Therapeutics, Targets, and Chemical Biology

Intravesical Delivery of Small Activating RNA Formulated into Lipid Nanoparticles Inhibits Orthotopic Bladder Tumor Growth

Moo Rim Kang1, Glen Yang1, Robert F. Place2, Klaus Charisius3, Hila Epstein-Barash3, Muthiah Manoharan3, and Long-Cheng Li1

Abstract
Practical methods for enhancing protein production in vivo remain a challenge. RNA activation (RNAa) is emerging as one potential solution by using double-stranded RNA (dsRNA) to increase endogenous gene expression. This approach, although related to RNA interference (RNAi), facilitates a response opposite to gene silencing. Duplex dsP21-322 and its chemically modified variants are examples of RNAa-based drugs that inhibit cancer cell growth by inducing expression of tumor suppressor p21WAF1/CIP1 (p21). In this study, we investigate the therapeutic potential of dsP21-322 in an orthotopic model of bladder cancer by formulating a 2’-fluoro-modified derivative (dsP21-322-2’F) into lipid nanoparticles (LNP) for intravesical delivery. LNP composition is based upon clinically relevant formulations used in RNAi-based therapies consisting of PEG-stabilized unilamellar liposomes built with lipid DLin-KC2-DMA. We confirm p21 induction, cell-cycle arrest, and apoptosis in vitro following treatment with LNP-formulated dsP21-322-2’F (LNP-dsP21-322-2’F) or one of its nonformulated variants. Both 2’-fluoro modification and LNP formulation also improve duplex stability in urine. Intravesical delivery of LNPs-dsP21-322-2’F into mouse bladder results in urothelium uptake and extends survival of mice with established orthotopic human bladder cancer. LNP-dsP21-322-2’F treatment also facilitates p21 activation in vivo leading to regression/disappearance of tumors in 40% of the treated mice. Our results provide preclinical proof-of-concept for a novel method to treat bladder cancer by intravesical administration of LNP-formulated RNA duplexes.

Cancer Res; 72(19); 5069–79. ©2012 AACR.

Introduction
Bladder cancer is the fifth most common human malignancy (1). Approximately 70% of bladder cancer incidences are diagnosed at a superficial stage in which about half will recur following transurethral resection (TUR) despite post-op therapy. Intravesical administration of chemical and/or immunologic agents (e.g., mitomycin, Bacillus Calmette-Guérin, etc.) is often used to eradicate residual tumor cells; however, such treatments can have limited efficacy and adverse side effects (2). As many as 10% to 30% of recurrent tumors will progress to a higher grade and stage inevitably forming locally invasive cancer (3, 4). Radical cystectomy remains the standard treatment of muscle-invasive bladder tumors, which often results in significant deterioration of urinary and sexual function. As such, new therapeutic options are needed for treating residual tumor after TUR, as well as advanced bladder cancer.

RNA interference (RNAi) is currently one of the leading platform technologies being developed in the clinic as an oligonucleotide-based approach to gene therapy. It is an evolutionarily conserved mechanism of gene regulation by which small double-stranded RNA (dsRNA) molecules—termed small interfering RNA (siRNA)—degrade complementary messenger RNA to silence gene expression (5). By using siRNAs as therapeutic compounds, it is possible to block the production of disease-causing proteins. However, effective uptake of siRNAs by cells requires support of a delivery vehicle to penetrate the cell membrane. Lipid-based vectors remain the preferred approach for siRNA delivery both in vitro and in vivo. Precise formulation with lipids and other molecular components (i.e., polyethylene glycol-lipid, cholesterol, etc.) allows encapsulation of siRNAs into stable liposomal nanoparticles (LNP) for improved bioavailability. Currently, ionizable lipid DLin-KC2-DMA is one of the leading materials for LNP formulation to safely deliver siRNA molecules in vivo (6).

Safe strategies to selectively enhance gene and/or protein production remain a challenge in gene therapy. Viral-based systems are effective at delivering exogenous constructs to facilitate gene overexpression, but have serious drawbacks (i.e.,
adverse effects on host genome integrity, immunologic con-
sequences, etc.) that hinder progression in the clinic. Recently, small dsRNAs—termed small activating RNA (saRNA)—have also been shown to induce gene expression in a phenomenon referred to as RNA activation (RNAa; refs. 7, 8). Several models of RNAa have been described including transcriptional activation by targeting promoter sequences and/or overlapping noncoding regulatory transcripts using saRNA (7, 9–11). This technique offers a similar approach as RNAi, while represent-
ing a new strategy to stimulate endogenous gene expression.

The tumor suppressor protein p53 controls cell-cycle pro-
gression, senescence, and apoptosis in response to DNA dam-
age through transactivation of numerous growth inhibitory genes (12). One such downstream target is the CKD inhibitor p21WAF1/CIP1 (p21). By suppressing CKD activity, p21 promotes hypophosphorylation of the retinoblastoma (Rb) protein leading to cell-cycle arrest (13). In addition, p21 interacts with proliferating cell nuclear antigen (PCNA) interfering with DNA replication and cell division (14). In fact, ectopic expression of p21 has been shown to inhibit tumor growth and induce apoptosis both in vitro and in vivo (15–17). As such, p21 is a major downstream effector of p53 signaling and is itself considered a potent tumor suppressor.

Alterations to the p53 pathway represent one of the major contributors to bladder tumorigenesis (18, 19). Despite frequent disruption of the p53 protein, loss-of-function mutations leading to p21 inactivation are a rare event (20, 21). Rather, bladder cancer progression has been associated with general decreases in p21 expression (20, 21). In this regard, p21 may be a major downstream effect of p53 signaling and is itself considered a potent tumor suppressor.

Lipid nanoparticle composition

Nanoparticles were prepared with the ionizable lipid 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-
KC2-DMA), distearylphosphatidylcholine (DSPC), cholesterol, and 1-(monomethoxy polyethyleneglycol)-2,3-dimyristoylgly-
cerol (PEG–DMG) using a spontaneous vesicle formation formulation procedure as previously described (24). Detailed protocol is available in Supplementary Methods.

Urine stability assay

Solutions containing 1 μL of 20 μmol/L saRNA and 10 μL undiluted mouse or human urine were incubated at 37°C. The mixtures were flash frozen in liquid nitrogen at desired time points to halt nuclease activity until the time course was complete. Samples were subsequently mixed with loading buffer and analyzed on an agarose gel to visualize duplex levels.

saRNA uptake analysis

T24-P cells (1.0 × 10⁶) were treated with LNP-formulated FITC-labeled dsP21-322-‘F (dsP21-322-‘F-FITC) for 24 hours. Female C57BL/6 mice were anaesthetized with isofluran and bladders rinsed twice with 0.2 mL PBS through a 24-gauge catheter. LNP-formulated dsP21-322-‘F-FITC (1.68 mg/kg, ~33.5 μg) was administered intravesically and retained in the bladder for 2 hours by tying off the orifice of the urethra. Mice were sacrificed at 2 or 9 hours (including indwelling time) after saRNA delivery. Animals treated for 9 hours were denied water to limit excretion of formulated duplex. Whole bladders were removed, placed in cryomolds containing optimal cutting temperature compound, and frozen on dry ice. Cryostat sections were cut to 8 μm and mounted onto glass slides. Both cells and tissue slides were fixed in 10% neutral buffered formalin and washed with PBS containing sucrose. The fixed sections were counterstained with 4',6-diamidino-2-phenylindole (DAPI) using VECTASHIELD Mounting Medium (Vector Laboratories) and saRNA uptake was visualized using fluorescence microscopy.

Orthotopic model of bladder cancer and intravesical treatment

The animal study was carried out according to a protocol approved by the Institutional Animal Care and Use Committee. The orthotopic murine model of bladder cancer was a
modification of a previously described technique (25, 26). In brief, female nude (nu/nu) mice at 8 to 10 weeks of age (Simonson Laboratory) were anaesthetized with isoflurane. Chemical lesions to the bladder urothelium were carried out by injecting 10 μL of 0.5 M silver nitrate into the bladder of each animal through a 24-gauge catheter. Bladders were washed with PBS and subsequently instilled with KU-7 cells (2.0 × 10^6) suspended in 50 μL PBS via catheter. At this point, animals were dosed with ketamine (100 mg/kg) and xylazine (10 mg/kg) by intraperitoneal injection. Cells were retained in the bladder for 2 hours by tying off the orifice of the urethra. One day following tumor cell implantation, in vivo bioluminescence imaging (BLI) of KU-7 cells was evaluated on a IVIS Spectrum Imaging System (Caliper Life Sciences) following intraperitoneal administration of 150 mg/kg β-luciferin (Gold Biotechnology). Bioluminescence signal (BLS) was acquired and analyzed using Living Image software version 4.10 (Xenogen). Regions of interest (ROI) were defined manually to encompass the bladder and quantify signal intensity. Tumor-bearing mice were randomly divided into 3 treatment groups (PBS, LNP-dsCon-2F, and LNP-dsP21-322-2F) each containing 9 to 10 animals. Mice received 3 mg/kg of LNP-formulated duplex in a volume of 50 μL by intravesical administration into the bladder via catheter. Each treatment was retained in the bladder for 2 hours by tying off the orifice of the urethra while the animal was anaesthetized. PBS treatments were done at volumes equivalent to LNP-dsP21-322-2F doses. Animals were treated 14 total times every 3 days beginning at day 4 postimplantation. BLS and body weight were monitored weekly. A death was recorded if animals met AVMA guidelines for euthanasia as a result of tumor burden including body weight loss. The study was terminated 8 weeks following tumor implantation. Any surviving mice were euthanized and all major organs including bladders were inspected for cancer. Bladder tumor tissue was divided in half and placed in either RIPA buffer containing protease inhibitors or 10% neutral buffered formalin for immunoblot analysis or immunohistochemistry (IHC), respectively.

Statistical analyses
The differences in continuous variables between treatments were assessed by Student t test (for 2 treatments) or ANOVA (for 3 or more treatments). Log rank tests determined statistical significance of Kaplan–Meier survival curves. Significance was defined as P < 0.05. Additional experimental procedures are described in Supplementary Methods.

Results
dsP21-322 induces p21 expression in human bladder cancer cells
By screening several duplexes targeting the p21 promoter, dsP21-322 has been identified as a lead sRNA molecule with antitumor activity in prostate cancer (22). Earlier in vitro studies have showed that dsP21-322 also possesses growth inhibitory function in T24 and J82 bladder cancer cell lines (27). To further evaluate dsP21-322 activity in bladder cancer, we transfected KU-7 and T24-P cells with dsP21-322 for 72 hours.

Analysis of mRNA expression revealed that dsP21-322 profoundly induced p21 levels compared with mock and nonspecific control (dsCon) treatments (Fig 1A). Induction of p21 was further confirmed by immunoblot analysis. As shown in Fig 1B, elevated levels of p21 protein correlate to the increase in p21 mRNA expression. Morphologically, dsP21-322 treatment caused cells to appear less dense and acquire larger, more flattened shapes; phenotypes indicative of impeded cell growth (Fig S1). These results imply dsP21-322 retains RNAa activity and growth inhibitory function in KU-7 and T24-P cells.

Activity of LNP-formulated dsP21-322-2F and its nonformulated variants
Chemical modification (e.g., 2'-fluoro) is often required to improve the medicinal properties of duplex RNAs for in vivo application (28). We previously defined a chemically modified variant of dsP21-322 (dsP21-322-2F) with improved nuclease resistance in serum and reduced immunostimulatory activity by introducing 2’-fluoro modifications to all pyrimidine nucleotides in its antisense strand (22). To further improve its in vivo applicability, we formulated dsP21-322-2F into lipid nanoparticles (LNP-dsP21-322-2F) composed of ionizable lipid DLin-KC2-DMA creating PEG-stabilized unilamellar liposomal vesicles. Nonspecific lipid-based nanoparticles (LNP-dsCon-2F) were also formulated as a control. Comparative analysis of in vitro potency between nonformulated dsP21-322 and dsP21-322-2F in KU-7 cells revealed similar EC_{50} (half maximal effective concentration) values of 1.42 and 1.70 mmol/L at 72 hours, respectively (Fig 1C). In addition, dsP21-322-2F retained strong RNAa activity as compared with dsP21-322. As shown in Fig 1C, dsP21-322-2F consistently increased p21 levels by ~9-fold at maximal activity, whereas dsP21-322 increased p21 levels by ~5-fold. Dose-response experiments with LNP-dsP21-322-2F indicated an EC_{50} of 0.24 μg/mL with maximal activity reaching ~10-fold increases in p21 levels (Fig 1C). Immunoblot analyses also revealed dose-dependent induction of p21 protein by dsP21-322, dsP21-322-2F, and LNP-dsP21-322-2F (Fig 1D). We conducted dose–response experiments evaluating cell viability by MTS assay and calculated IC_{50} (half maximal inhibitory concentration) values to measure the antiproliferative potency of LNP-dsP21-322-2F and its nonformulated variants. Nonformulated dsP21-322 and dsP21-322-2F had similar IC_{50} values of 0.72 and 0.74 mmol/L, respectively; whereas LNP-dsP21-322-2F had an IC_{50} of 0.19 μg/mL at 72 hours (Fig S2A). Phenotypically, dsP21-322-2F and LNP-dsP21-322-2F treatments caused dose-dependent changes in cell morphology and density similar to dsP21-322 (Fig S2B). Taken together, these results indicate that neither chemical modification nor LNP formulation negatively impacted RNAa activity or the growth inhibitory function of dsP21-322.

LNP-formulated dsP21-322-2F and its nonformulated variants cause cell-cycle arrest and apoptosis in bladder cancer cells
To investigate cell-cycle distribution, DNA content was analyzed by flow cytometry in cells stained with propidium iodide (PI) following treatment with LNP-dsP21-322-2F or one
of its variants. As shown in Fig. 2A and B, transfection of dsP21-322 or dsP21-322-2′F caused G0–G1 arrest in KU-7 cells as indicated by the increase in G0–G1 cell number and concurrent declines in S and G2–M populations. LNP-dsP21-322-2′F treatment also caused changes in cell-cycle distribution similar to dsP21-322 and dsP21-322-2′F corroborating that LNP formulation did not interfere with the growth inhibitory function of dsP21-322-2′F (Fig. 2A and B).

Cell-cycle arrest by p21 is primarily mediated although inhibition of CDK activity leading to Rb hypophosphorylation (22, 29). As such, we evaluated phosphorylated Rb (p-Rb) levels in KU-7 cells following treatment with dsP21-322, dsP21-322-2′F or LNP-dsP21-322-2′F. As shown in Fig. 2C, transfection with nonformulated dsP21-322 and dsP21-322-2′F reduced p-Rb levels in a dose-dependent manner, whereas total Rb protein remained generally unchanged. Similarly, LNP-dsP21-322-2′F treatment also reduced p-Rb levels at elevated doses (Fig. 2C). These data suggest that p21 induction resulted in a functional protein capable of manipulating Rb phosphorylation.

Overexpression of p21 has been reported to have proapoptotic function in several cancer cell types contributing to its tumor suppressor activity (12, 27, 30). To quantify the apoptotic cell fraction following duplex treatments, KU-7 cells were analyzed by flow cytometry following staining with 7-AAD and Annexin V-PE. As shown in Fig. 3A and B, mock and dsCon treatments defined baseline apoptosis in KU-7 cells, whereas transfection with dsP21-322 or dsP21-322-2′F caused similar dose-dependent increases in early and late stage apoptosis. LNP-dsCon-2′F mirrored nonformulated control treatments; however, LNP-dsP21-322-2′F caused robust detection of early and late stage apoptotic cells in a dose-dependent manner similar to dsP21-322 and dsP21-322-2′F transfections (Fig. 3A and B). We also measured caspase-3/7 activity (2 key enzymes of the apoptotic signaling cascade) in culture media following duplex treatments. Transfection of dsP21-322 or dsP21-322-2′F possessed significantly higher caspase-3/7 activity than control treatments (Fig. 3C). Likewise, LNP-dsP21-322-2′F caused similar increases in caspase 3/7 signaling, whereas LNP-dsCon-2′F treatment had nominal effects on caspase-3/7 activity (Fig. 3C).
Immunoblot analysis was also carried out to monitor reductions in procaspase-3 levels (a marker for caspase-3 activation) and cleavage of PARP (a downstream substrate of caspase signaling). Transfection with dsP21-322 or dsP21-322-2\(^{0}\)F led to reductions in procaspase-3 (caspase-3) with concurrent detection of PARP cleavage (Fig. 3D). Similarly, LNP-dsP21-322-2\(^{0}\)F mirrored nonformulated transfection results (Fig. 3D). Taken together, these results indicate that treatment with LNP-dsP21-322-2\(^{0}\)F or its nonformulated variants also promote apoptosis contributing to the antitumor activity in bladder cancer cells.

Pharmacokinetic properties of LNP-formulated dsP21-322-2\(^{0}\)F

Urine is a liquid waste product excreted by the kidney and stored in the bladder that is rich in nucleases including ribonucleases (31). To test the stability of LNP-dsP21-322-2\(^{0}\)F and its nonformulated derivatives in urine, we incubated equal quantities of duplex with fresh human or mouse urine for up to 6 days. Unmodified dsP21-322 was generally unstable in human urine having completed degraded within 3 hours; however, 2'-fluoro modification of dsP21-322 (dsP21-322-2\(^{0}\)F) significantly increased duplex stability extending its life to ~24 hours (Fig. 4A). Packaging RNA into nanoparticles has also been shown to protect encapsulated cargo from degradation by nucleases (32). As such, LNP formulation further improved its nuclease resistance increasing its stability to ~6 days in human urine. Surprisingly, duplex stability behaved very different in mouse urine. Almost no apparent degradation of unmodified, modified, or LNP-formulated saRNA was observed (Fig. 4A). Stability studies in sterile water resembled the time course in mouse urine suggesting nominal ribonuclease activity and/or inherent duplex stability in mouse urine (Fig. S3A). In support, analysis of untreated mouse urine yielded stable background detection of low molecular weight nucleic acids, whereas human urine was devoid of any inherent nucleic acid signal (Fig. S3B). These data indicate that both 2'-fluoro modification and LNP formulation improve duplex stability in human urine; however, inherent differences in nuclease activity/composition between human and mouse urine may influence in vivo properties in either species.

To assess in vitro and in vivo uptake of LNP-formulated saRNA, FITC was conjugated to the 3' terminus of dsP21-322-2\(^{0}\)F (dsP21-322-2\(^{0}\)F-FITC) and formulated into unilamellar LNP vesicles with DLin-KC2-DMA. When LNP-formulated dsP21-322-2\(^{0}\)F-FITC was directly added to cultured cells, uptake was evident in nearly all cells with fluorescence mainly localized to the cytoplasm and a few punctate nuclear loci at 24 hours (Fig. 4B). In vivo uptake was evaluated by directly treating the bladders of normal mice with LNP-formulated dsP21-322-2\(^{0}\)F-FITC via intravesical administration. After 2 hours of treatment, dsP21-322-2\(^{0}\)F-FITC uptake was observed in cells...
lining the inner bladder wall, as well as the interstitial spaces of the urothelium (Fig. 4C). Fluorescence remained readily detectable in bladder cells by 9 hours (Fig. 4D). Images taken at higher magnification clearly show intracellular distribution of dsP21-322-20F-FITC at 2 and 9 hours (Fig. S4). These data indicate that LNP formulation effectively delivers saRNA duplex into the bladder epithelium.

Intravesical treatment of LNP-dsP21-322-2F inhibits growth of orthotopic bladder tumors

To test the antitumor activity of LNP-dsP21-322-2F in vivo, we established orthotopic bladder cancer in 40 immunocompromised (nu/nu) mice by intravesical instillation of KU-7 cells. BLS from KU-7 cells was detected by measuring photons/second following intraperitoneal administration of luciferase substrate (D-luciferin). The day following tumor cell instillation, 29 mice (72.5%) produced BLS and were randomly divided into 3 treatment groups including PBS (n = 9), LNP-dsCon-20F (n = 10), and LNP-dsP21-322-2F (n = 10). No statistical difference in BLS intensity or body weight was detected between groups at time of randomization. Intravesical treatment was initiated on day 4 postimplantation and repeated every 3 days for 14 total doses (Fig. 5A). BLI was done weekly to monitor tumor burden. Animal survival was the primary endpoint.

At the end of the 8 week study, the median survival time for PBS, LNP-dsCon-20F, and LNP-dsP21-322-2F treatment groups was 9, 13, and 45 days, respectively. Five mice (50%) remained alive in the LNP-dsP21-322-2F population, whereas 1 mouse (11%) survived in the PBS group and none (0%) represented LNP-dsCon-20F-treated animals. Kaplan–Meier cumulative survival analysis revealed LNP-dsP21-322-2F treatment significantly extended animal survival compared with PBS and LNP-dsCon-20F, whereas no significant difference was detected between the 2 control groups (Fig. 5B). Four of the surviving mice in the LNP-dsP21-322-2F treatment population...
showed gradual reductions in tumor burden in which 3 eventually became tumor-free as evidenced by the disappearance in BLS (Fig. 6A and B). Removal and dissection of tumor-free bladders were devoid of GFP signal upon inspection by fluorescence microscopy to further suggest tumor disappearance (Fig. S5). In one of the tumor-free animals, a white area of scarred tissue with negative GFP signal was found in the bladder wall suggesting regression of an established tumor (Fig. S5). Similar observations have been noted following regression of prostate xenograft tumors treated with dsP21-322-20F formulated into lipidoid-based nanoparticles (22). Histologic evaluation revealed in some instances that orthotopic tumor from control groups invaded into the bladder detrosal muscle layer (Fig. S6A). In addition, kidney metastases were found in 2 of 9, 1 of 10, and 3 of 10 mice within the PBS, LNP-dsCon-2F and LNP-dsP21-322-2F treatment groups, respectively (Fig. S6B). No metastases in other organs were noted.

IHC analysis of harvested mouse bladders revealed strong nuclear staining for p21 in LNP-dsP21-322-2F-FITC treated tumors as compared with PBS and LNP-dsCon-2F control tissue (Fig. 7A). Detection of cleaved caspase 3 also revealed increased activation in LNP-dsP21-322-2F-FITC-treated tumors indicative of apoptosis (Fig. 7A). Hematoxylin and eosin (H&E) staining and Ki67 detection were used to identify orthotopic tumor in the tissue slides (Fig. 7A). Increased levels of p21 protein were also evaluated by immunoblot analysis in protein extracts prepared from total homogenized tissue (Fig. 7B). Densitometry analysis measured ~3.3- to 5.2-fold increase in p21 levels within LNP-dsP21-322-2F-treated tissue (Fig. 7C). These results confirm in
Figure 5. Intravesical delivery of LNP-dsP21-322-2'F extends survival of mice with orthotopic human bladder cancer. A, schematic diagram of study design and dosing schedule. Treatments began 4 days postimplantation for 14 total doses every 3 days (solid arrowheads). BLI of mouse bladders was done weekly (open arrowheads). B, mouse survival in the days following tumor implantation was monitored in PBS, LNP-dsCon-2'F, and LNP-dsP21-322-2'F treatment groups. Data are plotted as Kaplan–Meier cumulative survival curves.

Figure 6. Intravesical delivery of LNP-dsP21-322-2'F inhibits orthotopic bladder tumor growth. A, cancer growth was monitored by evaluating bladder tumor bioluminescence over the lifespan of each animal. Shown are BLI images of a representative mouse from each treatment group (PBS, LNP-dsCon-2'F, or LNP-dsP21-322-2'F) at the indicated time points (days). Note normalization of BLS intensities at days 1 and 7 differed from days 14 to 49 in order for tumor signals to fall within the limits of scale. B, tumor bioluminescence within each mouse bladder is plotted over animal lifespan for all treatment groups. Note the general trend of tumor bioluminescence in PBS and LNP-dsCon-2'F treatment groups increases with time, whereas bioluminescence in animals treated with LNP-dsP21-322-2'F collectively remains flat. Background signal generated by ROIs in tumor-free animals of the LNP-dsP21-322-2'F group were still plotted on the Y-axis (Bioluminescence) to prevent line termination and improper interpretation as animal death.
vivo activation of p21 expression in orthotopic tumors by intravesical administration of LNP-dsP21-322-2’F.

Discussion

We previously showed that dsP21-322 possesses in vitro antigrowth activity in T24 and J82 bladder cancer cell lines (27). In the present study, we implement a chemically-modified variant of dsP21-322 (dsP21-322-2’F) with improved nuclease resistance and reduced immunostimulatory activity to improve its pharmaceutical properties for in vivo application (22). In addition, we use a clinically relevant LNP delivery system currently being implemented for RNAi-based therapies to achieve intracellular uptake of dsP21-322-2’F in target tissue. Intravesical administration of LNP-formulated dsP21-322-2’F (LNP-dsP21-322-2’F) into murine bladders with...
Two previous studies in mice have reported the antitumor effects of siRNA delivered intravesically by targeting PLK1 and survivin (33, 34). Because these studies used only a limited number of animals, tumor burden served as the primary end point. To assess treatment efficacy, we opted to use animal survival as the primary end point, whereas monitoring tumor response by BLS throughout the study. To achieve sufficient statistical power, we used a large population containing 29 animals with established orthotopic bladder tumors (9 to 10 mice/group). In fact, this study currently represents the largest cohort of animals ever used to evaluate small RNA-based therapeutics in an orthotopic bladder cancer model. We observed that intravesical delivery of LNP-dsP21-322-2’F caused regression/disappearance of tumors in 40% of the treated mice and significantly prolonged animal survival compared with control groups. As such, LNP-dsP21-322-2’F may represent a putative intravesical drug for treating bladder cancer and controlling recurrence.

KU-7 cells have been used to establish orthotopic bladder tumors in immunocompromised mice (26, 35). A previous study indicated that KU-7 tumors are confined to the lamina propria within 4 weeks (35); however, we observed muscle invasion at longer periods of observation (≥4 weeks). In some instances, metastases were found in the kidney, which most likely resulted from retrograde migration of the instilled tumor cells. Such metastases also seemed to evade treatment delivered locally to the bladder. In our hands, KU-7 cells not only modeled superficial bladder cancer, but also recapitulated muscle-invasive and metastatic disease.

The target site of dsP21-322 is not shared between mouse and human due to poor conservation of p21 promoter sequence (36). As such, it is currently unknown whether p21 induction by dsP21-322-2’F poses adverse effects to the normal bladder epithelium in humans. RNAa is a bias mechanism of gene overexpression in which some cell lines/types can be resistant to saRNA treatment. In some cases, highly down-regulated genes are more sensitive to gene activation. Because p21 is associated with reduced expression in bladder cancer (20, 21), it may possess an innate susceptibility to RNAa; whereas normal bladder cells may be more resilient to p21 induction by dsP21-322-2’F. In this regard, LNP-dsP21-322-2’F may possess an inherent bias toward disease tissue. Nonetheless, further evaluation of dsP21-322-2’F needs to be done to identify its effects on normal tissue health.

Intravesical administration of small RNA drugs has the advantage of bringing high concentrations of drug into direct contact with diseased tissue without the side effects associated with systemic drug administration. The dosing schedule used in our study mirrors current treatment regimens for intravesical immunotherapy Bacillus Calmette-Guerin (BCG), which is used to treat superficial and recurrent bladder cancer in humans. Furthermore, we used a clinically relevant unilamellar LNP to improve the bioavailability of dsP21-322-2’F. LNP formulation drastically enhanced dsP21-322-2’F stability in urine and capacity to penetrate the protective glycosaminoglycan (GAG) layer of the bladder delivering duplex to the underlying urothelial cells. In summary, we show that LNP-dsP21-322-2’F has antitumor activity in an orthotopic model of bladder cancer by elevating p21 levels in vivo. Our results provide preclinical proof-of-concept that DLink-C2-DMA-based nanoparticles have application in delivering RNA duplexes to facilitate RNAa in vivo, as well as define a candidate RNAa-based drug for the treatment of regional bladder cancer that may have clinical relevance as an adjuvant therapy after TUR.

Disclosure of Potential Conflicts of Interest

R.F. Place is employed at RNA Therapeutics. K. Charisse, H. Epstein-Barash, M. Manoharan are employees at Alnylam Pharmaceuticals. L-C. Li and R.F. Place are named inventors on pending patent applications related to RNAa, which have been filed by the University of California San Francisco and licensed to Alnylam Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: M.R. Kang, M. Manoharan, L-C. Li

Development of methodology: M.R. Kang, R.F. Place, H. Epstein-Barash, M. Manoharan, L-C. Li

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.R. Kang, K. Charisse

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.R. Kang, R.F. Place, L-C. Li

Writing, review, and/or revision of the manuscript: M.R. Kang, R.F. Place, K. Charisse, M. Manoharan, L-C. Li

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R.F. Place, L-C. Li

Study supervision: R.F. Place, M. Manoharan, L-C. Li

Developed the formulation used for the study: H. Epstein-Barash

Acknowledgments

We would like to thank Dr. Jer-Tsong Hsieh at the Department of Urology, University of Texas Southwestern Medical Center for his generous support with the bladder cancer model. This work is supported by the AACR Henry Shepard Bladder Cancer Research Grants (09-60-30-LI). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 21, 2012; revised July 26, 2012; accepted July 28, 2012; published OnlineFirst August 6, 2012.

References

Intravesical Delivery of Small Activating RNA

21. Claesen S, Schulz WA, Gerharz CD, Grimm MO, Christoph F, Schmitz-Drager BJ. Frequent and heterogeneous expression of cyclin-depen-
Intravesical Delivery of Small Activating RNA Formulated into Lipid Nanoparticles Inhibits Orthotopic Bladder Tumor Growth

Moo Rim Kang, Glen Yang, Robert F. Place, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-12-1871

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/08/06/0008-5472.CAN-12-1871.DC1

Cited articles
This article cites 35 articles, 7 of which you can access for free at: http://cancerres.aacrjournals.org/content/72/19/5069.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/72/19/5069.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.