BREAKING ADVANCES
2915 Highlights from Recent Cancer Literature

REVIEWS
2917 Dishonorable Discharge: The Oncogenic Roles of Cleaved E-Cadherin Fragments
Justin M. David and Ayyappan K. Rajasekaran

2924 Targeting of a Conformationally Exposed, Tumor-Specific Epitope of EGFR as a Strategy for Cancer Therapy
Hui K. Gan, Antony W. Burgess, Andrew H. A. Clayton, and Andrew M. Scott

PRIORITY REPORT
2931 Mice Expressing Activated PI3K Rapidly Develop Advanced Colon Cancer
Alyssa A. Leystra, Dustin A. Deming, Christopher D. Zahm, Mohammed Farhoud, Terrah J. Paul Olson, Jamie N. Hadac, Laura A. Nettekoven, Dawn M. Albrecht, Linda Clipson, Ruth Sullivan, Mary Kay Washington, Jose R. Torrealba, Jamey P. Weichert, and Richard B. Halberg
Pécis: Expression of a dominant active form of PI3K in the mouse intestine rapidly induces formation of invasive mucinous adenocarcinomas that are histologically similar to human colon cancer but without engaging the canonical WNT pathway, which is generally thought to be central in this setting.

CLINICAL STUDIES
2937 Gene Immunotherapy of Chronic Lymphocytic Leukemia: A Phase I Study of Intranasally Injected Adenovirus Expressing a Chimeric CD154 Molecule
Jamirario E. Castro, Johanna Melo-Cardenas, Mauricio Urquiza, Juan S. Barajas-Gamboa, Ramin S. Pakbaz, and Thomas J. Kipps
Pécis: Direct injection of immune-stimulatory genes into lymph nodes, where tolerance to tumor antigens occurs, may offer a powerful new kind of immunotherapy for cancer, given the marked clinical activity seen in early trials of this unique strategy to trigger antitumor immunity.

INTEGRATED SYSTEMS AND TECHNOLOGIES
2949 In Vivo Imaging of Drug-Induced Mitochondrial Outer Membrane Permeabilization at Single-Cell Resolution
Sarah Earle, Claudio Vinegoni, Joshua Dunham, Rostic Gorbatov, Paolo Fumene Feruglio, and Ralph Weisleder
Pécis: The ability to visualize and quantify drug-induced apoptosis of human tumor cells in vivo may address questions about how apoptosis is controlled by the tumor microenvironment.

MICROENVIRONMENT AND IMMUNOLOGY
2957 Expression of P2X7 Receptor Increases In Vivo Tumor Growth
Elena Adinolfi, Lizzia Raffaghello, Anna Lisa Giuliani, Luigi Cavazzini, Marina Capece, Paola Chiozzi, Giovanna Bianchi, Guido Kroemer, Vito Pistoia, and Francesco Di Virgilio
Pécis: A receptor for extracellular ATP is found to promote tumorigenesis in vivo, providing mechanistic insight into how the biochemical composition of the tumor milieu may support growth and metastasis.

2967 Cell-Mediated Autophagy Promotes Cancer Cell Survival
William J. Buchser, Thomas C. Laskow, Philip J. Pavlik, Hui-Min Lin, and Michael T. Lotze
Pécis: This study challenges the notion that immune effectors simply destroy targets and instead postulates that they are involved in induction of tumor cell autophagy and resistance to anticancer therapy and potentially involved in repair.

2980 LIGHT Delivery to Tumors by Mesenchymal Stem Cells Mobilizes an Effective Antitumor Immune Response
Weibin Zou, Huilin Zheng, Tong-Chuan He, Jinjia Chang, Yang-Xin Fu, and Weimin Fan
Pécis: Targeted delivery of an immune-stimulating factor in tumors using a stem cell-based vector can stanch immune suppression in the tumor microenvironment and derepress antitumor immunity.
Inhibitory Roles of Signal Transducer and Activator of Transcription 3 in Antitumor Immunity during Carcinogen-Induced Lung Tumorigenesis

MOLECULAR AND CELLULAR PATHOBIOLOGY

Vav3-Rac1 Signaling Regulates Prostate Cancer Metastasis with Elevated Vav3 Expression Correlating with Prostate Cancer Progression and Posttreatment Recurrence
Kai-Ti Lin, Jianli Gong, Chien-Feng Li, Te-Hsuan Jang, Wen-Ling Chen, Huei-Jane Chen, and Lu-Hai Wang

Stromal Estrogen Receptor-α Promotes Tumor Growth by Normalizing an Increased Angiogenesis
Christel Péqueux, Isabelle Raymond-Leotron, Silvia Blacher, Frédéric Boudou, Marine Adlanmerini, Marie-José Fouque, Philippe Rocheix, Agnès Noël, Jean-Michel Foldart, Andrée Krust, Pierre Chamoun, Laurent Brouchet, Jean-François Arnal, and Françoise Lenfant

PREVENTION AND EPIDEMOLOGY

Postmenopausal Hormone Therapy Is Associated with a Reduced Risk of Colorectal Cancer Lacking CDKN1A Expression
Jennifer H. Lin, Tepppei Morikawa, Andrew T. Chan, Aya Kuchiba, Kaori Shima, Katsuhiko Nosho, Gregory Kirkner, Shumin M. Zhang, JoAnn E. Manson, Edward Giovannucci, Charles S. Fuchs, and Shuji Ogino

Adipokines Linking Obesity with Colorectal Cancer Risk in Postmenopausal Women

An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis
Xiumei Huang, Ying Dong, Erik A. Bey, Jessica A. Kilgore, Joseph S. Bair, Long-Shan Li, Malina Patel, Elizabeth J. Parkinson, Yiguang Wang, Noelle S. Williams, Jiming Gao, Paul J. Hergenrother, and David A. Boothman

MEK1/2 Inhibition Elicits Regression of Autochthonous Lung Tumors Induced by KRAS^{G12D} or BRAF^{V600E}
Christy L. Trejo, Joseph Juan, Silvestre Vicent, Alejandro Sweet-Cordero, and Martin McMahon

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Therapeutic programmed necrosis can be achieved in tumors using bioactive substrates of the cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme that is overexpressed in most solid cancers and can create extensive tumor-selective ROS bursts, damaging tumor cell DNA and rapidly killing cells.

This study uses genetically engineered mouse models of human lung cancer to establish a preclinical proof of concept for MEK inhibitors as broadly effective therapy for lung tumors driven by activated Ras–Raf signaling.
Novel TOPK Inhibitor HI-TOPK-032 Effectively Suppresses Colon Cancer Growth
Dong Joon Kim, Yan Li, Kanamata Reddy, Mee-Hyun Lee, Myoung Ok Kim, Yong-Yeon Cho, Sung-Young Lee, Jong-Eun Kim, Ann M. Bode, and Zigang Dong

Précis: Findings identify a specific inhibitor of a MEK family member that shows effective preclinical efficacy against colorectal cancer, with great potential for improving therapy of this disease.

Mel-1 Phosphorylation Defines ABT-737 Resistance That Can Be Overcome by Increased NOXA Expression in Leukemic B cells
Suparna Mazumder, Gaurav S. Choudhary, Sayer Al-harbi, and Alexandru Almasan

Précis: Findings provide insight into acquired resistance mechanisms to the BH3 domain mimic ABT-737, which is currently being tested in the clinic as navitoclax.

Uncoupling of PI3K from ErbB3 Impairs Mammary Gland Development but Does Not Impact on ErbB2-Induced Mammary Tumorigenesis
Hicham Lahlou, Thomas Müller, Virginie Sanguin-Gendreau, Carmen Birchmeier, and William J. Müller

Précis: In the context of activated HER2-ErbB2 signaling, ErbB3-PI3K coupling is essential for normal mammary gland development but not mammary cancer progression.

Genetic Ablation of SOX18 Function Suppresses Tumor Lymphangiogenesis and Metastasis of Melanoma in Mice
Tam Duong, Steven T. Proulx, Paola Luciani, Jean-Christophe Leroux, Michael Detmar, Peter Koopman, and Mathias Francois

Précis: A molecular switch used during embryonic development to control lymphangiogenesis is switched on during formation of the lymphatic vessels that drain tumors, suggesting new targeted strategies to block the escape of metastases that are often seeded through the lymphatic system.

CORRECTIONS
Correction: Genome-Wide DNA Methylation Profiling of CpG Islands in Breast Cancer Identifies Novel Genes Associated with Tumorigenicity
Correction: ARID1A, a Factor That Promotes Formation of SWI/SNF-Mediated Chromatin Remodeling, Is a Tumor Suppressor in Gynecologic Cancers
ABOUT THE COVER

Adenosine 5'-triphosphate (ATP) is a common constituent of the tumor microenvironment where it modulates the anticancer immune response and stimulates tumor cell growth and apoptosis. One of the main cellular receptors mediating these effects is the P2X7 receptor. P2X7 is an ATP-gated plasma membrane ion channel coupled to inflammasome activation, release of inflammatory cytokines, generation of reactive oxygen species, and stimulation of apoptosis. However, paradoxically, Adinolfi and colleagues found that tumorigenesis was accelerated by overexpression of P2X7 in several tumor models, and accordingly, drastically reduced by P2X7 silencing. Adinolfi and colleagues results provide a logical explanation for the intriguing finding that most human malignant tumors overexpress this receptor (a specimen from human differentiated colon cancer stained with an anti-P2X7 polyclonal antibody is shown). For details, see article by Adinolfi et al. on page 2957 of this issue.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/12

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.