Unphosphorylated STAT1 Promotes Sarcoma Development through Repressing Expression of Fas and Bad and Conferring Apoptotic Resistance

Mary A. Zimmerman1, Nur-Taz Rahman1, Dafeng Yang1, Guy Lahat3,6, Alexander J. Lazar4,6, Raphael E. Pollock3,6, Dina Lev5,6, and Kebin Liu1,2

Abstract

STAT1 exists in phosphorylated (pSTAT1) and unphosphorylated (uSTAT1) forms each regulated by IFN-γ. Although STAT1 is a key mediator of the IFN-γ signaling pathway, an essential component of the host cancer immunosurveillance system, STAT1 is also overexpressed in certain human cancers where the functions of pSTAT1 and uSTAT1 are ill defined. Using a murine model of soft tissue sarcoma (STS), we show that disruption of the IFN effector molecule IRF8 decreases pSTAT1 and increases uSTAT1 in STS cells, thereby increasing their metastatic potential. We determined that the IRF8 gene promoter was hypermethylated frequently in human STS. An analysis of 123 human STS specimens revealed that high uSTAT1 levels in tumor cells was correlated with a reduction in disease-specific survival (DSS), whereas high pSTAT1 levels in tumor cells were correlated with an increase in DSS. In addition, uSTAT1 levels were negatively correlated with pSTAT1 levels in these STS specimens. Mechanistic investigations revealed that IRF8 suppressed STAT1 transcription by binding the STAT1 promoter. RNAi-mediated silencing of STAT1 in STS cells was sufficient to increase expression of the apoptotic mediators Fas and Bad and to elevate the sensitivity of STS cells to Fas-mediated apoptosis. Together, our findings show how the phosphorylation status of pSTAT1 determines its function as a tumor suppressor, with uSTAT1 acting as a tumor promoter that acts by elevating resistance to Fas-mediated apoptosis to promote immune escape. Cancer Res; 72(18); 4724–32. ©2012 AACR.

Introduction

STAT1 is a DNA-binding protein that mediates IFN-γ–dependent gene expression. IFN-γ is a pleiotropic cytokine produced by activated T lymphocytes and natural killer (NK) cells. The IFN-γ/STAT1 signaling pathway was originally identified to play an essential role in host defense against microbial and viral infections. Recent studies, however, revealed that the IFN-γ/STAT1 signaling pathway is also critically important in host suppression of tumor development (1–3). Mice lacking the p53 tumor suppressor gene have been observed in multiple types of cancers (3, 7–10). Indeed, it has recently been reported that chronic IFN-γ signaling leads to hyperactivation of STAT1 and chronic inflammation–mediated spontaneous colorectal cancer development (6). In addition, STAT1 accumulation and hyperactivation have been observed in multiple types of cancers (3, 7–10). Therefore, the IFN-γ/STAT1 signaling pathway might be a double-edged sword that functions to either suppress or promote cancer development depending on the cellular context.

Binding of IFN-γ to its physiologic receptor, the IFN-γR, induces oligomerization of receptors, followed by rapid activation of the receptor-associated Janus-activated kinase (JAK) by transphosphorylation. The activated JAKs phosphorylate the intracellular domain of the IFN-γR, which then serves as a docking site for STAT1. The cytoplasmic STAT1 (cSTAT1) exists primarily in an unphosphorylated state (uSTAT1). uSTAT1 is recruited to the phosphorylated IFN-γR and is then itself phosphorylated. The phosphorylated STAT1s (pSTAT1) form homodimers and translocate to the nucleus to regulate gene expression by binding to gamma-induced sarcomas than wt mice. Therefore, STAT1 was viewed as a tumor suppressor (1). On the other hand, the IFN-γ/STAT1 signaling pathway is a major signaling pathway for modulating both pro- and anti-inflammatory responses, and approximately 20% of human cancers are estimated to develop from chronic inflammation (5). Indeed, the phosphorylation status of pSTAT1 determines its function as a tumor suppressor, with uSTAT1 acting as a tumor promoter that acts by elevating resistance to Fas-mediated apoptosis to promote immune escape. Cancer Res; 72(18); 4724–32. ©2012 AACR.

Authors’ Affiliations: 1Department of Biochemistry and Molecular Biology, 2Cancer Research Center, Georgia Health Sciences University, Augusta, Georgia; Departments of 3Surgery Oncology, 4Pathology, and 5Cancer Biology, and 6Sarcoma Research Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Corresponding Author: Kebin Liu, Biochemistry and Molecular Biology, Georgia Health Sciences University, 1410 Laney Walker Blvd, Augusta, GA 30912. Phone: 706-721-9483; Fax: 706-721-6608; E-mail: Kliu@georgiahealth.edu
doi: 10.1158/0008-5472.CAN-12-1347
©2012 American Association for Cancer Research.
activation site (GAS) elements (TTCN2, G/TAAA) in the promoters of IFN-γ target genes. Therefore, pSTAT1 is the key mediator of the IFN-γ signaling pathway. In contrast, uSTAT1 predominately exists in the cytoplasm and is constitutively expressed in most cells. However, pSTAT1 also induces STAT1 expression to increase uSTAT1 accumulation in the cytoplasm. In response to IFN-γ, STAT1 is rapidly phosphorylated but only lasts a few hours, whereas uSTAT1, newly synthesized by pSTAT1-activated transcription, can persist for several days (11).

The function of pSTAT1 in regulation of IFN-γ target genes is well-established. uSTAT1 was originally considered as the latent form of STAT1. However, it has since been shown that both pSTAT1 and uSTAT1 are transcription factors and may both be involved in the IFN-γ-mediated tumor suppression or promotion. However, the relative role of pSTAT1 and uSTAT1 in tumor development is not well-defined. In a previous study, we showed that disruption of IRF8 function resulted in a dramatic upregulation of uSTAT1 in mouse soft tissue sarcoma (STS) cells (14). Here, we examined cSTAT1/uSTAT1 and nuclear STAT1 (uSTAT1/pSTAT1) protein levels in 123 human STS specimens and observed that cSTAT1 level is inversely correlated with disease-specific survival (DSS), whereas pSTAT1 is positively correlated with DSS. Furthermore, we mechanistically showed that uSTAT1 is a negative regulator of the Fas-mediated apoptosis pathway that suppresses FasL-induced apoptosis at least partially through repressing Fas and Bad expression in sarcoma cells. Our data thus suggest that uSTAT1 is a tumor promoter and pSTAT1 is a tumor suppressor in human STS.

Materials and Methods

Mice and cells

BALB/c (H-2b) mice were obtained from the National Cancer Institute (NCI, Frederick, MD). All mice were housed, maintained, and studied in accordance with approved NIH and Georgia Health Sciences University guidelines for animal use and handling. CMS4 cell line has been characterized as previously described (15).

Human STS tumor specimens

Human STS specimens were collected from surgical specimens at The University of Texas M. D. Anderson Cancer Center (Houston, Texas) and formatted into a tissue microarray (TMA) as previously described (16). Specifically, 123 archived paraffin blocks from STS surgical specimens were used for TMA construction (Supplementary Table S1). Hematoxylin and eosin (H&E)-stained sections were reviewed from each of these STS tumor blocks by a sarcoma pathologist (A.J. Lazar) to define areas of homogeneous, viable tumor. Using an automated TMA apparatus (ATA-27, Beecher Instruments), 0.6-mm punch samples were obtained from donor AS blocks. The selected tissue cores were formatted into a standard 4.5 × 2 × 1 cm recipient block. Two tissue cores were taken for each case, and one TMA block containing a total of 246 cores of STS tumor tissue was constructed. Sections (4 μm) were cut, and one standard H&E-stained slide was examined to verify the presence of viable tumor.

Immunohistochemistry

Immunohistochemical staining was conducted at the Georgia Pathology Service using anti-STAT1 monoclonal antibody (mAb; BD Biosciences). The specimens were blocked with Normal Serum (1.5%) and then incubated in primary antibody for 30 minutes, followed by rinsing and staining with appropriate antiserum biotinylated antibody (1:2,000) for another 30 minutes. Color was developed by incubation with 3,3′-diaminobenzidine solution (Sigma), followed by rinsing and counterstaining with hematoxylin. Positive and negative controls were run in parallel. Labeling intensity was graded by 2 separate observers (A.J. Lazar and G. Lahat) in both the cytoplasmic and nuclear compartments as none (=0), weak (=1), moderate (=2), or strong (=3); the percentage of positive tumor cells (distribution) was estimated from the 2-paired TMA samples for each case as previously described (16). Anti-CD8 antibody was obtained from Dako and was used to stain individual slides as previously described (17).

Experimental lung metastasis mouse model

The experimental lung metastasis mouse model was carried out as previously described (18).

Analysis of tumor-infiltrating T cells

CMS4 cells were injected into BALB/c mice i.v., and tumor-bearing lungs were digested with collagenase as previously described (18). Cells were stained with fluorescein isothiocyanate (FITC)-conjugated CD8 mAb and phycoerythrin (PE)-conjugated FasL mAb (Biolegend) and analyzed by flow cytometry.

Apoptosis assay

Cells were stained with propidium iodide (PI) and Alexa Fluor 647-conjugated Annexin V (Biolegend), and analyzed with flow cytometry.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were carried out using anti-IRF8 antibody (Santa Cruz) as previously described (19). The STAT1 promoter DNA was detected by PCR using mouse STAT1 promoter–specific primers (Supplementary Table S2).

Immunoprecipitation

Immunoprecipitation was carried out with anti-Bcl2, Bcl-xL, and Bad mAbs (BD Biosciences) and agarose-protein A beads (Millipore). The immunoprecipitated proteins were blotted and probed with respective antibodies. Signals were detected using goat anti-mouse IgG (Fc-specific)-peroxidase (Sigma) and ECL Plus kit (GE Health Care).

Gene silencing

Cells were transiently transfected with scramble siRNA (Dharmacon) and mouse STAT1-specific siRNA (Santa Cruz),
respectively. Silencing efficiency was analyzed approximately 24 hours after transfection.

DNA methylation analysis

Genomics. DNA was extracted from human high-grade unclassified pleomorphic sarcoma/malignant fibrous histiocytoma specimens acquired as per a University of Texas MD Anderson Cancer Center Institutional Review Board approved protocol. DNA was modified with the CpGenome Universal DNA Modification Kit (Millipore). Methylation-sensitive polymerase chain reaction (MS-PCR) was conducted as previously described (20).

Reverse transcription-PCR analysis

Total RNA was isolated from cells using Trizol (Invitrogen) according to the manufacturer’s instructions, and used for the first-strand cDNA synthesis using the MMLV reverse transcriptase (Promega). The cDNA was then used as template for PCR amplification. The sequences of primers are listed in Supplementary Table S2.

Cell surface Fas analysis

Cells were stained with FITC-conjugated anti-mouse Fas mAb (Biolegend) and analyzed by flow cytometry. Fas protein level is quantified by mean fluorescence intensity.

Western blot analysis

Western blotting was conducted essentially as previously described (19). The blot was probed with pSTAT1-, STAT1-, Bcl-2-, Bcl-xL-, Bad-, and Jak1-specific antibodies (BD biosciences). Anti-β-actin antibody was obtained from Sigma.

Statistical analysis

All statistical analysis was conducted using SAS 9.2 and statistical significance was assessed using an α level of 0.05. Patient demographic and clinical characteristics were summarized using medians or proportions as applicable. Survival was estimated using the Kaplan–Meier method with 95% confidence intervals (CI), with disease-specific mortality as an endpoint. The time to disease-related death was computed from the date of surgery at MD Anderson Cancer Center to the date when the event of death was recorded, or the event was censored at the date of last follow-up assessment in event-free patients. Kaplan–Meier curves were used to determine DSS time; log-rank testing was used to compare DSS between patient subgroups. Fisher exact test was used to assess the difference in proportions between subgroups of patients and associations between markers or between marker and disease status. All computations were carried out in SPSS version 17.

Results

uSTAT1 level is positively correlated with the metastatic potential

Mouse STS cell line CMS4 was stably transfected with the control vector (CMS4.pCDNA), the IRF8 mutants with a point mutation (K–E) at amino acid 79 (CMS4.K79E), and a point mutation (R–E) at amino acid 289 (CMS4.R289E), respectively. Cytosol fractions were prepared and analyzed for cSTAT1 expression level is positively correlated with sarcoma cell metastatic potential in an experimental metastasis mouse model. A, disruption of IRF8 function increased sarcoma cell metastatic potential. CMS4.pCDNA and CMS4.K79E cells were injected into syngeneic mice i.v. and mouse lungs were examined for tumor growth 14 days later. The tumor nodule number in lungs from individual mice were numerated and presented in the right. **P < 0.01.** B, disruption of IRF8 function resulted in increased cSTAT1 expression. The indicated 4 cell sublines were cultured in the presence and absence of IFN-γ for 24 hours. Cytosol fractions were prepared and analyzed for cSTAT1 protein level by Western blotting. C, ChIP analysis of IRF8 association with the STAT1 promoter chromatin. Left, the mouse STAT1 promoter structure showing the ISRE element location. Right, ChIP assay was conducted with IgG or IRF8-specific antibody to show IRF8 binding to the STAT1 promoter region in CMS4 cells.

Figure 1. cSTAT1 expression level is positively correlated with sarcoma cell metastatic potential in an experimental metastasis mouse model. A, disruption of IRF8 function increased sarcoma cell metastatic potential. CMS4.pCDNA and CMS4.K79E cells (2 × 10⁵ cells per mouse) were injected into syngeneic mice i.v. and mouse lungs were examined for tumor growth 14 days later. The tumor nodule number in lungs from individual mice were numerated and presented in the right, **P < 0.01.** B, disruption of IRF8 function resulted in increased cSTAT1 expression. The indicated 4 cell sublines were cultured in the presence and absence of IFN-γ for 24 hours. Cytosol fractions were prepared and analyzed for cSTAT1 protein level by Western blotting. C, ChIP analysis of IRF8 association with the STAT1 promoter chromatin. Left, the mouse STAT1 promoter structure showing the ISRE element location. Right, ChIP assay was conducted with IgG or IRF8-specific antibody to show IRF8 binding to the STAT1 promoter region in CMS4 cells.

CMS4.pCDNA and CMS4.K79E cells were injected i.v. into syngeneic BALB/c mice. Examination of mouse lungs revealed that disruption of IRF8 function significantly increased the metastatic potential of CMS4 cells (Fig. 1A). Western blotting revealed that disruption of IRF8 function significantly increases STAT1 protein level in CMS4 cells (Fig. 1B).

Analysis of the mouse STAT1 promoter DNA sequence identified an IFN-stimulated response element (ISRE; Fig. 1C). ChIP analysis with IRF8-specific antibody showed that IRF8 is associated with the STAT1 promoter chromatin in CMS4 cells (Fig. 1C). Our data thus suggest a positive correlation between STAT1 protein level and STS metastatic potential.

STAT1 expression level is associated with DSS in human STS

To determine whether the above observations can be extended to human STS specimens, we used a clinically annotated STS TMA and stained it for STAT1. Ninety-two of
the STS tumors (75%) included in the TMA were high-grade, the majority (80%) were classified as undifferentiated pleomorphic STS. Positive cytoplasmic (cSTAT1) and nuclear STAT1 (nSTAT1) immunostainings were observed in 116 (94.3%) and 94 (76.4%) tumors, respectively. Cytoplasmic levels were high in 29.3% (n = 36) of evaluable tumor samples; high nuclear expression was observed in 15.3% (n = 19) of STS tumors (Fig. 2).

Expression intensity of nSTAT1 level was found to be associated with a clear trend toward prolonged DSS; however, it was not statistically significant; median DSS of STS patients with low nSTAT1 levels was 58 months and has not been reached in the cohort of patients expressing high nSTAT1 levels (P = 0.08; Fig. 3A). In contrast, our data showed that high cSTAT1 expression levels were strongly associated with decreased rates of STS-specific survival; median DSS of patients with high cSTAT1 expression levels was 46 months and has not been reached in the low cSTAT1 group (P = 0.03; Fig. 3B). In addition, cSTAT1 level was found to be negatively correlated with the nSTAT1 level in these STS specimens (P = 0.015) with 66.7% of specimens with low cSTAT1 expression scored as high nSTAT1 versus 92% of specimens with high cSTAT1 expression scoring low nSTAT1. In summary, these results imply that nSTAT1 may function as a tumor suppressor, whereas, cSTAT1 as a tumor promoter in STS.

IRF8 promoter DNA is hypermethylated in human STS

Because STAT1 expression is potentially regulated by IRF8 (Fig. 1), and the IRF8 promoter DNA is frequently methylated in human cancer cells (20–22), we next sought to determine the methylation status of the IRF8 promoter DNA in human STS cells. Genomic DNA was isolated from 10 human STS specimens and the IRF8 promoter DNA methylation status was analyzed. MS-PCR analysis indicated that the IRF8 promoter DNA is hypermethylated in all 10 specimens examined (Fig. 3C).

STAT1 confers sarcoma cell resistance to FasL-induced apoptosis

Acquisition of resistance to apoptosis, including Fas-mediated apoptosis, is often associated with tumor progression (23, 24). The positive correlation between STAT1 level and increased tumor burden (Figs. 1–3) suggest that STAT1 might promote tumor development through regulating apoptosis in sarcoma cells. To test this hypothesis, we silenced uSTAT1 expression in CMS4 cells (Fig. 4A) and analyzed the tumor cell sensitivity to FasL-induced apoptosis. While CMS4 cells were not sensitive to FasL-induced apoptosis, silencing uSTAT1 dramatically increased tumor cell sensitivity to FasL-induced apoptosis in vitro (Fig. 4B; P < 0.01).

uSTAT1 regulates Fas and Bad expression

It has been shown that uSTAT1 directly regulates the expression of several genes, including Bcl-xL, Bcl-2l1, ccnd1, cMyc, and STAT3 in several types of cells (25–29). Reverse transcription (RT)-PCR analysis indicated that silencing uSTAT1 expression upregulates Bcl-xL expression (Fig. 5A). However, the expression levels of Bcl-2l1, ccnd1, cMyc, and STAT3 were not changed in STAT1-silenced cells (Fig. 5A), suggesting cell type–dependent regulation of gene expression by uSTAT1. Because STAT1 mediates sarcoma cell sensitivity to Fas-mediated apoptosis (Fig. 4B), we then examined the expression levels of genes with known function in the Fas-mediated apoptosis pathway. RT-PCR analysis revealed that the expression levels of Fas and Bad are upregulated in STAT1-silenced sarcoma cells (Fig. 5B and C). Consistent with the increased Fas mRNA level, STAT1-silenced CMS4...
cells also expressed higher level of cell surface Fas protein as compared with the control cells (Fig. 5B). It is known that it is the ratio of expression levels of pro- and antiapoptotic genes that determines the sensitivity of cells to apoptosis induction. The observation that silencing STAT1 increases Bcl-xL expression level and at the same time significantly increased the tumor cell sensitivity to Fas-mediated apoptosis suggest that Bcl-xL function is neutralized by increased proapoptotic protein. To test this hypothesis, we conducted immunoprecipitation using Bcl-xL- and Bcl-2–specific mAbs and analyzed Bcl-xL- and Bcl-2–associated proapoptotic proteins. We detected that Bad is associated with Bcl-xL protein (Fig. 5D). Therefore, Bcl-xL and Bad form a protein complex in the CMS4 tumor cells.

Tumor-infiltrating cytotoxic T lymphocytes express FasL.

Fas is a death receptor that by itself does not initiate apoptosis in tumor cells. FasL is the physiologic ligand of Fas. FasL is expressed on the surface of activated cytotoxic T lymphocytes (CTLs; refs. 30–32). We reasoned that if STAT1 mediates tumor cell sensitivity to Fas-mediated apoptosis in vivo (Fig. 4), then the tumor-infiltrating CTLs (2) might be the source of FasL that initiates tumor cell apoptosis in vivo. Next, we analyzed human STS specimens for CTL levels. Immunohistochemical staining of tumor specimens with CD8–specific mAb indicated that CTLs are present in 5 of the 5 specimens analyzed. The CTL infiltration level differs from specimens to specimens. However, CTLs are relatively evenly distributed inside the tumor tissues (Fig. 6A). To determine the FasL level in the STS tumor tissue, we injected CMS4 cells into mice i.v., and tumor-bearing lungs were analyzed for CTLs. CTLs consist of approximately 3% of the total cells in the tumor-bearing lung tissues and approximately 22% of these tumor-infiltrating CTLs are FasL+ (Fig. 6B).
STAT1 Suppresses Apoptosis to Promote Tumor Growth

were measured by staining cells with Fas-specific mAbs, respectively, overnight and analyzed for the expression level of genes as indicated by semiquantitative RT-PCR. Cell surface Fas protein levels were quantified by flow cytometry. Fas protein level is quantified by MFI and presented in the bottom of panel C, *P = 0.05. D, Bcl-2 and Bcl-xL form a protein complex in sarcoma cells. Cell lysates were prepared from CMS4 cells, immunoprecipitated with Bcl-2- and Bcl-xL–specific mAbs, respectively, and then analyzed for Bcl-2, Bcl-xL, and Bad protein association by Western blotting.

uSTAT1 represses Jak1 expression to inhibit IFN-γ–induced STAT1 phosphorylation

Disruption of IRF8 function not only leads to upregulation of uSTAT1 (Fig. 1), but also inhibition of IFN-γ–induced STAT1 phosphorylation (Fig. 7A). Analysis of pSTAT1 activity using electromobility shift assay (EMSA) indicated that pSTAT1 binding to GAS-containing DNA is also diminished in sarcoma cells overexpressing IRF8 mutants (Fig. 7B). To determine whether diminished STAT1 phosphorylation is due to uSTAT1 upregulation, we silenced uSTAT1 in CMS4 sarcoma cells and analyzed the expression level of Jak1. RT-PCR analysis revealed that silencing STAT1 in CMS4 cells resulted in upregulation for at least 2 days in CMS4 cells after IFN-γ treatment (Fig. 7D). Taken together, our data suggest that uSTAT1 is a repressor of Jak1 and functions as a feedback terminator of the IFN-γ/pSTAT1 signaling pathway.

Discussion

IFN-γ is a pleiotropic cytokine secreted by activated T cells and NK cells, and plays a critical role in the host cancer immunosurveillance (1, 33). STAT1 is the key mediator of the IFN-γ signaling pathway and has been shown to function as a tumor suppressor (1, 2, 4). However, STAT1 hyperactivation and chronic IFN-γ signaling is observed to be linked to promotion of inflammation-mediated spontaneous cancer development (6), and STAT1−/− mice are partially protected from leukemia development (34). Furthermore, overexpression of STAT1 is associated with tumor cell resistance to chemotherapeutic agents and radiation (35–45). These studies suggest that STAT1 might also function as a tumor promoter.

In this study, we observed two interesting phenomena in an experimental metastasis mouse sarcoma model in vivo: (i) a positive correlation between uSTAT1 expression level and metastatic potential of mouse sarcoma cells (Fig. 1A); and (ii) an inverse correlation between IFN-γ–induced pSTAT1 level and metastatic potential of mouse sarcoma cells (Fig. 7A and B). More interestingly, consistent with what was observed in
Figure 7. uSTAT1 represses Jak1 expression to inhibit IFN-γ-induced STAT1 phosphorylation. A, disruption of IRF8 function results in diminished pSTAT1 and Jak1 level in sarcoma cells. The indicated 4 cell sublines were cultured in the presence or absence of IFN-γ for 4 hours. Nuclear extracts were prepared from the cells and incubated with a GAS element-containing DNA probe. The protein-DNA interactions were then analyzed by EMSA. B, disruption of IRF8 function results in diminished pSTAT1 activity in sarcoma cells. The indicated 4 cell sublines were transfected with scramble and mouse STAT1-siRNAs, respectively, overnight and analyzed for STAT1 and Jak1 expression level by semiquantitative RT-PCR. C, STAT1 is a repressor of Jak1. CMS4 cells were transfected with scramble and mouse STAT1-siRNAs, respectively, overnight and analyzed by EMSA. D, IFN-γ-disruption of IRF8 function results in diminished pSTAT1 activity in sarcoma cells. The indicated 4 cell sublines were transfected with scramble and mouse STAT1-siRNAs, respectively, overnight and analyzed for pSTAT1 and total STAT1 protein level by Western blotting.

Because IFN-γ induces rapid Jak1 phosphorylation and pSTAT1 formation, pSTAT1 transcriptionally activates Fas and IRF8. uSTAT1 is repressed by IRF8 and cannot be upregulated by pSTAT1 at the early stage of IFN-γ signaling. This acute IFN-γ signaling results in tumor cell sensitivity to Fas-mediated apoptosis induction (39). Repression of Jak1 expression by uSTAT1 thus ensures that uSTAT1-mediated Fas repression and apoptosis resistance may not be reversed by IFN-γ signaling in the tumor microenvironment.

The mechanisms underlying STAT1 in tumor promotion are still elusive. The observation that overexpression of STAT1 is associated with resistance of tumor cells to chemotherapeutic agents and radiation suggest that STAT1 might confer tumor cell resistance to apoptosis to promote tumor development (35–38, 40–45). Indeed, silencing STAT1-enhanced tumor cell sensitivity to apoptosis induction by chemotherapeutic agents and radiation (36, 43, 45). In this study, we showed that silencing STAT1 significantly increased sensitivity of sarcoma cells to Fasl-induced apoptosis (Fig. 4). The Fas–FasL system plays a critical role in suppression of tumor development under physiologic conditions (46–49). Fasl is primarily expressed on activated CTLs (30–32). In this study, we also observed CTL infiltration in human STS tissues (Fig. 6A) and that tumor-infiltrating CTLs express Fasl in vivo (Fig. 6B). These results thus suggest that uSTAT1 might confer sarcoma cell resistance to Fasl-mediated apoptosis to escapes CTL-mediated tumor suppression in vivo (Figs. 1–3).

uSTAT1 is a transcription factor (50) and has been shown to directly regulate the expression of several genes with known functions in apoptosis regulation, including Bcl-xL and STAT3 (25, 26). We observed that uSTAT1 functions as a repressor of Bcl-xL in sarcoma cells (Fig. 5). However, uSTAT1 also functions as a Bad suppressor (Fig. 5c), and Bad forms a complex with Bcl-xL in sarcoma cells (Fig. 5D). Therefore, uSTAT1-mediated suppression of Bcl-xL does not lead to increased sensitivity of the sarcoma cells to apoptosis induction. Silencing STAT1 resulted in upregulation of Fas (Fig. 5B), suggesting that uSTAT1 is a Fas repressor, and therefore, uSTAT1 might use repressing Fas expression to confer sarcoma cell resistance to Fasl-induced apoptosis.

Jak1 is the key kinase that phosphorylates the IFN-γR and subsequently STAT1. It has been shown that tumor cells use downregulation of Jak1 to impair the IFN-γ signaling pathway. In this study, we observed that uSTAT1 also functions as a repressor of Jak1 to impair pSTAT1 formation (Fig. 7A and B). Therefore, uSTAT1 not only represses expression of Fas and Bad to confer the tumor cell resistance to Fas-mediated apoptosis (Figs. 4 and 5), but also represses Jak1 expression to potentially terminate STAT1 phosphorylation (Fig. 7). Because IFN-γ/pSTAT1 can upregulate Fas expression and enhances tumor cell sensitivity to apoptosis induction (39), repression of Jak1 expression by uSTAT1 thus ensures that uSTAT1-mediated Fas repression and apoptosis resistance may not be reversed by IFN-γ signaling in the tumor microenvironment.

On the basis of the literature and our above observations, we propose a model to illustrate the cross-talk network of pSTAT1 and uSTAT1 in IFN-γ signaling, apoptosis and tumor development (Supplementary Fig. S1). We propose that exposure of sarcoma cells to IFN-γ in the tumor microenvironment induces rapid Jak1 phosphorylation and pSTAT1 formation. pSTAT1 transcriptionally activates Fas and IRF8. uSTAT1 is repressed by IRF8 and cannot be upregulated by pSTAT1 at the early stage of IFN-γ signaling. This acute IFN-γ signaling results in tumor cell sensitivity to Fas-mediated apoptosis and tumor suppression by Fasl in tumor-infiltrating CTLs. However, IFN-γ-induced pSTAT1 and IRF8 only have a short half-life and uSTAT1 starts to accumulate after pSTAT1 and IRF8 start to degrade (Fig. 7D). uSTAT1 suppresses Fas to confer tumor cell apoptosis resistance. uSTAT1 also represses Jak1 to terminate their tumor-promoting activities. This model suggests that the tumor microenvironment contributes to tumor cell resistance to IFN-γ-mediated apoptosis induction.
the IFN-γ signaling in a feedback inhibition manner. Therefore, chronic elevation of uSTAT1 may impair the IFN-γ signaling pathway and thus keep Fas and Bad at a low expression level to maintain tumor cells an apoptosis-resistant phenotype to escape from immunosurveillance to promote tumor development (Supplementary Fig. S1).

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: M.A. Zimmerman, K. Liu
Development of methodology: M.A. Zimmerman, A.J. Lazar, R. Pollock, K. Liu
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.) M.A. Zimmerman, N.-T. Rahman, D. Yang, A.J. Lazar, D. Lev, K. Liu
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.A. Zimmerman, N.-T. Rahman, G. Lahat, A.J. Lazar, R. Pollock, K. Liu

References

Unphosphorylated STAT1 Promotes Sarcoma Development through Repressing Expression of Fas and Bad and Conferring Apoptotic Resistance

Mary A. Zimmerman, Nur-Taz Rahman, Dafeng Yang, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-1347

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2012/09/13/0008-5472.CAN-12-1347.DC1

Cited articles
This article cites 50 articles, 25 of which you can access for free at:
http://cancerres.aacrjournals.org/content/72/18/4724.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/72/18/4724.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.