BREAKING ADVANCES

Highlights from Recent Cancer Literature

REVIEWS

Dishonorable Discharge: The Oncogenic Roles of Cleaved E-Cadherin Fragments
Justin M. David and Ayyappan K. Rajasekaran

Targeting of a Conformationally Exposed, Tumor-Specific Epitope of EGFR as a Strategy for Cancer Therapy
Hui K. Gan, Antony W. Burgess, Andrew H. A. Clayton, and Andrew M. Scott

PRIORITY REPORT

Mice Expressing Activated PI3K Rapidly Develop Advanced Colon Cancer
Alyssa A. Leystra, Dustin A. Deming, Christopher D. Zahm, Mohammed Farhood, Terrah J. Paul Olson, Jamie N. Hadac, Laura A. Nettekoven, Dawn M. Albrecht, Linda Clipson, Ruth Sullivan, Mary Kay Washington, Jose R. Torrealba, Jamey P. Weichert, and Richard B. Halberg

CLINICAL STUDIES

Gene Immunotherapy of Chronic Lymphocytic Leukemia: A Phase I Study of Intranasally Injected Adenovirus Expressing a Chimeric CD154 Molecule
Januario E. Castro, Johanna Melo-Cardenas, Mauricio Urquiza, Juan S. Barajas-Gamboa, Ramin S. Pakha, and Thomas J. Kipps

INTEGRATED SYSTEMS AND TECHNOLOGIES

In Vivo Imaging of Drug-Induced Mitochondrial Outer Membrane Permeabilization at Single-Cell Resolution
Sarah Earley, Claudio Vinegoni, Joshua Dunham, Rostic Gorbatov, Paolo Fumene Feruglio, and Ralph Weissleder

PRécis: The ability to visualize and quantify drug-induced apoptosis of human tumor cells in vivo may address questions about how apoptosis is controlled by the tumor microenvironment.

MICROENVIRONMENT AND IMMUNOLOGY

Expression of P2X7 Receptor Increases In Vivo Tumor Growth
Elena Adinolfi, Lizzia Raffaghello, Anna Lisa Giuliani, Luigi Cavazzini, Marina Capece, Paola Chiozzi, Giovanna Bianchi, Guido Kroemer, Vito Pistoia, and Francesco Di Virgilio

PRécis: A receptor for extracellular ATP is found to promote tumorigenesis in vivo, providing mechanistic insight into how the biochemical composition of the tumor milieu may support growth and metastasis.

Cell-Mediated Autophagy Promotes Cancer Cell Survival
William J. Buchser, Thomas C. Laskow, Philip J. Pavlik, Hui-Min Lin, and Michael T. Lotze

PRécis: This study challenges the notion that immune effectors simply destroy targets and instead posits that they are involved in induction of tumor cell autophagy and resistance to anticancer therapy and potentially involved in repair.

LIGHT Delivery to Tumors by Mesenchymal Stem Cells Mobilizes an Effective Antitumor Immune Response
Weibin Zou, Huilin Zheng, Tong-Chuan He, Jinjia Chang, Yang-Xin Fu, and Weimin Fan

PRécis: Targeted delivery of an immune-stimulating factor in tumors using a stem cell-based vector can stanch immune suppression in the tumor microenvironment and derepress antitumor immunity.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>Vav3-Rac1 Signaling Regulates Prostate Cancer Metastasis with Elevated Vav3 Expression Correlating with Prostate Cancer Progression and Posttreatment Recurrence</td>
<td>Kai-Ti Lin, Jianli Gong, Chien-Feng Li, Te-Hsuan Jang, Wen-Ling Chen, Huei-Jane Chen, and Lu-Hai Wang</td>
<td>Précis: Findings highlight a cell adhesion signaling pathway that may contribute centrally to invasive metastasis of prostate cancer.</td>
</tr>
<tr>
<td>3010</td>
<td>Stromal Estrogen Receptor-α Promotes Tumor Growth by Normalizing an Increased Angiogenesis</td>
<td>Christel Péqueux, Isabelle Raymond-Levron, Silvia Blacher, Frédéric Boudou, Marine Adlanmerini, Marie-José Fouque, Philippe Rochaux, Agnès Noël, Jean-Michel Foldart, Andrée Krust, Pierre Chambon, Laurent Brouchet, Jean-François Arnal, and Françoise Lenfant</td>
<td>Précis: Findings reveal that estrogens drive breast tumor growth in part by supporting the ability of endothelial cells in the tumor microenvironment, deepening our understanding of the molecular mechanisms involved in ER-positive tumorigenesis and how ER-positive tumors might be managed.</td>
</tr>
<tr>
<td>3020</td>
<td>Postmenopausal Hormone Therapy Is Associated with a Reduced Risk of Colorectal Cancer Lacking CDKN1A Expression</td>
<td>Jennifer H. Lin, Teppei Morikawa, Andrew T. Chan, Aya Kuchiba, Kaori Shima, Katsuhiko Nosho, Gregory Kirkner, Shumin M. Zhang, JoAnn E. Manson, Edward Giovannucci, Charles S. Fuchs, and Shuji Ogino</td>
<td>Précis: A reduction in colorectal cancer risk among U.S. women using postmenopausal hormone therapy may be due to the effect of these medications on a central cell-cycle regulator.</td>
</tr>
<tr>
<td>3029</td>
<td>Adipokines Linking Obesity with Colorectal Cancer Risk in Postmenopausal Women</td>
<td>Gloria Y.F. Ho, Tao Wang, Marc J. Gunter, Howard D. Strickler, Mary Cushman, Robert C. Kaplan, Sylvia Wasserteil-Smoller, Xiaoxuan Xue, Swapnil N. Raipathak, Rowan T. Chlebowski, Mara Z. Vitalinis, Philipp E. Scherer, and Thomas E. Rohan</td>
<td>Précis: A high level of leptin is an independent risk factor for colorectal cancer, and hyperleptinemia together with hyperinsulinemia may partially explain the association of obesity with colorectal cancer in postmenopausal women.</td>
</tr>
<tr>
<td>3038</td>
<td>An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis</td>
<td>Xiumei Huang, Ying Dong, Erik A. Bey, Jessica A. Kilgore, Joseph S. Bair, Long-Shan Li, Malina Patel, Elizabeth J. Parkinson, Yiguang Wang, Noelle S. Williams, Jiming Gao, Paul J. Hergenrother, and David A. Boothman</td>
<td>Précis: Therapeutic programmed necrosis can be achieved in tumors using bioactive substrates of the cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme that is overexpressed in most solid cancers and can create extensive tumor-selective ROS bursts, damaging tumor cell DNA and rapidly killing cells.</td>
</tr>
<tr>
<td>3048</td>
<td>MEK1/2 Inhibition Elicits Regression of Autochthonous Lung Tumors Induced by KRASG12D or BRAFV600E.</td>
<td>Christy L. Trejo, Joseph Juan, Silvestre Vicent, Alejandro Sweet-Cordero, and Martin McMahon</td>
<td>Précis: This study uses genetically engineered mouse models of human lung cancer to establish a preclinical proof of concept for MEK inhibitors as broadly effective therapy for lung tumors driven by activated Ras–Raf signaling.</td>
</tr>
</tbody>
</table>
Novel TOPK Inhibitor HI-TOPK-032 Effectively Suppresses Colon Cancer Growth
Dong Joon Kim, Yan Li, Kanamata Reddy, Mee-Hyun Lee, Myoung Ok Kim, Yong-Yeon Cho, Sung-Young Lee, Jong-Eun Kim, Ann M. Bode, and Zigang Dong
Precis: Findings identify a specific inhibitor of a MEK family member that shows effective preclinical efficacy against colorectal cancer, with great potential for improving therapy of this disease.

Mcl-1 Phosphorylation Defines ABT-737 Resistance That Can Be Overcome by Increased NOXA Expression in Leukemic B cells
Suparna Mazumder, Gaurav S. Choudhary, Sayer Al-harbi, and Alexandru Almasan
Precis: Findings provide insight into acquired resistance mechanisms to the BH3 domain mimetic ABT-737, which is currently being tested in the clinic as navitoclax.

Uncoupling of PI3K from ErbB3 Impairs Mammary Gland Development but Does Not Impact on ErbB2-Induced Mammary Tumorigenesis
Hicham Lahlou, Thomas Müller, Virginie Sanguin-Gendreau, Carmen Birchmeier, and William J. Müller
Precis: In the context of activated HER2-ErbB2 signaling, ErbB3-PI3K coupling is essential for normal mammary gland development but not mammary cancer progression.

Polycomb Protein EZH2 Regulates Tumor Invasion via the Transcriptional Repression of the Metastasis Suppressor RKIP in Breast and Prostate Cancer
Gang Ren, Stavroula Baritaki, Himangi Marathe, Jingwei Feng, Sungdae Park, Sandy Beach, Peter S. Bazeley, Anwar B. Beshir, Gabriel Fenteaney, Rohit Mehra, Stephanie Daignault, Fahd Al-Mulla, Evan Keller, Ben Bonavida, Ivana de la Serna, and Kam C. Yeung
Precis: This study provides mechanistic insights into a novel metastasis suppressor in breast and prostate cancers, where it is a target of the histone methyltransferase EZH2, known to play an important role in malignant progression.

Genetic Ablation of SOX18 Function Suppresses Tumor Lymphangiogenesis and Metastasis of Melanoma in Mice
Tam Duong, Steven T. Proulx, Paola Luciani, Jean-Christophe Leroux, Michael Detmar, Peter Koopman, and Mathias Francois
Precis: A molecular switch used during embryonic development to control lymphangiogenesis is switched on during formation of the lymphatic vessels that drain tumors, suggesting new targeted strategies to block the escape of metastases that are often seeded through the lymphatic system.

Correction: Genome-Wide DNA Methylation Profiling of CpG Islands in Breast Cancer Identifies Novel Genes Associated with Tumorigenicity

Correction: ARID1A, a Factor That Promotes Formation of SWI/SNF-Mediated Chromatin Remodeling, Is a Tumor Suppressor in Gynecologic Cancers
ABOUT THE COVER

Adenosine 5'-triphosphate (ATP) is a common constituent of the tumor microenvironment where it modulates the anticancer immune response and stimulates tumor cell growth and apoptosis. One of the main cellular receptors mediating these effects is the P2X7 receptor. P2X7 is an ATP-gated plasma membrane ion channel coupled to inflammasome activation, release of inflammatory cytokines, generation of reactive oxygen species, and stimulation of apoptosis. However, paradoxically, Adinolfi and colleagues found that tumorigenesis was accelerated by overexpression of P2X7 in several tumor models, and accordingly, drastically reduced by P2X7 silencing. Adinolfi and colleagues results provide a logical explanation for the intriguing finding that most human malignant tumors overexpress this receptor (a specimen from human differentiated colon cancer stained with an anti-P2X7 polyclonal antibody is shown). For details, see article by Adinolfi et al. on page 2957 of this issue.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/12

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.