RKI-1447 Is a Potent Inhibitor of the Rho-Related ROCK Kinases with Anti-Invasive and Antitumor Activities in Breast Cancer

Ronil A. Patel1, Kara D. Forinash1, Roberta Pireddu1, Ying Sun1, Nan Sun1, Mathew P. Martin1, Ernst Schönbrunn1,2, Nicholas J. Lawrence1,2, and Said M. Sebti1,2

Abstract

The Rho-associated kinases ROCK1 and ROCK2 are critical for cancer cell migration and invasion, suggesting they may be useful therapeutic targets. In this study, we describe the discovery and development of RKI-1447, a potent small molecule inhibitor of ROCK1 and ROCK2. Crystal structures of the RKI-1447/ROCK1 complex revealed that RKI-1447 is a Type II kinase inhibitor that binds the ATP binding site through interactions with the hinge region and the DFG motif. RKI-1447 suppressed phosphorylation of the ROCK substrates MLC-2 and MYPT-1 in human cancer cells, but had no effect on the phosphorylation levels of the AKT, MEK, and S6 kinase at concentrations as high as 10 μmol/L. RKI-1447 was also highly selective at inhibiting ROCK-mediated cytoskeleton reorganization (actin stress fiber formation) following LPA stimulation, but does not affect PKA-mediated lamellipodia and filopodia formation following PDGF and Bradykinin stimulation, respectively. RKI-1447 inhibited migration, invasion and anchorage-independent tumor growth of breast cancer cells. In contrast, RKI-1313, a much weaker analog, had little effect on the phosphorylation levels of ROCK substrates, migration, invasion or anchorage-independent growth. Finally, RKI-1447 was highly effective at inhibiting the outgrowth of mammary tumors in a transgenic mouse model. In summary, our findings establish RKI-1447 as a potent and selective ROCK inhibitor with significant anti-invasive and antitumor activities and offer a preclinical proof-of-concept that justify further examination of RKI-1447 suitability as a potential clinical candidate.

Introduction

The Rho family of small GTPases transduces biological signals from cell surface receptors such as receptor tyrosine kinases to the nucleus. They act as molecular switches that bind GTP (active) and GDP (inactive) to regulate cell proliferation, survival and cytoskeleton organization, thus, affecting cell shape/morphology, adhesion and movement (1–3). Some of these GTPases, particularly RhoA and RhoC, have attracted much attention because of their well-documented role in malignant transformation hallmarks including migration, invasion, and metastasis. For example, RhoA and RhoC are required for Ras-driven malignant transformation (4), and their overexpression induces migration, invasion, and metastasis whereas their dominant negative forms block these hallmarks of cancer (5, 6). Furthermore, several Rho GTPases are over expressed in a large number of human cancers (7–10), and the expression of RhoA and RhoC has been shown to be much higher in metastatic tumors (11, 12). Several studies have suggested RhoC as a prognostic biomarker for metastasis in melanoma, breast and pancreatic cancer patients (11, 12). The mechanism by which RhoA and RhoC contribute to metastasis is believed to involve the binding of RhoA-GTP and RhoC-GTP to their major effectors, the Rho-associated kinases 1 and 2, together referred to here as ROCKs (13–19). ROCKs control cell shape, adhesion and migration by regulating actin-myosin contractibility. This is accomplished by ROCKs phosphorylating several major substrates such as myosin light chain (MLC), the MLC phosphatase PPI regulatory subunit MYPT-1 and LIM kinases 1 and 2. Phosphorylation of MLC activates it to drive migration and invasion (14, 20). Phosphorylation of LIMK 1 and 2 activates it to phosphorylate and inactivate coflin from inhibiting migration/invasion (21). Phosphorylation of MYPT-1 blocks dephosphorylation and inactivation of MLC (16).

The role of ROCKs in migration, invasion and metastasis has been well documented. For example, over expression of ROCKs induces migration and invasion in several tumor types including breast cancer (22–24) whereas dominant negative ROCKs and ROCKs inhibitors block invasion and metastasis in vitro and in vivo (23, 25–30). Furthermore, the expression levels of...
ROCKs is 10-fold higher in breast tumor biopsies as compared to their corresponding normal mammary tissue, and these high expression levels correlate with metastasis, poor clinical outcome and shorter survival time of breast cancer patients (26, 31). The overwhelming evidence implicating the Rho GTPases/ROCK pathway in migration, invasion and metastasis prompted the development of inhibitors to interfere with this pathway with the ultimate goal of discovering novel antimetastatic drugs (14, 26, 27, 29). To this end several approaches have been taken. One of these is to develop geranylgeranyltransferase-1 (GGT-1) inhibitors (GGTI), because GTPases such as RhoA and Rhoc require the lipid posttranslation modification geranylgeranylation for their ability to induce malignant transformations (32). Although this approach has shown great promise preclinically and one compound GGTI-2418 has reached Phase I clinical trials (33), a drawback is that GGTIs inhibit GGT-1, an enzyme that has dozens of substrates (32). A more selective approach to interfering with the Rho GTPase/ROCK pathway is to develop ROCK inhibitors as potential antimetastatic agents. In this manuscript, we describe the discovery and development of RKI-1447 a highly potent ROCK inhibitor. First, using X-ray crystallography we solved the structure of the RKI-1447-ROCK1 complex and determined the mode of action of RKI-1447. Furthermore, we showed that RKI-1447 suppresses ROCK-dependent signaling, cell morphology, anchorage-independent cell growth, migration invasion, and in vivo growth of mammary tumors.

Materials and Methods

Cell lines

Human breast (MDA-MB-231 and MDA-MB-468) and lung (H-1299) cell lines were purchased from American Type Culture Collection. These cells have not been authenticated.

ROCK1 and ROCK2 kinase assays

The Invitrogen Z-Lyte FRET kinase assay with KKRPPQRRYSNVF peptide as substrate (from MLC sequence) was used (Invitrogen, cat. PV3793) exactly as described by us (34).

Enzyme purification and protein crystallography

Enzyme purification and protein crystallography were carried out exactly as described by us previously (34). Data were reduced with XDS (35). The structure was solved by molecular replacement using the MolRep program from CCP4 (36) with the monomer of pdb 3TV7 as a starting model. PHENIX (37) was used for refinement, and model building was done using Coot (38). Figures were prepared using PYMOL (39).

Evaluation of the phosphorylation levels of MLC-2 and MYPT-1 by Western blot analysis

Cells were plated and treated the next day with vehicle, RKI-1447 or RKI-1313 for 1 hour. [The chemical synthesis of RKI-1447 and RKI-1313 was described by us (34). The mesylate salts of the compounds were used to enhance solubility.] The cells were then harvested, lysed and processed for Western blotting as described by us previously (40). The antibodies that were used for Western blotting were MYPT1 (Cat#612164; BD Transduction Laboratories), Phospho-T696-MYPT1 (Cat#ABS45; Millipore), MLC2 (Cat#3672S), Phospho-S19-MLC2 (Cat#3671S), Akt (Cat#9272), Phospho-S473-Akt (Cat#9271), Phospho-S298-MEK(Cat#9128S), MEK (Cat#9122S), Phospho-S240-S244-S6 (Cat#2215S), S6 (Cat#2217), Cleaved PARP (Cat#5625S; Cell Signaling Technology) and Tubulin (Cat#T5168; Sigma).

Determination of anchorage-independent growth using soft agar assays

The soft agar assays were carried out exactly as described by us (41).

Migration assay

MDA-MB-231 cells were seeded at 4 × 10⁵ cells per well in a 6-well plate and allowed to grow overnight. The cells were then starved for 24 hours. The media was then aspirated and the cells were scratched with a pipette tip, and treated either with vehicle, RKI-1447 or RKI-1313 at the indicated concentrations for 24 hours. Pictures were taken with a Leica Microscope before (time 0) and 24 hours after drug treatments.

Invasion assay

Invasion assay was carried out in Corning Transwell inserts coated with Matrigel. MDA-MB-231 cells were seeded at 3.5 × 10⁵ and allowed to grow overnight in a 6-well plate. The cells were then treated with either vehicle, RKI-1447 or RKI-1313 for 21 hours and trypsinized, resuspended in DMEM containing 20% FBS as the "chemoattractant". The cells in the top chamber were carefully removed after 48 hours and the filter membranes containing the invaded cells were fixed with methanol, stained with crystal violet and photographed. The membranes were then dis-solved in 10% acetic acid and the absorbance was read at 540 nm.

Effects of RKI-1447 and RKI-1313 on cell morphology

NIH 3T3 cells were plated at 8000 cells/well in 8-chamber slides in serum free media for 24 hours, and treated with vehicle, 1 μmol/L RKI-1447 or 1 μmol/L RKI-1313 for 1 hour. The cells were then stained with complete media, 10 μmol/L LPA, 200 ng/mL bradykinin, or 30 ng/mL PDGF for 30 minutes. After stimulation, the cells were fixed in 4% para-formaldehyde and stained with Texas-Red Phalloidin. Mounting medium containing DAPI (Cat#H-1200; Vector Laboratories) was then added and at least 100 cells per well were observed. The cells were imaged using Zeiss Upright fluorescence microscope.

RKI-1447 antitumor efficacy studies

MMTV/neu transgenic mice [FVB/N-Tg (MMTVneu) 202 Mul/J] were purchased from the Jackson Laboratory and bred to produce multiple litters to maintain the colony. The antitumor efficacy studies were carried out exactly as described by us previously (41). In brief, the mice were treated i.p. daily for 14 days with either vehicle [20%–2-hydroxypropyl-beta-cyclodextrin (HPCD)] or 200 mpk RKI-1447 dissolved in freshly...
prepared HPCD. The percentage change in volume was calculated on the basis of the tumor volume on the last day of treatment (Vf) relative to that on the day of initiation of treatment (V0). The average percentage change in tumor volume was then calculated for each treatment group.

Results

Discovery of RKI-1447, a highly potent ROCK1 and ROCK2 inhibitor

Our chemistry efforts resulted recently in the identification of a family of pyridylthiazole ROCK inhibitors (34). Structure activity relationship studies of this family of ROCK inhibitors led to the discovery of a pair of closely related analogues; RKI-1447 (potent ROCK inhibitor) and RKI-1313 (weak ROCK inhibitor). Figure 1A and B show that RKI-1447 inhibits potently ROCK1 and ROCK2 in a dose-dependent manner with IC50 values of 14.5 and 6.2 nmol/L, respectively. In contrast, RKI-1313 where the meta-hydroxyl on the phenyl ring of RKI-1447 was replaced with a para-methoxy group was much less active and had IC50 values 34 µmol/L for ROCK1 and 8 µmol/L for ROCK2 (Fig. 1A and B).

Crystal structure of the RKI-1447-ROCK1 complex reveals that RKI-1447 is a Type 1 inhibitor that binds both the hinge region and the DFG motif of the ROCK ATP binding site

To determine the mode of binding of RKI-1447 to ROCK, we determined the crystal structure of RKI-1447 in complex with
the kinase domain of human ROCK1 (residues 6-415). The RKI-1447-ROCK1 complex was crystallized in space group C222₁ with 2 ROCK1 dimers in the asymmetric unit. The structure was refined to 2.9 Å with R cryst and R free values of 22.8% and 29.0%, respectively. Figure 1C shows the overall structure of the dimer and the interactions that RKI-1447 establishes in the ATP binding site. Specifically, RKI-1447 is a Type I inhibitor that binds to the hinge region through a hydrogen bond formed between the pyridine ring nitrogen and the main chain amide NH of Met156. The inhibitor extends from the hinge region along Asp216 of the DFG motif towards the β-turn comprising residues Gly85–Gly88. The urea moiety interacts with the ε-amino group of Lys105 and the carboxyl group of Asp216. The phenol hydroxyl is in hydrogen bonding distance with the main chain carbonyl oxygen of Gly85. The pyridine, thiazole, and phenol moieties of the inhibitor form multiple van der Waals (hydrophobic) interactions with surrounding residues (3.4 Å < d < 4 Å). The network of noncovalent binding interactions between RKI-1447 and ROCK1 together with the extended, low energy conformation of the inhibitor, explain the high inhibitory potency of RKI-1447 towards ROCKs. This binding mode also explains the weak inhibitory activity of the analogue RKI-1313. Introduction of the methoxy group in para position of the phenyl ring is likely to cause substantial steric hindrance with Gly88 and Phe87 [Fig. 1C (panel c)]. In addition, elimination of the hydroxyl group from the meta position of the phenyl ring will result in the loss of hydrogen bonding potential with the main chain carbonyl of Gly85.

RKI-1447 is much more potent than RKI-1313 at inhibiting the phosphorylation of the ROCK substrates MLC-2 and MYPT-1 in human cancer cells

We next determined the ability of RKI-1447 and RKI-1313 to inhibit ROCKs in intact human cancer cells. To this end, we determined the effects of RKI-1447 and RKI-1313 on the phosphorylation levels of 2 ROCK substrates: MLC-2 and MYPT-1. This was carried out by treating cells with various concentrations of the compounds and processing the cells for Western immunoblotting to determine their effects on the levels of P-MLC-2, P-MYPT-1, total MLC-2, and total MYPT-1 as described under Materials and Methods section. Figure 2A shows that RKI-1447 treatment of MDA-MB-231 human breast cancer cells decreased the levels of P-MLC-2, but not total MLC-2, in a concentration-dependent manner with significant effects starting at 100 nmol/L. RKI-1313 did not decrease P-MLC-2 at 10 µmol/L consistent with its weak inhibitory activity against ROCK1 and ROCK2 in vitro (Fig. 1B). RKI-1447 also decreased the levels of P-MYPT-1 in MDA-MB-231 cells in a dose-dependent manner (Supplementary Fig. S1). Similar results were obtained with another human breast cancer cell line, MDA-MB-468, where RKI-1447 decreased the levels of both P-MLC-2 and P-MYPT-1 in a dose-dependent manner (Supplementary Fig. S1). Furthermore, RKI-1447 but not RKI-1313 inhibited the levels of P-MYPT-1 in a concentration-dependent manner in H1299 human lung cancer cells (Fig. 2B). Figure 2A also shows that RKI-1447 had no effects on the phosphorylation levels of Akt, Mek, and S6 suggesting that RKI-
RKI-1447 is selective for ROCK over kinases that phosphorylate Akt (i.e., mTORC2), Mek (i.e., PAK), and S6 (i.e., S6K).

RKI-1447 inhibits LPA-induced actin stress fiber formation but not PDGF-induced lamellipodia or bradykinin-induced filopodia formation.

The ability of LPA to induce actin stress fiber formation is known to be mediated by activation of the RhoA/ROCK pathway whereas the ability of PDGF and bradykinin to induce lamellipodia and filopodia is known to be mediated by the RAC1/PAK and the CDC42/PAK pathways, respectively. We reasoned that if RKI-1447 is selective for ROCKs, then it should only inhibit LPA-induced actin stress fiber formation but not lamellipodia and filopodia formation by PDGF and Bradykinin. To this end, we starved NIH3T3 cells and treated them with either vehicle or RKI-1447 before stimulation with either LPA, PDGF or Bradykinin, stained the cells with phalloidin to evaluate their morphological changes as described under Materials and Methods section. Figure 3A shows that starved cells contain no actin stress fibers, filopodia or lamellipodia. Stimulation with LPA resulted in actin stress fiber formation and this was blocked by RKI-1447 but not RKI-1313 treatment. Stimulation with PDGF resulted in the formation of lamellipodia and this was not affected by RKI-1447 treatment (Fig. 3B). Similar results were obtained with Bradykinin where RKI-1447 had no effects on bradykinin-induced filopodia formation (Fig. 3B). These results further support the selectivity of RKI-1447 as a ROCK inhibitor.

RKI-1447 is much more potent than RKI-1313 at inhibiting anchorage-independent colony formation, migration and invasion of breast cancer cells.

The results presented in Figs. 1–3, and Supplementary Fig. S1 clearly showed that RKI-1447 is a potent and selective ROCK1 and ROCK2 inhibitor capable of reaching its target and inhibiting selectively the phosphorylation of the ROCK substrates MLC-2 and MYPT-1. Because of the prominent role that ROCKs play in adhesion, migration and invasion we reasoned that inhibition of ROCKs should result in suppression of these hallmarks of malignant transformation. To this end, MDA-MB-231 cells were treated with various concentrations of RKI-1447 and its less active analogue RKI-1313 and processed for anchorage-independent tumor colony formation in soft agar, migration using wound healing assays and invasion using Boyden Chamber assays as described under Materials and Methods section. Figure 4 shows that treatment of MDA-MB-231 cells with RKI-1447 hampered their ability to form soft agar colonies with an IC50 value of 709 nmol/L. In contrast, RKI-1313 up to 30 µmol/L had little effect. Furthermore, in the absence of RKI-1447, MDA-MB-231 cells migrated after being scratched and filled the wound created by the scratch (Fig. 5). Treatment with RKI-1447 inhibited this scratch-induced migration at both...
1 and 10 µmol/L (Fig. 5); whereas RKI-1313 had minimal effect on migration consistent with its much less potent activity against ROCKs in vitro and in intact cells. Finally, treatment of MDA-MB-231 cells with RKI-1447 inhibited their serum-induced invasion by 53% and 85% at 1 and 10 µmol/L, respectively (Fig. 6). Consistent with the soft agar and migration assays, RKI-1313 had little effect on inhibiting MDA-MB-231 tumor cell invasion (Fig. 6). It is important to point out that RKI-1447 at these concentrations (1 and 10 µmol/L) was more than 10-fold less active at inhibiting anchorage-dependent proliferation/survival of MDA-MB-231 breast cancer cells as measured by MTT assay (see Supplementary Fig. S2), indicating that the ability of RKI-1447 to inhibit soft agar growth, migration and invasion is most likely not due to its ability to inhibit anchorage-dependent proliferation/survival. Consistent with this, RKI-1447 concentrations as high as 10 µmol/L did not induce apoptosis (PARP cleavage) and had little effect on cell-cycle progression (Supplementary Fig. S3).

RKI-1447 inhibits mammary tumor growth in vivo

The results described in Figs. 1–6 show that RKI-1447 is a potent and selective ROCK inhibitor that suppresses ROCK-driven cytoskeleton re-organization, signaling, migration, invasion, and anchorage-independent tumor cell growth of breast cancer cells. Although these results are encouraging they were all carried out in cultured cells. We next determined whether RKI-1447 can inhibit tumor growth in an in vivo environment. To this end, we used the ErbB2 mammary cancer transgenic mouse model. In this model, the mice harbor the ErbB2 gene under the control of the MMTV promoter, and spontaneously develop tumors in their mammary tissues. Mammary tumors were measured beginning at the time of tumor onset and treatment (once a day for 14 days) with vehicle (20% HPCD) or RKI-1447 (200 µgk/day) began when tumor volumes reached 75 to 2,300 mm³. A wide range of tumor volumes was used to ensure that responses were not volume dependent. Supplementary Tables S1 and S2 show initial volume before treatment, final volume at the end of treatment and the percentage change in tumor volume for 57 tumors from 28 mice treated with RKI-1447 and 14 tumors from 13 mice treated with vehicle. The percentage change was calculated from the tumor volume on the last day of treatment relative to the volume on the day of initiation of treatment. Figure 7A shows the percentage change in tumor volume for each individual tumor whereas Fig. 7B shows the average percent change for each treatment group. Tumors from mice treated with vehicle increased in size with an average percent change in tumor volume of 68.3% (Fig. 7B). In contrast, tumors from mice treated with the RKI-1447 increased in size with an average percent change in tumor volume of only 8.8% (Fig. 7B). Thus, RKI-1447 inhibited mammary tumor growth by 87% ([1 – (8.8/68.3)] × 100), and on average the mammary tumors from RKI-1447 treated mice were 7.7-fold smaller compared with those tumors from mice treated with the vehicle control. A closer look at the data from Supplementary Table 1 and Fig. 7A
lead us to divide the RKI-1447 treated group into 3 subgroups: those tumors that regressed (tumors whose volumes decreased by 10% or greater—see representative growth curve in Fig. 7C top right panel), those tumors that continued to grow (tumors whose volumes increased by 10% or more—see representative growth curve in Fig. 7C bottom right panel) and those tumors whose growth was inhibited (tumors whose volume decreased or increased by less than 10%—see representative growth curve in Fig. 7C bottom left panel). Figure 7B shows that RKI-1447 treatment caused 20 tumors (35% of the total of 57 tumors treated) to regress, 14 tumors (25%) to be growth inhibited and had no effect on the growth of 23 tumors (40%). The 20 tumors that regressed did by an average of 35.1%. The 23 tumors that were not affected grew on average by 51.8% similar to the vehicle treated tumors (average of 68.3%; Fig. 7B). Finally, RKI-1447 treatment inhibited the growth of 14 tumors with a change in volume of only 1.04%. Therefore, as compared with the vehicle treated group where tumors grew on average 68.3%, the tumors in this group grew only by 1.04% indicating a 98% \((1 - (1.04/68.3)) \times 100\) growth inhibition. Thus, in the majority (60%) of tumors, RKI-1447 treatment caused either regression (in 35% of tumors) or tumor growth inhibition (in 25% of tumors). RKI-1447 or vehicle treatments did not result in mouse weight loss (see Supplementary Tables S3 and S4).

Discussion

Breast cancer accounts for 450,000 of cancer deaths and is the leading cause of cancer death in women worldwide (42). As with other cancers, metastasis is the major reason breast cancer patients succumb to this disease. The role of the Rho family of GTPases in malignant transformation, and particularly the role of RhoA and RhoC in migration, invasion and metastasis has been well documented both in preclinical models as well as in human patients (4–6, 8–12). The ability of RhoA and RhoC to induce migration and invasion is believed to be mediated primarily through binding and activation of their effectors ROCK1 and ROCK2 (ROCKs; refs. 14–19, 32). The RhoA/C-ROCKs pathway has been shown to be elevated in metastatic tumors as compared with their nonmetastatic counterparts, and this has been associated with poor prognosis, resistance to therapy and shorter survival time of breast cancer patients (26, 31). In this manuscript we describe the discovery of RKI-1447 as a potential anti-invasive and antitumor agent in breast cancer. As control we have used RKI-1313 a closely related analogue that is a much weaker ROCK inhibitor. RKI-1447 inhibited potently ROCKs and blocked selectively ROCK-dependent signaling and morphological changes. Furthermore, RKI-1447 was much more effective than RKI-1313 at inhibiting breast cancer anchorage-independent growth, migration and invasion. Finally, RKI-1447 significantly inhibited mammary tumor growth in animal models.

The co-crystal structure of the RKI-1447-ROCK1 complex revealed that RKI-1447 belongs to the Type I class of kinase inhibitors. The high potency of RKI-1447 is reflected in an elaborate network of noncovalent interactions in the binding site that involve all inhibitor moieties. This provides a very tight fit of the entire inhibitor molecule and the ATP site over a distance of \(\sim 18 \text{ Å}\). Consequently, a slight modification in the phenyl ring, which is opposite to the hinge-binding pyridine, disturbs the binding interactions between the inhibitor and ROCK1 substantially and leads to a significant loss of potency as seen with RKI-1313. Indeed, the hydrogen bond between the phenyl meta-hydroxyl in RKI-1447 is lacking in RKI-1313, and this coupled with the steric hindrance caused by the paracetamol in RKI-1313 offers a possible explanation for the large difference in potency between RKI-1313 and RKI-1447.

Our studies also showed that RKI-1447 is selective and inhibited the phosphorylation levels of ROCK substrates such as MLCK and MYPT-1 but not substrates for PAK (Mek), S6K (S6), and mTORC2 (Akt). This selectivity translated into highly specific morphological effects of RKI-1447. Indeed, RKI-1447 inhibited LPA-induced, ROCK-dependent, actin stress fiber formation but not the PAK-dependent, PDGF- and bradykinin-induced lamellipodia and filopodia formation, respectively. This inhibition of stress fiber formation and the resulting disruption of the cytoskeleton organization suggested that
RKI-1447 might have effects on cell motility, invasion and other cancer cell characteristics required for metastasis. Our results clearly show that the ability of breast cancer cells to form colonies in an anchorage-independent manner in soft agar is hampered by RKI-1447. Similarly, RKI-1447 was very potent at inhibiting breast cancer cell migration in a wound healing assay as well as breast cancer cell invasion through matrigel. In contrast, RKI-1313 was much less effective at inhibiting anchorage-independent growth, migration and invasion, consistent with its very weak activity to inhibit ROCKs in vitro and in intact cells. The fact that RKI-1313 and RKI-1447 are very close analogues structurally coupled with the fact that their ability to inhibit ROCKs in vitro and in vivo correlates with their biological effects suggests that the ability of RKI-1447 to inhibit anchorage-independent growth, migration and invasion is mediated by its ability to inhibit ROCKs. Furthermore, the ability of RKI-1447 to inhibit anchorage-independent growth, migration and invasion is most likely not due to inhibition of tumor proliferation because the concentrations that inhibited the former had little effects on the latter. This is not surprising because several studies have shown that the involvement of ROCKs in oncogenesis is primarily by mediating invasion and metastasis and not proliferation of tumors (22–30).

The receptor tyrosine kinase family plays a major role in breast cancer oncogenesis. In particular, ErbB2 is a significant biomarker that predicts poor prognosis, therapy resistance and poor survival of breast cancer patients. We have used a transgenic mouse model where mammary tumor oncogenesis is driven by ErbB2 to evaluate the effectiveness of RKI-1447 in vivo. This model has extensively and successfully been used to evaluate the effects of a variety of agents on mammary tumorigenesis. For example, this model was used to show that the small molecule tyrosine kinase inhibitors lapatinib that targets both ErbB2 and EGFR (43) and gefitinib that targets EGFR (44) inhibited mammary tumorigenesis. Cytotoxic agents such as the HSP90 inhibitor 17-AAG (45) and carboplatin (46) as well as monoclonal antibodies against ErbB2 (47) were also very effective in this model. In addition, this model was also successfully used by us to show that the combination of the
Akt inhibitor TCN-P and the farnesyltransferase inhibitor Zarnestra is more effective than single agent treatment (41). In this study, this mammary tumor model was used to show that RKI-1447 treatment of 28 mice (57 tumors) resulted in an average tumor growth inhibition of 87%; on average tumors from mice treated with RKI-1447 were 7.7-fold smaller than those from mice treated with vehicle. To our knowledge this is the first demonstration that a ROCK inhibitor affects the growth of mammary tumors in an ErbB2-driven breast cancer model. The draw back of this antitumor in vivo study is that it did not investigate metastasis directly. However, the growth of these mammary tumors as a 3-dimensional mass depends on their ability to grow in an anchorage-independent manner that is ROCK-dependent and that was potently inhibited by RKI-1447 in the soft agar studies.

The effect of RKI-1447 in this in vivo model was heterogeneous with 60% of the 57 tumors treated being sensitive and 40% resistant. Among the 34 sensitive tumors, 20 regressed, and 14 were growth inhibited. There are several potential mechanisms that could account for these heterogeneous responses. One possibility could be related to expression levels of certain biomarkers known to influence resistant/sensitivity of breast tumors. For example, the expression levels of estrogen receptors (ER) and progesterone receptors (PR) is often associated with sensitivity/resistance to chemotherapeutic agents in both preclinical and clinical settings (48–50). However, this mechanism is unlikely to contribute to the response differences that we have seen as it has been shown that the mammary tumors in this MMTV-Her2 model all express very low levels of ER and PR negative (51). Another mechanism that could account for the differences in response to RKI-1447 could be related to differences in the epithelial-to-mesenchymal transition (EMT) status. In deed, EMT has been shown to generate cells with properties of stem cells (52), and these can become resistant to treatment (53). Therefore, it would be of great interest to evaluate the EMT status in responders compared with nonresponders to RKI-1447. Furthermore, the tumor stroma plays a pivotal role in breast tumor angiogenesis and metastasis (54), and differences in the relative tumor stroma/cancer cell mass could contribute to differences in responses to RKI-1447. It is also possible that tolerance, pharmacokinetics and bioavailability influenced RKI-1447 response, but this is unlikely because these mice are in-bred and should behave similarly with regards to these parameters.

Understanding the mechanisms of resistance will pave the way to designing combination therapies of RKIs with other anti-signaling agents including ErbB2 inhibitors and ErbB2 neutralizing antibodies.

In summary, we have designed a highly potent and selective ROCK Type 1 inhibitor that binds to the ATP site of ROCK 1 at the hinge region and the DFG motif. RKI-1447 but not its closely related analogue RKI-1313 was highly effective at inhibiting ROCK-dependent signaling, cytoskeletal changes, anchorage-independent colony formation, migration, and invasion. Finally, RKI-1447 inhibited tumor growth and caused tumor regression in animal models with little side effects. Our studies warrant further advanced preclinical studies to determine the suitability of RKI-1447 as a potential clinical candidate.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: R.A. Patel, N.J. Lawrence, S.M. Sebti
Development of methodology: R.A. Patel, K.D. Forinash, N.J. Lawrence, S.M. Sebti
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.) R.A. Patel, Y. Sun, N. Sun, M.P. Martin, E. Schonbrunn
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis) R.A. Patel, Y. Sun, N. Sun, M.P. Martin, E. Schonbrunn, N.J. Lawrence, S.M. Sebti
Writing, review, and/or revision of the manuscript: R.A. Patel, M.P. Martin, N.J. Lawrence, S.M. Sebti
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases) R.A. Patel, K.D. Forinash, S.M. Sebti
Study supervision: N.J. Lawrence, S.M. Sebti
Design and synthesis of the inhibitors RKI1447 and RKI1313: R. Preuddu

Acknowledgments
The authors would like to thank the Moffitt Cancer Center Chemical Biology Core, the Analytical Microscopy core and the animal facility.

Grant Support
This work was supported by NCI grant U19 CA 067771.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 9, 2012; revised June 22, 2012; accepted July 10, 2012; published OnlineFirst July 30, 2012.

References
11. Kloor CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD. Characterization of RhoC expression in benign and malignant breast...

RKI-1447 Is a Potent Inhibitor of the Rho-Associated ROCK Kinases with Anti-Invasive and Antitumor Activities in Breast Cancer

Ronil A. Patel, Kara D. Forinash, Roberta Pireddu, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-0954

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/07/30/0008-5472.CAN-12-0954.DC1

Cited articles
This article cites 53 articles, 15 of which you can access for free at: http://cancerres.aacrjournals.org/content/72/19/5025.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/72/19/5025.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.