BREAKING ADVANCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3889</td>
<td>Highlights from Recent Cancer Literature</td>
</tr>
</tbody>
</table>

REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3891</td>
<td>Translation Regulation as a Therapeutic Target in Cancer</td>
</tr>
<tr>
<td>3901</td>
<td>The Microculture-Kinetic (MiCK) Assay: The Role of a Drug-Induced Apoptosis Assay in Drug Development and Clinical Care</td>
</tr>
</tbody>
</table>

PRIORITY REPORTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3906</td>
<td>Primary Tumor Hypoxia Recruits CD11b⁺/Ly6Cmed/Ly6G⁻ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche</td>
</tr>
<tr>
<td>3912</td>
<td>VEGF Exerts an Angiogenesis-Independent Function in Cancer Cells to Promote Their Malignant Progression</td>
</tr>
</tbody>
</table>

MICROENVIRONMENT AND IMMUNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3919</td>
<td>Neutrophils Promote Liver Metastasis via Mac-1-Mediated Interactions with Circulating Tumor Cells</td>
</tr>
<tr>
<td>3928</td>
<td>BRAF Inhibitor Vemurafenib Improves the Antitumor Activity of Adoptive Cell Immunotherapy</td>
</tr>
<tr>
<td>3938</td>
<td>Chronic Autophagy Is a Cellular Adaptation to Tumor Acidic pH Microenvironments</td>
</tr>
<tr>
<td>3948</td>
<td>The Human TLR Innate Immune Gene Family Is Differentially Influenced by DNA Stress and p53 Status in Cancer Cells</td>
</tr>
</tbody>
</table>

Précis:

- Neutrophils Promote Liver Metastasis via Mac-1-Mediated Interactions with Circulating Tumor Cells
 - Jonathan D. Spicer, Braedon McDonald, Jonathan J. Cools-Lartigue, Simon C. Chow, Betty Gianmessa, Paul Kubas, and Lorenzo E. Ferri
 - This study describes a novel immunomodulatory mechanism involving neutrophils, which interact with circulating tumor cells in the blood to facilitate metastasis.

- BRAF Inhibitor Vemurafenib Improves the Antitumor Activity of Adoptive Cell Immunotherapy
 - Richard C. Koya, Stephen Mok, Nicholas Otte, Kevin J. Blackett, Begonya Comin-Anduix, Paul C. Tumeh, Aspram Minasyan, Nicholas A. Graham, Thomas G. Graeber, Thindle Chodon, and Antoni Ribas
 - Targeted therapeutics that produce robust clinical responses are likely benefiting from inherent adjuvant effects that degrade immune escape, a feature that could be leveraged most effectively by combinatorial uses in settings such as that described here.

- Chronic Autophagy Is a Cellular Adaptation to Tumor Acidic pH Microenvironments
 - An acidic tumor microenvironment induces a prolonged autophagic response necessary for tumor cell survival under acidic conditions commonly observed in solid tumors.

- The Human TLR Innate Immune Gene Family Is Differentially Influenced by DNA Stress and p53 Status in Cancer Cells
 - Maria Shatz, Daniel Menendez, and Michael A. Resnick
 - Toll-like receptors, which detect both infection and sterile tissue damage, are targets for adjuvant immune therapies, including on cancer cells, where p53 and chromosome status may affect their signaling outputs.
Trifunctional Bispecific Antibodies Induce Tumor-Specific T Cells and Elicit a Vaccination Effect
Nina Eissler, Peter Ruf, Josef Mysliwietz, Horst Lindhofer, and Ralph Mocikat

Precise: T-cell-activating signals that can be triggered by trifunctional bispecific antibodies make them superior for eliminating tumor cells due to their ability to induce polyvalent protective T-cell responses against tumor-derived peptides.

Immunogenic Tumor Cell Death Induced by Chemoradiotherapy in Patients with Esophageal Squamous Cell Carcinoma
Yoshiyuki Suzuki, Kousaku Mimura, Yuya Yoshimoto, Mitsuaki Watanabe, Yu Ohkubo, Shinichirou Iwaza, Kazutoshi Murata, Hideki Fujii, Takashi Nakano, and Koji Kono

The Proinflammatory Myeloid Cell Receptor TREM-1 Controls Kupffer Cell Activation and Development of Hepatocellular Carcinoma
Juan Wu, Jiagqi Li, Rosalba Salcedo, Nahid F. Mivechi, Giorgio Trinchieri, and Anatoliy Horuzsko

Precise: Findings reveal a pivotal mediator of chronic inflammatory processes in a myeloid-like cell type of the liver that underpins the development and progression of liver cancer.

Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State
Michele W. L. Teng, Matthew D. Vesely, Helene Duret, Nicole McLaughlin, Jennifer E. Towne, Robert D. Schreiber, and Mark J. Smyth

Precise: Findings illustrate opposing roles for the important cytokines IL-23 and IL-12 in determining the outgrowth versus dormancy of occult neoplasia, implying long-term cancer risks of using IL-12/23p40 antibodies for clinical treatment of autoimmune disorders.

Neogenesis of Lymphoid Structures and Antibody Responses Occur in Human Melanoma Metastases
Arcadi Cipponi, Marjorie Mercier, Teolila Seremet, Jean-François Baurain, Ivan Thieàte, Joost van den Oord, Marguerite Stas, Thierry Boon, Pierre G. Coulie, and Nicolas van Baren

Precise: Striking findings show the ectopic development of functional lymphoid structures within melanoma metastases, suggesting that tumors not only direct tolerizing adaptive immune responses in draining lymph nodes but also do so directly within the tumor microenvironment itself.

Cervical Cancers Require the Continuous Expression of the Human Papillomavirus Type 16 E7 Oncoprotein Even in the Presence of the Viral E6 Oncoprotein
Sean F. Jabbar, Soyeong Park, Johannes Schweizer, Marthe Berard-Bergery, Henry C. Pitot, Denis Lee, and Paul F. Lambert

Precise: This study demonstrates that cervical cancer progression depends on continuous expression of human papillomavirus E7 oncoprotein, suggesting that it is a legitimate target for treatment and prevention of cervical cancer.

A Zebrafish Model to Study and Therapeutically Manipulate Hypoxia Signaling in Tumorigenesis

Precise: This study describes a novel zebrafish model that might speed the identification and development of strategies to blunt the effects of hypoxia-induced HIF activation, which is widely implicated in malignant progression and therapeutic resistance in solid tumors.

The Retinoblastoma Gene Undergoes Rearrangements in BRCA1-Deficient Basal-like Breast Cancer

Precise: Many aggressive breast cancers of the basal-like subtype that are deficient in BRCA1 also appear to be deficient in Rb tumor suppressor function, with potential therapeutic implications for the application of CdK inhibitors in this tumor subset.

MIR-96 Downregulates REV1 and RAD51 to Promote Cellular Sensitivity to Cisplatin and PARP Inhibition
Yemin Wang, Jen-Wei Huang, Philamer Calses, Christopher J. Kemp, and Toshiyasu Taniguchi

Precise: Findings define the function of a microRNA in cancer cells that downregulates both a homologous recombination factor and a trans-lesion DNA synthesis polymerase, perhaps offering a generalized strategy to improve the efficacy of cytotoxic chemotherapy in advanced cancers.
Neuropilin-1 Stimulates Tumor Growth by Increasing Fibronectin Fibril Assembly in the Tumor Microenvironment

Usman Yaqoob, Sheng Cao, Uday Shergill, Kumaravelu Jagavelu, Zhimin Geng, Meng Yin, Thiago M. de Assuncao, Ying Cao, Anna Szabolcs, Snorri Thorgeirsson, Martin Schwartz, Ju Dong Yang, Richard Ehman, Lewis Roberts, Debabrata Mukhopadhyay, and Vijay H. Shah

Précis: A protein that functions as a VEGF receptor may also alter extracellular matrix assembly, with implications for how to target myofibroblasts that express it as a strategy to therapeutically reprogram the tumor microenvironment.

LRP1B Deletion in High-Grade Serous Ovarian Cancers Is Associated with Acquired Chemotherapy Resistance to Liposomal Doxorubicin

Précis: This extensive genomics study of patients with the most common form of ovarian cancer, which reveals the daunting extent of intratumoral heterogeneity present in different lesions from the same patient, identifies a lipid transport molecule that acts as a positive modifier of a form of acquired drug resistance that occurs commonly in patients with relapsed disease.

Alternate Splicing of the p53 Inhibitor HDMX Offers a Superior Prognostic Biomarker than p53 Mutation in Human Cancer

Précis: Findings advance understanding of p53 control and suggest a broadly useful biomarker to personalize therapeutic interventions in treatment of many types of human cancer.

NAC1 Is an Actin-Binding Protein That Is Essential for Effective Cytokinesis in Cancer Cells

Kai Lee Yap, Stephanie I. Fraley, Michelle M. Thiaville, Natini Jinawath, Kentaro Nakayama, Jianlong Wang, Tian-Li Wang, Denis Wirtz, and Je-Ming Shih

Précis: This study reveals an actin-binding function for a protein previously implicated in transcriptional regulation, perhaps providing a novel foundation to develop unique actin-targeting agents as a generalized strategy for cancer therapy.

Caveolin-1 Increases Aerobic Glycolysis in Colorectal Cancers by Stimulating HMGA1-Mediated GLUT3 Transcription

Tae-Kyu Ha, Nam-Gu Her, Min-Goo Lee, Byung-Kyu Ryu, Jin-Hee Lee, Jikhyon Han, Seong-In Jeong, Min-Ju Kang, Nam-Hoon Kim, Hyo-Jong Kim, and Sung-Gil Chi

Précis: Findings suggest how a key regulator of lipid raft formation acts to promote aerobic glycolysis in colon cancer cells, providing a mechanistic basis to understanding its oncogenic function in certain human cancers.

Resistance of Glioblastoma-Initiating Cells to Radiation Mediated by the Tumor Microenvironment Can Be Abolished by Inhibiting Transforming Growth Factor-β

Matthew E. Hardee, Ariel E. Marciscano, Christina M. Medina-Ramirez, David Zagzag, Ashwatha Narayana, Scott M. Lonning, and Mary Helen Barcellos-Hoff

Précis: This study offers immediate translational impact by suggesting that TGF-β inhibitors under study might be applied combinatorially to heighten the responsiveness of glioblastoma to radiotherapy, which is used widely as a standard of care for treatment but with limited efficacy.

MLK3 Regulates Paxillin Phosphorylation in Chemokine-Mediated Breast Cancer Cell Migration and Invasion to Drive Metastasis

Jian Chen and Kathleen A. Gallo

Précis: Important mechanistic findings suggest a potentially important new therapeutic target in metastatic breast cancer.
Perturbation of Rb, p53, and Brca1 or Brca2 Cooperate in Inducing Metastatic Serous Epithelial Ovarian Cancer
Ludmila Szabova, Chaoying Yin, Sujata Bupp, Theresa M. Guerin, Jerome J. Schlomer, Deborah B. Householder, Maureen L. Baran, Ming Yi, Yurong Song, Wenping Sun, Jonathan E. McDunn, Philip L. Martin, Terry Van Dyke, and Simone Difilippantonio

Précis: This study describes novel murine models of metastatic ovarian cancer that histologically resemble their human counterparts, offering useful tools for pathobiologic and preclinical therapeutic studies.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Tankyrase and the Canonical Wnt Pathway Protect Lung Cancer Cells from EGFR Inhibition
Matias Casás-Selves, Jihye Kim, Zhilyong Zhang, Barbara A. Helfrich, Dexiang Gao, Christopher C. Porter, Hannah A. Scarborough, Paul A. Runn Jr, Daniel C. Chan, Aik Choon Tan, and James DeGregori

Précis: A genome-wide short hairpin RNA screen identifies a role for the canonical Wnt signaling pathway in the maintenance of NSCLC cells during EGFR inhibition and suggests that simultaneous targeting may improve clinical outcome in lung cancer patients.

Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective In Vivo Imaging of Tumor-Associated Macrophages
Kiarash Movahedi, Steve Schoonoghe, Damya Louni, Isabelle Houbracken, Wim Waelput, Karine Breckpot, Luc Bouwens, Tony Lahoute, Patrick De Baetselier, Geert Raes, Nick Devoogdt, and Jo A. Van Ginderachter

Précis: This study offers a broadly applicable tool to visualize tumor-associated macrophages, which are of great importance in the tumor microenvironment to malignant progression and therapeutic response.

Mithramycin Represses Basal and Cigarette Smoke–Induced Expression of ABCG2 and Inhibits Stem Cell Signaling in Lung and Esophageal Cancer Cells
Mary Zhang, Aarti Mathur, Yuwei Zhang, Sichuan Xi, Scott Atay, Julie A. Hong, Nicole Datrice, Trevor Upham, Clinton D. Kemp, R. Taylor Ripley, Gordon Wiegand, Itzak Avital, Patricia Fetsch, Haresh Mani, Daniel Zlot, Robert Robey, Susan E. Bates, Ximmin Li, Mahadev Rao, and David S. Schrump

Précis: Targeting growth factor receptors in cancer may be ill advised in some patients, because alternative splice isoforms in the tumor can confer different functions depending on whether the receptor is expressed in tumor cells versus tumor stromal cells.

BCL2 Suppresses PARP1 Function and Nonapoptotic Cell Death

Précis: BCL2-expressing cancer cells resistant to apoptosis can be killed by BH3 mimetics that target the interaction between BCL2 and a DNA repair protein.

HG-829 Is a Potent Noncompetitive Inhibitor of the ATP-Binding Cassette Multidrug Resistance Transporter ABCB1
Gisela Caceres, Robert W. Robey, Lubomir Sokol, Kathy L. McGraw, Justine Clark, Nicholas J. Lawrence, Said M. Sebit, Michael Wiese, and Alan F. List

Précis: Results offer preclinical validation of a highly effective new inhibitor of the P-glycoprotein that is widely responsible for acquired clinical resistance to cytotoxic chemotherapy, with significant therapeutic promise for treating many types of multidrug-resistant malignancies.

Carbonyl Reductase 1 Offers a Novel Therapeutic Target to Enhance Leukemia Treatment by Arsenic Trioxide
Miran Jung, Yeonghwam Kim, Hyeran Won, Sangbin Lim, Jyothish K.R, Amarjargal Dashdorj, Yoo Hong Min, Si-Young Kim, Kevan M. Shokat, Joohun Ha, and Sung Soo Kim

Précis: This study shows how to extend the applications of arsenic trioxide for improving treatment of many types of leukemia.
CDK Inhibitors Upregulate BH3-Only Proteins to Sensitize Human Myeloma Cells to BH3 Mimetic Therapies
Shuang Chen, Yun Dai, Xin-Yan Pei, Jennifer Myers, Li Wang, Lora B. Kramer, Mandy Garnett, Daniella M. Schwartz, Florence Su, Gary L. Simmons, Justin D. Richey, Dustin G. Larsen, Paul Dent, Robert Z. Orłowski, and Steven Grant

Precis: This study offers preclinical proof-of-concept for a therapeutic combination of pan-CDK inhibitors with pan-BH3 mimetics in patients with refractory hematologic malignancies.

Precis: This study offers new insights into the little understood process of bone metastasis by breast cancers, with implications for the application of IGF antagonists to arrest this debilitating and deadly pathway of cancer progression.

Findings implicate a calcium channel that is overexpressed in breast cancer cells as a critical mediator of metastasis, with implications for developing more effective antimetastatic drugs.

Dysfunction of Nucleus Accumbens-1 Activates Cellular Senescence and Inhibits Tumor Cell Proliferation and Oncogenesis
Yi Zhang, Yan Cheng, Xingcong Ren, Tsukasa Hori, Kathryn J. Huber-Keener, Li Zhang, Kai Lee Yap, David Liu, Lisa Shantz, Zheng-Hong Qin, Suping Zhang, Jianrong Wang, Hong-Gang Wang, Je-Ming Shih, and Jin-Ming Yang

Precis: This study offers new insights into mechanisms of senescence and how its bypass is important for tumor development and progression.

Precis: High-dose treatment with a TGF-β-related growth factor can block the contribution of liver cancer stem cells to malignant development and chemoresistance, perhaps offering a broad-spectrum therapeutic strategy in this disease.

Correction: Scaling Laws for Plasma Concentrations and Tolerable Doses of Anticancer Drugs
ABOUT THE COVER

Because of the torturous vasculature of solid tumors and the diffusion limitations of oxygen, cancer cells routinely encounter hypoxic conditions. Immunohistochemistry of pimonidazole hydrochloride, a nitroimidazole with hypoxic selectivity, identifies a ring of cells (brown) that define the hypoxic border between well-oxygenated and necrotic tissue. Cancer cells depend on glycolysis to meet energetic demands when deprived of oxygen; as a result, these hypoxic regions are expected to be acidic. In response to acidic environments, cells exhibit chronic elevated autophagic activity, a phenotype that is partially reversible in vivo following buffer therapy with sodium bicarbonate. For details, see article by Wojtkowiak and colleagues on page 3938.