in cancer cells, are characteristic of aggressive cancer subtypes, and are important drivers of disease progression. Cancer Res; 72(10): 2578–88. ©2012 AACR.

Introduction
The heterogeneity of cancers is evident by a growing list of genetic and epigenetic changes that perturb cell regulatory networks. Among these changes are regulatory defects that alter the interaction of cells with their microenvironment, leading to a loss of normal tissue architecture, invasion of surrounding tissues, and metastasis (1). Extracellular matrices (ECM) are prominent and influential components of the cellular microenvironment in both normal and cancerous tissues, and changes in the expression, deposition, cross-linking, and degradation of ECM components have been clearly implicated in the progression of cancers (2–6).

Normal cell–ECM communications are modulated not only by the presence of ECM ligands and receptors but also by the higher order assembly of ECM components into multimeric complexes. Many widely expressed ECM molecules, including fibronectins, collagens, fibrillins, and laminins are assembled into polymers. These assembly processes modulate the architecture of the matrices, and their biophysical and signaling properties, with direct consequences on cell function and tissue organization (7, 8). Therefore, changes in the ordered assembly of ECM molecules have the potential to strongly modulate cancer cell behavior.

Assembly of laminin isoforms into polymeric arrays across cell surfaces is believed to initiate the higher order organization of basement membranes (BM), with resulting impact on BM integrity and signaling functions (7, 9). This assembly takes place via interactions of the laminin side arms and is receptor-facilitated wherein anchoring of the laminin’s C-terminal domains to the cell surface initiates polymerization (10). Multiple laminin receptors have been implicated in this process of receptor-facilitated assembly including the integrins, dystroglycan, and sulfatides (10–14). Cues from laminins modulate several cellular homeostatic functions in normal cells, which are often found deregulated in carcinomas, including cell proliferation, adhesion, migration, differentiation, cell polarity, responsiveness to soluble factors, and angiogenesis (15–18). In functionally normal epithelial cells, loss of laminin anchoring alone leads to loss of cell polarity signals and tissue-specific gene expression (13). Laminins have also been proposed to regulate resistance of cancer cells to therapeutic agents and apoptotic stimuli (19, 20). The effect of laminins on these many cell functions underscores the potential influence of deregulated laminin anchoring and assembly on cancer progression, from the growth and invasion of cancers to therapeutic responsiveness.
In this study, we investigate the prevalence of defective laminin anchoring, and the underlying causes, in cancer cells of distinct subtypes and tissue origins. We report that defective laminin anchoring is a prominent phenotype of cancer cells, caused by multiple distinct mechanisms. The most common of these defects is identified as reduced expression of the glycosyltransferase like-acetylglucosaminyltransferase (LARGE). Loss of LARGE expression is found to be a surrogate marker for the loss of laminin anchoring and leads to enhanced cell proliferation and tumor growth. Reduced expression of LARGE is evident in diverse human cancers and associated with more aggressive tumor subtypes and decreased patient survival. These results reveal that inability to anchor laminin is a prevalent malignant phenotype, is associated with poor clinical outcomes, and is a potential target for the modulation of aggressive cancer cell behavior.

Materials and Methods

Molecular biology and viral transduction assays

Standard molecular biology methods were used (as detailed in Supplementary Information). Briefly, LARGE and β3-X-acetylglucosaminyltransferase-1 (β3GnT1) were cloned into the retroviral vector pBMIN-RES-Puro or adenoviral pShuttle vector (provided by Dr G. Inesi, CPMcRL, San Francisco) for generation of pAdeasy-LARGE that was transfected into HEK 293 cells. Viral particles were plaque-purified, amplified, and further purified by CsCl density gradient. Retroviral infections were achieved as previously described (13).

Generation and maintenance of cells in culture

All cancer cell lines used in this study were obtained from the American Type Culture Collection (ATCC) or from collections developed in the laboratories of Drs. Steve Ethier (Wayne State University, Detroit, Michigan) and Adi Gazdar (University of Texas Southwestern Medical Center, Dallas, Texas) and have been carefully controlled for quality and identity as previously described (21). Primary normal human breast cells were obtained as a generous gift from Dr. Martha Strampfer (LBNL, Berkeley, California). The generation of immortalized floxed DG mouse mammary epithelial cells (Floxed-DG), knockout of DG (DG−/−), and reexpression of DG (DG+/+) or vector control has been previously described (13). The same method was used to generate the immortalized floxed-B1 integrin and B1 integrin knockout (B1−/−) mouse mammary epithelial cells.

Laminin assembly, immunofluorescence, and biochemical assays

Laminin labeling, laminin assembly, immunofluorescence, and biochemical assays were carried out as previously described (13) and detailed in Supplementary Information. For surface labeling, samples were directly stained with primary antibody in growth media at 4°C for 90 minutes before fixation and permeabilization.

Cell proliferation and cell-cycle analysis

MTT Cell Proliferation Assay was used according to manufacturer’s protocol (ATCC). Percent increase in cells proliferation was calculated by the formula (dx-d1/d1) × 100. Data obtained from MTT assay was confirmed by counting cells seeded on 6-well plates.

Cell-cycle assessment was done by flow cytometry. Briefly, cells were labeled with 10 μmol/L bromodeoxyuridine (BrdUrd), fixed in 70% ethanol, and stained with an anti-BrdUrd antibody, fluorescein isothiocyanate–conjugated secondary, counterstained with propidium iodide (PI), and analyzed by FACScan. Treatments with laminin fragments E1 and E4 were done 24 hours before labeling with BrdUrd at 40 μg/mL and 20 μg/mL, respectively.

Orthotopic xenografts

One million cells were injected into mammary fat pad of 6 to 8 weeks old female Balb/c nu/nu mice (Harlan). Tumor size was evaluated every other day, and tumor volume was calculated using the formula Length × Width^2/2 and graphed (7 mice per group).

Bioinformatic analysis

LARGE expression in primary tumor versus normal tissue was compared using data deposited on Oncomine website (www.oncomine.com). Normalized mean gene expression levels for LARGE (Affymetrix 215543_s_at) in 36 human glioblastoma samples were obtained from a previous study (22). Kaplan–Meier survival plots for 343 glioma samples were obtained from data deposited in the Repository of Molecular Brain Neoplasia Data (Rembrandt), National Cancer Institute (2005), accessed July 21, 2011 (http://rembrandt.ncia.nih.gov).

Whole transcriptome shotgun sequencing (RNA-seq) was done on the Illumina GAI II system using standard protocols as previously described (23), and analysis was done with the ALEXA-seq software package (24). An average of 7.48 million (76 bp paired end) reads passed quality control per sample. Subtype-specific expression was determined by Wilcoxon signed rank test. Genes were considered differentially expressed if they displayed fold change greater than 2 and had a P value less than 0.05 after multiple testing corrections by Benjamini–Hochberg method. The MD Anderson (GSE25066A) dataset of breast cancers was screened to verify subtype-specific expression of LARGE in tumors based on subtypes assigned by Hatzis and colleagues (25). Analysis of the TCGA dataset appears in the Supplementary Materials.

Results

Defects of laminin-111 anchoring are a prominent feature of human breast cancer cells

We assessed the capacity of cancer cells to anchor and assemble laminins at the cell surface, focusing first on breast cancer cells as a model system. To accomplish this, we used a well-established assay wherein cells incubated with exogenous laminin-111 are examined for accumulation of laminin on the cell surface (12, 13, 26, 27). In functionally normal mammary epithelial cell lines and primary cultures, fluorescently labeled laminin-111 (β-Ln) accrued at the surface of living cells within minutes, beginning at discreet foci, and continued to accumulate over several hours (Fig. 1 A; refs. 13, 26). However, whereas some breast cancer cells displayed normal anchoring
Absence of laminin anchorage is a cell autonomous defect in breast cancer cells. A, normal primary human mammary epithelial cells (pHMEC) and breast cancer cell lines were treated with fl-Ln overnight and imaged by phase (left) and fluorescence (right) microscopy. B, immunofluorescence staining of total and surface-bound endogenous laminin in breast cancer cell lines revealed laminin expression in all cells, but an absence of surface-bound laminin in MDA-MB-231 (MDA231) cells. C, T47D cells and GFP-expressing MDA-MB-231 cells were cocultured, treated with fl-Ln overnight, and imaged by phase (left) and fluorescence (right) microscopy. The morphologically distinct T47D cells (white arrows) retained the capacity for anchorage of fl-Ln (red, right), whereas the MDA-MB-231 cells (green, right) remained anchorage deficient. Bars, 25 μm.

and assembly of fl-Ln, others showed no detectable fl-Ln at the cell surface, even after 24 hours incubation (Fig. 1A). The same defect was observed when assaying for assembly of endogenous laminin at the cell surface by immunofluorescence (Fig. 1B). We then asked whether the variable capacity of cells to anchor laminin is reliant on inherent cell properties or on secreted factors transferable from neighboring cells, such as proteolytic enzymes or inhibitory peptides. Treatment of cells with the broad-spectrum metalloproteinase inhibitor GM6001 did not restore laminin assembly at the cell surface (data not shown). Furthermore, in coculture experiments in which MDA-MB-231 cells were mixed with T47D cells, fl-Ln anchoring was again observed uniquely on the T47D cells (Fig. 1C). These data suggested that the ability to anchor laminin is cell autonomous and heterogeneous among cancer cells, likely arising from differences in laminin receptor functions.

We determined the prevalence and origins of defective laminin anchoring among cancer cells by testing a large panel of human breast cancer cell lines for their ability to anchor fl-Ln. This particular panel of cancer cell lines has been developed as a model system displaying a molecular heterogeneity resembling that observed in human breast cancers (21, 23). A key advantage of testing this panel of cancer cells is the large collection of gene expression and genomic data that has been assembled for these cell lines, which permits rapid in silico exploration of the molecular mechanisms underlying cellular phenotypes (21, 28). Less than 30% of the 29 cell lines tested exhibited clear fl-Ln binding, as revealed by the accumulated fluorescence signal at the cell surface (Fig. 2A). In the other lines, the fluorescent signal was either entirely absent (15 of 29) or it was detected in only a small subpopulation of cells (Fig. 2A). The majority of cell lines displaying defects of laminin anchoring fell within the basal-like subtypes (summarized in the Supplementary Table S1). Taken together, these data indicated that defects of laminin anchoring are prevalent in human breast cancer cells.

DG, not integrins, is required for anchoring of laminin-111 in mammary epithelial cells

Numerous laminin-binding receptors have been identified as potential mediators of laminin anchoring, including DG, integrins, and sulfatides (11–14, 27). We sought to identify changes in gene expression that could explain the loss of laminin assembly among these cell lines by interrogating the comprehensive gene expression data generated from this cell line panel by massively parallel RNA-sequencing (RNA seq; ref. 25). None of the known laminin receptor genes exhibited a loss of gene expression that correlated with loss of laminin anchoring, including DG and the integrin subunits β1, β4, α1, α2, α3, α6, α7, α8, and α9 (Supplementary Fig. S1). Likewise, genes encoding enzymes essential for sulfatide synthesis exhibited generally low or undetectable expression among both luminal and basal-like carcinoma cells (Supplementary Fig. S1). Therefore, the defect of breast cancer cells to anchor laminin was not associated with variable expression of known laminin receptors.

Deletion of the DG gene from mammary epithelial cells and embryonic stem cells abolishes laminin-111 anchoring, and DG may carry out this function in cooperation with β1 integrins (13, 26, 27). We directly tested the requirement for β1 integrin heterodimers in laminin-111 anchoring by eliminating their expression through deletion of the shared β1 integrin subunit by Cre-lox recombination in mammary epithelial cells established from β1 integrin fl/fl mice (Supplementary Fig. S2A). Ln anchoring in the β1−/− cells was comparable with control cells, showing that β1 integrin function is not essential for laminin-111 anchoring (Supplementary Fig. S2B). In contrast; deletion of DG completely abrogated laminin anchoring in normal mammary epithelial cells (Supplementary Fig. S2B).

Dysfunction of DG correlates with deficient laminin-111 anchoring in human breast cancer cells

The interaction of DG with laminins is reliant on O-linked carbohydrate modifications of the 6-DG mucin domain, making altered glycosylation of DG a potential modulator of laminin anchoring (29). Defects of DG glycosylation cause loss of DG function in some muscular dystrophies (29), and similar defects have been observed in cancer cell lines (30–33). We
assessed the glycosylation state of DG within the breast cancer cell line panel by carrying out Western blot analysis using a well-characterized monoclonal antibody (IIH6) that binds to critical carbohydrate residues on α-DG that are required for binding to laminin. The vast majority of these cell lines (more than 70%) did not display any IIH6 immunoreactivity (Supplementary Fig. S3A). In contrast, the immunoblot analysis of β-DG subunit confirmed strong expression of the DG protein (Supplementary Fig. S3B). There is a strong correlation between the IIH6 immuno-reactivity and ability to anchor fl-Ln across the collection of human breast cancer cell lines tested (Supplementary Table S1). All 15 cell lines deficient in laminin anchoring lacked IIH6 immunoreactivity. In aggregate, these results revealed that abnormal glycosylation of α-DG correlates strongly with the inability of human breast cancer cells to anchor laminin-111 and suggest that hypoglycosylation of DG is causative.

Deficient expression of LARGE is the predominant, but not exclusive, cause of loss of laminin anchoring in breast cancer cells

Genetic studies of congenital muscular dystrophies in humans have identified 6 genes that modulate DG glycosylation:...
POMT1, POMT2, POMGnT1, LARGE, FKTN, and FKRP (29, 34). More recently, β3GNT1 has been implicated in DG glycosylation (31). RNA-seq expression data for the cell lines revealed minimal variation in mRNA expression of these genes (Supplementary Fig. S4A), with the sole exception of LARGE (Fig. 2B and Supplementary Fig. S4B). LARGE expression levels were highly variable across the breast cancer cell lines and significantly higher in luminal lines compared with basal types ($P = 6.696 \times 10^{-5}$; Fig. 2C).

Cell lines exhibiting decreased expression of LARGE (indicated by white bars in Fig. 2B) were unable to anchor laminin-111 and did not display IIH6 immunoreactivity. These data indicated that loss of laminin anchoring in these cells is caused by reduced expression of LARGE and dysfunctional glycosylation of DG. This hypothesis was directly tested in these cells by reexpression of LARGE. Restoring expression of LARGE by viral transduction repaired fl-Ln anchoring at the cell surface in all 10 cell lines that lack endogenous LARGE expression (Fig. 3A). Consistently, in parallel with repairing laminin-binding, LARGE expression also restored IIH6 immunoreactivity (Fig. 3B).

Apart from loss of LARGE expression, at least two additional defects can cause the loss of laminin anchoring in breast cancer cells

Cell lines CAMAI, MCF7, HCC1954, and BT549 showed defects in laminin anchoring and DG glycosylation that were not attributed to lack of LARGE expression. Significantly, overexpression of LARGE restored anchoring of fl-Ln and endogenous laminin in most lines, but not in HCC1954, showing additional heterogeneity within this subset of cells (Supplementary Fig. S5A and S5B). Likewise, overexpression of LARGE restored glycosylation of DG in all cell lines but HCC1954 (Supplementary Fig. S5C). In contrast, overexpression of β3GNT1 did not restore fl-Ln anchoring or DG glycosylation in any of the cell lines tested (Supplementary Fig. S5D and E).

We searched for alternative causes for loss of laminin anchoring in the CAMAI, MCF7, HCC1954, and BT549 lines by sequencing mRNA from genes implicated in DG glycosylation. Analysis of cDNA sequence did not reveal additional mutations, deletions, or alternate splicing (Supplementary Fig. S4C). Thus, although these results do not specify the origin or number of additional defects, they do reveal that at least 2 defects other than reduced expression of LARGE can account for loss of laminin anchoring and DG glycosylation in cancer cells, a set that can be repaired by LARGE overexpression, and a set that cannot.

Suppression of LARGE expression enhanced cell proliferation and tumor growth

We observed that expression of LARGE resulted in slower proliferation in some cell lines. In particular, CAMAI cells

Figure 3. Expression of exogenous LARGE restores laminin anchorage and DG glycosylation in cells lacking LARGE expression. A, the indicated cells infected with cDNA encoding the HA-tagged LARGE (+LARGE) or control vector (-LARGE) were treated with fl-Ln and imaged by phase (left) and fluorescence (right) microscopy. Bars, 25 μm. B, protein extracts from indicated cell line were immunoblotted using the indicated antibodies. Molecular weights are shown on the left. MDA231, MDA-MB-231 cells.
exhibited markedly reduced cell proliferation upon stable expression of LARGE. Quantitative assessments indicated that LARGE-expressing cells were significantly less proliferative than cells expressing vector control, and this difference was enhanced with time in culture (Fig. 4A). Assessment of cell-cycle progression indicated that expression of LARGE produced significant differences in phases of cell cycle, most noticeably by reducing the fraction of cells in S phase (Fig. 4B). The presence of the assembly-blocking laminin fragments E1 and E4 significantly increased the percentage of LARGE-expressing cells in S phase relative to cells expressing the vector control (Fig. 4C). These results indicated that loss of LARGE expression promotes cell proliferation by disabling laminin anchoring.

Next, we assessed the consequence of LARGE expression on the tumorigenic capacity of cancer cells in vivo using orthotopic xenograft models generated by MDA-MB-231 cells expressing vector control or LARGE. Both cell types generated palpable tumors in 100% of injected mice. However, tumors generated by cells expressing LARGE were significantly smaller and exhibited a decrease in cell proliferation (Fig. 5A and B). In sum, reduced expression of LARGE enhanced cell proliferation and tumor growth in vivo.

Loss of LARGE expression is common in basal-like breast tumors and other human cancers

Analyses of breast cancer cell lines indicated that loss of LARGE expression is a surrogate measure for loss of laminin anchoring function and is more commonly observed in basal-like breast cancer cells. We examined the clinical relevance of these observations by analyzing 2 publically available datasets, each comprising data from more than 500 patients, for LARGE expression in human breast cancers. In both datasets, reduced expression of LARGE mRNA was significantly associated with basal-like breast tumors (\(P = 9.9533e–19 \) and \(P = 2.29e–18 \), respectively; Fig. 5C and Supplementary Fig. S6), a subtype that displays shortest overall and relapse-free survival (35). These results corroborated the breast cancer cell line studies that showed reduced LARGE expression in the basal-like breast cancer cells. We then compared LARGE expression between normal and cancerous human tissues using the public datasets in Oncomine (Oncomine Compendia Bioscience, accessed July 2011; Supplementary Table S2). These analyses showed significantly decreased LARGE expression in infiltrating and superficial bladder carcinomas (36), various forms of colon adenocarcinomas (37), kidney clear cell adenocarcinoma (38), prostate adenocarcinomas (39), skin basal cell carcinoma (40), and...
a particularly strong decrease in brain cancers (41). Only squamous cell carcinomas showed significant overexpression of LARGE in primary cancers (42).

Loss of laminin anchoring is characteristic of aggressive subclasses of astrocytomas and poor prognosis

The highly significant reduction of LARGE expression in brain malignancies suggested that defects of laminin anchoring and assembly are functionally important in brain cancer cells, as they are in breast cancer cell lines. We tested this using cultured human glioblastoma cell lines. First, we confirmed that normal astrocytes displayed laminin anchoring and assembly, and that this capacity was lost in astrocytes obtained from mice lacking LARGE gene function (ref. 22; Supplementary Fig. S7). In contrast, glioblastoma cell lines (LN-18, LN-229, U87, and U251) had deficiencies in laminin anchoring and DG glycosylation (Fig. 6A and B) and, except for LN-229 cells, had reduced expression of LARGE (Fig. 6C). Expression of exogenous LARGE in these cells restored laminin anchoring and DG glycosylation as observed in breast cancer cells—again with the exception of LN-229 (Fig. 6A and B). Cell proliferation was also reduced, and surface accumulation of endogenous laminin increased, in LN-18 cells upon expression of LARGE (Fig. 6D and E).

We investigated LARGE expression in a cohort of glioblastomas classified by aggressiveness and by expression profiling as proneural (PN), proliferative (Prolif), and mesenchymal (Mes; ref. 43). Expression of LARGE was significantly lower in the 2 most aggressive subclasses, Mes and Prolif (Fig. 7A). Patient outcome is markedly worse for Prolif and Mes compared with the most aggressive subclasses, Mes and Prolif (Fig. 7A). Patient outcome is markedly worse for Prolif and Mes compared with PN (median survival = 174.5 weeks for PN, 60.5 weeks for Prolif, and 65 weeks for Mes; ref. 22). We next assessed the prognostic value of LARGE expression in independent cohorts of astrocytomas using the REMBRANT database (See Methods). As shown in Fig. 7B, reduced expression of LARGE was strongly correlated with poor patient survival ($P = 7.9e^{-7}$).

Discussion

Our study shows that loss of laminin anchoring is a prominent phenotype of cancer cells of distinct pathophysiologic and tissue origins. We reveal a clear association of this defect with aggressive cancer subtypes in breast cancers and glioblastomas, and show changes in cell proliferation and tumor growth as a result of this defect. Correspondingly, loss of laminin anchoring is also associated with poor clinical outcomes. Surprisingly, this defect is attributed to altered glycosylation of the laminin receptor DG and not the expression of any known laminin receptors, including the integrins. Our assessment of a large panel of cancer cells provides a broad characterization of the molecular defects underlying the loss of...
laminin anchoring, pointing to at least 3 mechanistically distinct defects. This work introduces novel factors to the study of cancer progression, novel markers of cancer heterogeneity, and potentially novel therapeutic targets, with relevance to a very broad array of human cancers.

Laminin anchoring and assembly as a tumor suppressor

Several lines of evidence indicate that laminin anchoring acts as a tumor suppressor. We show that exogenous expression of LARGE in cancer cells slows cell proliferation by enabling assembly of laminins on the surface of cancer cells. Xenograft assays showed that restoration of LARGE expression moderates tumor growth in vivo. Work by Beltran and colleagues showed that suppression of LARGE expression enhances the invasiveness of one breast cancer cell line (32). Interactions of cells with ECM constituents, in particular laminins, contribute to tumor-suppressive properties and play a dominant role in the normal morphogenesis and function of epithelia (17, 18). Importantly, the laminin anchoring activity of DG is a determinant of epithelial cell polarization (13), a characteristic of epithelial tissues that is lost in tumor cells and that exerts potent tumor suppressor properties (17, 46). Ultimately, in vivo assessment of tumor-suppressive properties of laminin anchoring is necessary, including the analysis of transgenic models manipulating LARGE expression or function, but such models have not yet been developed. Mice completely lacking LARGE expression have been identified and serve as models of congenital muscular dystrophy; however, loss of LARGE expression in these models results in muscle disease and death at approximately 16 weeks of age, precluding studies of cancer progression in this context (22).

Agents that elevate LARGE expression may prove therapeutic in a large number of cancers, however, the cause of LARGE suppression is not yet known and such agents have not yet been identified. The LARGE locus was first discovered as a tumor-specific deletion (47). However, examination of SNP and CGH data for the breast cancer cell lines did not reveal any evidence of deletions in the LARGE gene (data not shown). DNA methylation...
has previously been implicated in the loss of LARGE expression in one breast cancer cell line (MDA-MB-231 cells; ref. 32). Broad measures of DNA methylation have been obtained for the panel of breast cancer cells and included 2 probes within the LARGE promoter (48). Among the cell lines in this study exhibiting loss of LARGE expression, hypermethylation of the LARGE promoter was detected in only 2 lines (MDA-MB-231 and HCC1143 cells; data not shown). Therefore, the frequent loss of LARGE expression in cancers is not uniquely a consequence of methylation changes at the LARGE promoter.

The findings reported here have numerous implications for the understanding and treatment of cancers. The decrease in cell proliferation and tumor growth associated with restoration of laminin anchoring suggests novel therapeutic opportunities focused on enhancement of LARGE expression or other mechanisms to restore laminin anchoring. Because these defects are more prevalent in aggressive cancer subtypes, novel therapeutic approaches targeting these pathways can address cancers that are currently most difficult to treat and have the fewest treatment options. The responsiveness of cancers cells to therapeutic manipulations is influenced by cell–ECM interactions (19, 20, 49), therefore, loss of laminin anchoring can potentially modulate response to therapies. Our results on cancer heterogeneity and subtype association suggest that assays for laminin assembly or LARGE expression might serve as prognostic biomarkers for diverse cancers, although useful antibodies for LARGE are currently lacking. Lastly, our study highlights the potential importance of ECM assembly processes in cancer heterogeneity and cancer cell behavior. A closer look at the assembly processes of other ECM molecules in cancer cells may expose more novel factors contributing to disease heterogeneity and progression.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors thank Heidi Fedler and Mark Lenburg for helpful discussion, Sean McAllister, Ryuchi Murase, and Pouya Mohajer for help with xenograft assays, Peter Yurchenco for the generous gift of laminin fragments, Mark LaBarge and Martha Stampler for primary human cultures, and Rajendra Pilakatta for help in adenovirus generation.

Grant Support
This work was supported by grants from the NIH (CA109579) to J.L. Muschler and (P50 CA058207 and U54 CA112970) to J.W. Gray; the Department of Defense Breast Cancer Research Program (W81XWH-07-1-0416) to J.L. Muschler; J.W. Gray is supported by a Stand Up to Cancer Dream Team Translational Cancer Research Grant, a Program of the Entertainment Industry Foundation (SU2C-AACR-DE049); a Komen for the Cure Postdoctoral fellowship to A. Akhavan; a Belgian American Educational Foundation Postdoctoral fellowship to A. Daemen; and a Canadian Institutes of Health Research Postdoctoral fellowship to O.L. Griffith.

Received November 14, 2011; revised February 10, 2012; accepted February 28, 2012; published OnlineFirst May 16, 2012.

References

11. Lohikangas L, Gullberg D, Johansson S. Assembly of laminin polymers in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epit...

Loss of Cell-Surface Laminin Anchoring Promotes Tumor Growth and Is Associated with Poor Clinical Outcomes

Armin Akhavan, Obi L. Griffith, Liliana Soroceanu, et al.

Cancer Res 2012;72:2578-2588.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/10/2578

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2012/05/08/72.10.2578.DC1

Cited articles
This article cites 49 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/72/10/2578.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/72/10/2578.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.