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Abstract
Overwhelming evidence suggests that c-jun-NH2-kinases (JNK) are a set of key stress-responsive kinases that

mediate cell apoptosis, which is an important process for tumor suppression. However, JNKs have also been
implicated in the malignant transformation and tumorigenesis of cells. This review attempts to reconcile these 2
contradictory functions of JNKs with recent discoveries on the role of JNKs in compensatory growth of
neighboring cells and stem cells, which may provide new mechanistic understanding about the role of JNKs
in the regulation of cancer stem cells and the pathogenesis of cancers. Cancer Res; 72(2); 379–86. �2012 AACR.

Introduction

In the past few years, a new concept in tumorigenesis, the
cancer stem cell (CSC), has emerged (1). It is believed that CSCs
are a population of rare cells that are capable of initiating and
maintaining the tumor, differentiating into endothelial cells for
tumor vascularization, and allowing the propagation and
colonization of tumor cells at sites distant from the original
tumor location. Similar to normal stem cells, CSCs retain the
properties of self-renewal and multilineage differentiation.
However, these cells distinguish themselves from normal stem
cells by maintaining their malignant potentials, such as a loss
of both the genomic integrity and epigenetic identity of the
normal stem cells. An unsolved issue in CSC theory is whether
CSCs are truly stem cells or if they are non–stem cells in which
the self-renewal is activated by oncogenic mechanisms.
The c-jun–NH2–kinases (JNK) are protein kinases involved

in cellular stress response, apoptosis, and malignant transfor-
mation (2–4). They regulate a wide spectrum of intracellular
signaling pathways that converge to regulate both gene expres-
sion and the homeostasis of macromolecules, including
mRNAs and proteins (5). In the human genome, 3 genetic loci
encode JNK1, JNK2, and JNK3, each of which has 2 to 4 isoforms
that result from the alternative splicing of the corresponding
pre-mRNAs. Both JNK1 and JNK2 are ubiquitously expressed,
whereas JNK3 is expressed predominantly in the brain and, to a
lesser extent, in the heart and testis (2, 4). JNKs have a well-
documented functional redundancy to phosphorylate their
cognate and noncognate substrates, which include c-Jun, JunD,
ATF2, polycomb repressive complex 1 (PRC1) subunit Bmi1 (6),
Akt (7) FoxO4, PPARg1, c-Myc, p53, NFATc2, STATs (8), IRS-1,

Itch, 14-3-3, histone H3 (9), SIRT1 (10), and other proteins (5).
However, evidence also implies that JNK1, rather than JNK2 or
JNK3, is the key JNK family kinase responsible for the phos-
phorylation of c-Jun on serines 63 and 73 and for the expression
of RNA polymerase III (11, 12). In myoblast cells, JNK1, but not
JNK2, mediates TNFa-induced cell proliferation by inhibiting
myoblast cell differentiation and promoting the generation of
inflammatory cytokines such as interleukin-6 (IL-6) and leu-
kemia inhibitory factor (13). In addition, the importance of
JNK1 over JNK2 was shown in the pathogenesis of several
human diseases, including diabetes, lung fibrosis, and cancer
(14). Furthermore, gene knockout studies inmice revealed that
JNK1 is the most important JNK family kinase for the prolif-
eration of the CD8þ T cells (15) and for neural development
(16, 17).

JNK1 and JNK2 in Carcinogenesis

Although JNKs are primarily attributed to proapoptotic cell
death or tumor suppression in response to a variety of stress,
inflammatory, or oncogenic signals (18), emerging evidence
suggests that JNKs, especially JNK1, play a role in themalignant
transformation of cells and in tumorigenesis. For example, the
genetic disruption of the jnk1 locus in mice decreased the
susceptibility to a Bcr-abl–induced lymphoma (19). In UV-
induced tumorigenesis, activation of JNK1 is essential for the
cell transformation and proliferation in response to the onco-
genic Ras signal (20). In cells derived from the soft tissue of a
childhood sarcoma, silencing of JNK1, but not of JNK2, by
siRNA repressed the growth of these tumor cells, indicating
that JNK1 is proproliferative, whereas JNK2 might be proa-
poptotic (21, 22). JNK1 has been viewed as a pivotal kinase that
promotes the development of tobacco smoke–induced lung
tumors, because the ablation of JNK1 alone reduced the effect
of tobacco smoke on both the lung tumor multiplicity and the
tumor size (23). Animal models of gastric cancer also showed
that JNK1 contributes to the development of gastric tumors
that are induced by the chemical carcinogen N-methyl-N-
nitrosourea (24). The most compelling evidence for the role
of JNK1 in cancer initiation is from studies of hepatocellular
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carcinoma (HCC) in both human and animal models. By using
human HCC tissue samples that were case matched with the
adjacent noncancerous liver tissues, 2 independent studies
found that more than 50% of the HCC samples exhibited a
higher activation of JNK1, but not of JNK2 (25, 26). Additional
studies further revealed that higher JNK1 activation was asso-
ciated both with a poorer prognosis in patients and with
overexpression of several hepatic stem cell or progenitor cell
markers, such as EpCAM, CD24, CD133, KRT19, and AFP (27).
In mouse HCC models, genetic disruption of the jnk1 locus
substantially reduced the number and size of HCCs that were
induced by diethylnitrosamine (DEN; ref. 25). JNK1 has also
been shown to be an essential kinase for mediating the
development of HCC due to a hepatocyte-specific deficiency
of IKKb or IKKg , which are the key subunits of the IKK kinase
complex for NF-kB signaling in mice (28–30).

JNK-Induced Compensatory Proliferation Links
Apoptosis to Carcinogenesis

Overwhelming evidence has unequivocally unraveled the
role of JNKs, especially JNK1, in cell apoptosis or tumor
suppression (31–33). The proapoptotic or tumor suppres-
sor–like function of JNK1 was revealed even in studies that
showed an oncogenic effect of sustained JNK1 activation in
animal cancer models (25, 28). How can we reconcile these 2
contradictory functions of JNK1? A growing consensus is that
the evasion of apoptosis is one of the hallmarks of cancer (34,
35). Accordingly, it is tempting to attribute this defect in
apoptosis to the oncogenic role of JNKs, despite reports
suggesting that the major apoptotic signaling pathways, CD95
(Fas) and CD95 (FasL), are required for the optimal growth of
ovarian cancer, liver cancer, and glioblastoma in animal mod-
els (36–38). In addition to the possibility that JNKs can directly
induce growth signals at the same time as inducing apoptosis,
it is possible that a compensatory proliferation of neighboring
cellsmight be triggered by the apoptotic, stressed cells. In other
words, the compensatory growth might be an essential linker
to bridge apoptosis and carcinogenesis.

JNK-induced compensatory growth in Drosophila
How JNK1-mediated cell death triggers compensatory pro-

liferation of neighboring cells is not fully understood. The key
evidence for compensatory proliferation induced by JNK-acti-
vated cell death is from studies in Drosophila (39, 40). After
apoptosis was initiated by disrupting the antiapoptotic signal
fromdiap1 [X-linked inhibitor of apoptosis (XIAP) inmammals]
and the activation of the effector caspase was blunted to create
"undead" cells in the Drosophila larval imaginal discs, an over-
growth of neighboring, normal cells was observed (39). Bio-
chemical studies found that these undead cells were able to
secrete wg and dpp mitogens (the Wnt and BMP orthologs of
mammalian cells, respectively) in a JNK-dependent manner.

The Wnt and BMP proteins have long been viewed as key
signaling proteins involved in embryonic development, cell
proliferation, oncogenesis, and stem cell maintenance (41).
Thus, it is very likely thatwg (Wnt) anddpp (BMP), the secreted
glycoproteins from the stressed cells in which JNK is activated,

are the master regulators for the JNK-induced compensatory
proliferation of the neighboring cells. The affected neighboring
cells can be either the same lineage as the stressed cells or a
different lineage. The degree of the compensatory proliferation
might be dictated by both the intrinsic Wnt- and BMP-
responding pathways and the differentiation states of the
affected cells. A number of reports have suggested that Wnt
and BMP stimulate cell growth and tissue regeneration in
vertebrates and insects by cooperating with or inducing the
Janus-activated kinase (JAK)/STAT– and/or the b-catenin/
T-cell factor (TCF)–signaling pathways (42–44). Additionally,
wg signaling is capable of repressing Notch activity, which
leads to the expression of dmyc and the microRNA bantam,
which both promote cell growth by affecting the G1 to S-phase
transition of the cell cycle (45).

In addition to wg and dpp, JNK-dependent activation or
induction of the JAK/STAT pathway might also be involved in
the undead-cell– or tissue-damage–induced compensatory
proliferation of normal cells inDrosophila (46, 47), which could
explain the compensatory growth in Drosophila with the loss-
of-function mutations of wg, dpp, or both wg and dpp (48).
Unlike its mammalian counterparts that contain multiple
isoforms of all of the major JAK/STAT pathway components,
the Drosophila genome encodes only 1 JAK (HOP) and 1 STAT
(STAT92E) molecule (49). The evidence suggesting that the
constitutive activation of JAK/STAT signaling causes cancer
has long been established in both human and Drosophila. A
gain-of-functionmutation of theDrosophilaHOP (JAK) protein
resulted in the overproliferation of the larval blood cells and
subsequent melanotic tumors (50). In the midgut of Drosoph-
ila, a tissue injury induced by bleomycin activates JNK,which in
turn induces a rapid translocation of the Yorkie (Yki, the
mammalian Yap homolog) protein from the cytoplasm to the
nucleus. As a cofactor for transcriptional regulation, the nucle-
ar translocated Yki is capable of upregulating the expression of
the Unpaired family of cytokines (Upd, Upd2, and Upd3, the
IL-6 orthologs of mammalian cells) and the activation of
JAK/STAT signaling (51). In resting cells, Yki is predominantly
localized in the cytoplasm because of its phosphorylation by
the tumor suppressor Hippo (Hpo)/Wts. It is unclear how JNK
impinges upon Hpo/Wts to activate Yki. One of the potential
mechanisms might be that JNK directly phosphorylates and
inactivates Hpo or Wts. However, it is also possible that JNK
may phosphorylate Yki to antagonize the phosphorylation and
inactivation of Yki by Hpo/Wts. In apoptotic conditions, JNK-
dependent activation of Yki and the consequent release of the
Upd cytokines from the stressed cells are pivotal factors for the
compensatory overgrowth of the nonapoptotic compartment
(52).

Both the wg/dpp and JAK/STAT signaling pathways are
essential factors for the self-renewal of intestinal stem cells
(ISC) in the midgut of Drosophila (42, 51, 53–55). This finding
raises an interesting question about whether the compensa-
tory growth is a result of the overproliferation of the stem cells
to replenish the damaged cells in response to stress or tissue
injury. It is well recognized that adult stem cells are responsible
for replenishing the dead cells to maintain the homeostasis of
the normal tissues. Earlier studies showed a contribution of
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JNK activation in the intestinal absorptive enterocytes to the
compensatory division and/or differentiation of ISCs in cir-
cumstances such as infection, chemical damage, ormechanical
damage (56, 57). Through asymmetrical division, Drosophila
ISCs give rise to an ISC and an enteroblast cell, which can then
further differentiate into 2 major types of intestinal epithelial
cells, enterocytes and secretory enteroendocrine cells. The
activation of JNK in enterocytes by silencing of the JNK
suppressor, puckered (puc), or expression of the active form
of hemipterous [Hep,Drosophila JNK kinase (DJNKK)] resulted
in a substantial increase in both the Upd cytokines and in the
number of ISCs (51, 56). It is believed that upon JNK activation
in the enterocytes, the releasedUpdcytokines engagedwith the
IL-6R–type receptor Domeless (dome) on the surface of ISCs,
which led to the activation of the JAK/STAT signaling in ISCs,
followed by a dramatic increase in themitotic index of the ISCs.
Similarly, paracrine wg from the circular muscles next to the
ISCs had been implicated as an external niche signal that is
important for the self-renewal of ISCs (54). In addition to the
paracrine role of wg/dpp and the Upd cytokines from the
stressed enterocytes that are induced by JNK activity on ISCs,
JNK activity within the ISCs themselves seemed to be critical
for the ISC proliferation when the Drosophila were challenged
with paraquat or bleomycin (58). In this scenario, JNK- and
extracellular signal-regulated kinase (ERK)–dependent phos-
phorylation of the FOS protein within the ISCs is sufficient to
promote the stress-induced ISC proliferation, whichmay occur
through the AP-1–dependent transcriptional regulation of
several genes that drive the cell-cycle transition.

JNK-induced compensatory growth in animal disease
models
Whereas the majority of studies on JNK-regulated compen-

satory proliferation were done in Drosophila, reports suggest
that JNK is a key contributor to the compensatory proliferation
of hepatocytes in a mouse HCCmodel with an IKKb deficiency
(28, 30). Mice with a hepatocyte-specific disruption of the IKKb
gene exhibited a substantial increase in cell apoptosis, reactive
oxygen species production, and JNK activation in hepatocytes
in response to DEN treatment. Meanwhile, these mice also
showed a marked enhancement in hepatocyte proliferation
and carcinogenesis induced by DEN. Such effects were pre-
vented in progenies from cross-breeding these mice with JNK1
knockout mice, suggesting that JNKs, especially JNK1, play a
central role in hepatocyte apoptosis and in the compensatory
proliferation of nonapoptotic cells. Similar findings were
observed in murine liver tumor models with a hepatocyte-
specific IKKg/NEMO or TAK1 deficiency (29, 59). It was
originally hypothesized that this compensatory proliferation
was induced by the growth factors released from the Kupffer
cells. Alternatively, it is possible that mitogens released from
the apoptotic hepatocytes in which JNK is activated induce the
compensatory proliferation of the nonapoptotic hepatocytes.

A Potential Role of JNK in Cancer Stem Cells

As links were revealed between JNK activation and wg/dpp
or JAK/STAT signaling in tissue damage– or stress-induced

compensatory proliferation, it is plausible to hypothesize that
some human cancers are formed as a result of the compen-
satory overgrowth of stem cells (Fig. 1). Either wg/dpp or JAK/
STAT, which are both regulated by JNK activation, can provide
a suitable niche for the dynamic proliferation of stem cells.
Sustained activation of JNK will cause the aberrant generation
of the wg/dpp and JAK/STAT signals, which will be potentially
dangerous for either the overcompensatory proliferation of
tissue stem cells or, alternatively, for the oncogenic transfor-
mation of stem cells. It is also possible that a prolonged
activation of such signals in non–stem cells might cause
trans-differentiation of these cells into CSCs. Although the
specific contributions of JNK, Yap (Yki in Drosophila), Wnt/
BMP (wg/dpp in Drosophila), and JAK/STAT signaling to stem
cell overgrowth and cancer in vertebrates remain to be estab-
lished, we expect that similar signaling pathways and their
regulatory effects on stem cells might be involved in the
development of murine or human cancers. Indeed, the aug-
mentation of JNK signaling via the transgenic gut-specific
expression of constitutively active JNK1 in mice significantly
increases ISC proliferation and villus length (60). Remarkably,
convergence seems to occur between JNK signaling and Wnt
signaling in which the activation of JNK not only induces the
expression of c-Jun, cyclin D1 and CD44, and the classic JNK
target genes (Fig. 1) but also upregulates themRNAs of some of
the Wnt target genes, including tcf4, axin2, and lgr5 in crypt
base columnar cells, a group of intestinal cells with stem cell–
like properties (61). In the case of the JNK-dependent expres-
sion of lgr5, a CSCmarker of colon cancer, it was suggested that
the phosphorylation of c-Jun by JNK prevents c-Jun from
recruiting the Mbd3/NuRD transcription repressor complex
at the promoter region of the lgr5 gene (62). Furthermore, in a
mouse Apc mutation model, JNK activation was not only
associated with enhanced Wnt signaling from the loss of Apc,
but it also promoted mTORC1 activation, which led to a
translational upregulation of the proteins necessary for intes-
tinal tumorigenesis (63). Thus, these data clearly indicate that
JNK signaling, compensatory overgrowth, and stem cell pro-
liferation are shared mechanisms for tumorigenesis between
invertebrates and vertebrates.

Several lines of evidence also support the notion that JNK
and its regulation of Wnt and JAK/STAT signaling are critical
for cancer development in mammals, although the stem cell
hypothesis in this JNK-mediated process has not been tested
directly. First, a number of human cancers exhibit enhanced
activation and/or increased expression of JNK, Yap, IL-6,
STAT3, Wnt, or TGFb (2, 64). Second, the JNK1-dependent
compensatory proliferation has been viewed as a key mech-
anism in the mouse model of HCC with a hepatocyte-specific
deletion of the IKKb or IKKg gene (28, 29). Lastly, both the
STAT3- and Wnt-signaling pathways have been viewed as
important regulators for maintaining the self-renewal of CSCs
in some experimental cancer models (65, 66). Both Wnt and
BMP, the downstream targets of JNK signaling, have been
shown to be important for the self-renewal of many stem cells,
including embryonic stem cells (ESC), lineage-specific stem
cells, and CSCs (67–70). The transgenic overexpression of wnt1
in mice induces a mammary tumorigenesis with an increased
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number of CSCs (71). In a cell culturemodel, the addition of the
exogenous Wnt protein is sufficient for the expansion of
mammary stem cells for many generations (72). The impor-
tance of Wnt signaling in mouse or human ESCs also provided
complementary support for the potential of JNK and Wnt in
CSCs. Wnt signaling is believed to maintain self-renewal of
stem cells by cooperating with or enhancing the function of
several stem cell transcription factors such as Oct3/4, Sox 2,
and Nanog (73). In contrast, BMP signaling induces differen-
tiation of human ESCs by limiting the activity of Nanog (74).

The notion that JNKs might be involved in regulation of
CSCs in human cancer is reinforced by findings indicating an
association between JNK or IL-6 and CSC markers in human
HCC (27, 75, 76). Accumulating evidence suggests that the
most common etiologic factors in HCC are chronic inflam-
mation of the liver due to hepatitis-B virus or hepatitis-C
virus infection or exposure to environmental carcinogens.
IL-6, the key inflammatory cytokine, had been viewed as a
central molecular linker between chronic liver inflammation
and HCC. Clinical data clearly show an elevated blood IL-6
level in male HCC patients (77). Animal studies using IL-6
knockout mice showed a nearly complete inhibition of HCC
development in mice treated with DEN (78). Positive feed-
back between JNK and IL-6 has been observed in an obesity-
induced HCC model (79). As a preferential activator of
STAT3 signaling, IL-6 is capable of inducing the expression
of JAK/STAT3 target genes such as VEGF, Bcl-xl, cyclin D1,
matrix metalloproteinase, and others for the sustained pro-

liferation of hepatocytes and hepatic CSCs (Fig. 1; refs. 76, 80).
Notably, genes downstream of IL-6 were enriched in the
surrounding noncancerous liver tissue of HCC patients with
the poorest survival rates (81), which might indicate a
compensatory proliferation of HCC cells or CSCs induced
by IL-6 from adjacent tissues with chronic inflammation.

A potential link between JNK1 and HCC progenitor cells or
CSCs was revealed in a gene-profiling study based on collected
human HCC tissues that were stratified by their JNK1 activa-
tion levels (26, 27). The genes with signatures corresponding to
both poor HCC prognosis and hepatoblastoma, an embryonic
liver tumor that features liver progenitor cells or CSCs, were
enriched in HCCs that had higher JNK1 activation (27). A
reanalysis of the gene-profiling data in previous studies (26,
27) indicates that many important genes for CSCs are highly
expressed in HCCs with higher JNK1 levels, including CD24,
CD44, CD133, Stat3, GPC3, EpCAM, KRT19, KRT7, SOX4, Tet1,
Runx1, Runx2,Wdr, Seme6A, JARID1a, and JARID1b. These data
clearly suggest an important role for JNK1 regulation of HCC
progenitor cells or CSCs.

JNK Activation in the Stemness of Embryonic
Stem Cells

The data derived from studies in Drosophila and some
human cancers indicate that JNK might be a regulator of stem
cells or CSCs. The embryonic lethality of JNK1 and JNK2
double-knockout mice suggests that JNK kinases are essential

Figure 1. JNK signaling enhances the compensatory proliferation of the neighboring cells, stem cells, or CSCs. In response to stress signals, activated JNK
induces the release ofWnt/BMPand IL-6 from the stressed cells inwhich an apoptotic responsemight be initiated but not yet completed, thus inducing astate
of "undead" cells. The released Wnt/BMP and IL-6 interact with Fz and JAK complexes, respectively, on the surface of the neighboring cells, stem cells, or
CSCs, which is followed by the activations of the b-catenin/TCF– and Stat3-signaling pathways in these cells. Both b-catenin/TCF and Stat3 are capable of
enhancing the expression of the genes such as CCND1, OCT4, Sox2, KLF4, c-Myc, CD44, and others that are important for the cell proliferation and self-
renewal of the stem cells or CSCs. Reciprocal positive feedback exists between Stat3 and JNK signaling in the nonstressed neighboring cells or stem cells.
Alternatively, JNK can affect Stat3 through the suppression of Hpo/Wts (MST/LATS in mammals) to alleviate Yki (YAP in mammals), which can induce Stat3
through IL-6 signaling. Similarly, in addition to regulation of the b-catenin/TCF pathway, Wnt signaling can regulate cell growth of stem cells by suppressing
Notch, a repressor of c-Myc and other cell-cycle genes. Circled arrow indicates a group of genes important for the self-renewal of the stem cells or CSCs.
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for embryonic development (16). Because of the central role of
ESCs in the development of the embryo, an important concept
to examine is whether JNKs play a role in the establishment,
maintenance, and differentiation of ESCs. Several protein
kinase pathways had been implicated as pivotal regulators for
the self-renewal, proliferation, or differentiation of ESCs,
including phosphoinositide 3-kinase (82), receptor and non-
receptor tyrosine kinases (83), and others. However, to date, a
systematic study of the role of JNKs in certain aspects of ESCs,
such as self-renewal, maintenance of stem cell totipotency, and
differentiation, has not been done. Uncertainties and contro-
versies remain about whether JNKs are required for the pro-
liferation or differentiation of mouse ESCs (mESC). In testing
the toxicity of the carcinogenic metal chromium [Cr(VI)], Xia
and colleagues showed that JNKs protect mESCs from Cr(VI)-
induced cytotoxicity and suppress the differentiation ofmESCs
or the derived embryonic bodies (84). Similarly, JNK signaling
seems to be important for the proliferation of mESCs by
collaborating with the Akt-mTOR pathway in response to zinc
stimulation (85). Furthermore, in a recent study designed to
determine how an essential amino acid, L-threonine, regulates
mESCs, Ryu and Han showed that JNK is one of the key kinases
necessary for the self-renewal and proliferation of mESCs (86).
The addition of the JNK inhibitor SP600125 blocked the L-
threonine–induced expression of the stem cell marker OCT4
and several cell proliferative molecules, such as cyclin D1,
cyclin E, and c-Myc (86).
In contrast, an earlier study that investigated the neurogen-

esis of JNK1-deficient mESCs found that a deficiency of either
JNK1 or JNK2 had no effect on the expression of the mESC
markers or the self-renewal of the mESCs (87). However, JNK1
deficiency clearly impaired the neural differentiation of
mESCs, because JNK1 was required for the transcriptional
expression of a neural-specific gene, the neurofilament light
chain, in response to nerve growth factor. That study also
suggested that JNK1 might facilitate mESC differentiation by
inhibiting Wnt-4 and Wnt-6, which are 2 key Wnt-signaling
molecules in vertebrates. The concept that JNKs are involved in
the differentiation of mESCs was supported by another study
showing that JNKs are required for lineage-specific differen-
tiation but are dispensable for the self-renewal of mESCs (88).
These results seem to contradict what had been found in the
intestinal cells of Drosophila and mouse (39, 60).
Unlike what has been found in mESCs, the potential role of

JNKs in the self-renewal of human ESCs (hESC) seems to be
straightforward (89–91). Interrogation of the phosphopro-
teomes of the hESC line WiCell's H1 by identifying phosphor-
ylated peptides via multidimensional liquid chromatography/
mass spectrometry, Ding and colleagues observed significantly
elevated JNK activity in undifferentiated hESCs (89). This
observation was further supported by the treatment of undif-
ferentiated hESCs with the JNK inhibitor SP600125 or with a
JNK inhibitor III polypeptide. Inhibition of JNK by either
SP600125 or JNK inhibitor III caused the differentiation of the
hESCs and the substantially reduced expression ofNANOGand
OCT4, which are 2 important markers of undifferentiated
hESCs. The possible contribution of JNK signaling to the
maintenance and/or self-renewal of hESCs was additionally

confirmed in a different hESC line, Harvard's HUES-7, by the
stable isotope labeling of amino acids in cell culture combined
with liquid chromatography/tandem mass spectrometry (91).
JNK1 activity and the activity of other kinases, including cyclin-
dependent kinase 1/2 (CDK1/2) andmitogen-activated protein
kinase 14 (MAPK14; p38a), was overrepresented in hESCs. In
response to the BMP-induced differentiation, a transient ele-
vation of c-Jun phosphorylation was observed, which indicated
both the competence of the basal JNK pathway tomaintain the
stemness of the hESCs and the possible involvement of JNK
activation in the initiation of hESC differentiation. Further-
more, as determined by electron transfer dissociation-based
large-scale tandem mass spectrometry, the MAPK pathway
seems to be 1 of the top 3 signaling pathways in another hESC
line, although the activated MAPK pathway was not defined
among the ERK, JNK, or p38 pathways (92).

The comprehensive analyses of the hESC transcriptome
provided corroborating evidence for the role of JNK signaling
in the self-renewal and/or pluripotency of hESCs (93, 94). Both
jun and fos, 2 JNK target genes, have been found to be signature
genes in several tested hESC lines (95). Additionally, analysis of
the gene expression dynamics of the hESCs showed that the
expression of some of the JNK-signaling molecules was signif-
icantly higher in the undifferentiated hESCs than in the dif-
ferentiated hESCs (94). These JNK-signaling molecules include
the JNK target gene Jun and 2 upstream kinases of JNK,
MAP4K1 (MEKKK1) and MAP3K7 (TAK1). Both MAP4K1 and
MAP3K7 are preferential upstream kinases for the activation of
JNK (96, 97). Differentiation of the hESCs by removal of both the
feeder cells and basic fibroblast growth factor (bFGF) resulted
in the downregulation of these JNK-signaling molecules (94).

In accordance with these observations, recent genome-wide
RNA interference screening in hESCs showed that the genes of
several of the JNK-signaling molecules, such as MEKK3,
MEKK4, MEKK8, JNK3, and Fos, contain binding sites in their
promoter or enhancer regions for PRDM14, which is a stem-
cell–specific transcription factor (98). ChIP-seq analysis
showed direct binding of PRDM14 to the regulatory regions
of these genes. PRDM14 not only upregulates the expression of
Fos but also inhibits DUSP10 and DUSP12, the negative reg-
ulators of JNK signaling. In mESCs, PRDM14 overexpression
can enhance the activity of NANOG to prevent the mESC
differentiation of the extraembryonic endoderm (99), which
provided complementary evidence indicating a possible role
for JNK signaling in the maintenance of the ESCs.

JNKs in Adult Stem Cells

Although the function of JNKs in the proliferation and/or
self-renewal of hESCs is noteworthy, it is also of interest to
investigate the role of JNKs in the proliferation of human adult
stem cells, such as adipose-derived stem cells (100) and mes-
enchymal stem cells (MSC; ref. 101). Evidence indicates that
JNK activation is essential for the injury-induced proliferation
of the adipose-derived stem cells and the release of several
angiogenic factors and growth factors such as platelet-derived
growth factor, VEGF, and hepatocyte growth factor. The
inhibition of JNK activity using a chemical JNK inhibitor not
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only repressed the release of those growth factors but also
reduced the number of the cells harboring the stem cellmarker
CD34 (100). MSCs can differentiate into mesenchymal lineage
cells such as osteoblasts, chondrocytes, and adipocytes. MSCs
have also been thought to be the progenitor cells for some
human cancers. In an attempt to determine the contribution of
MAPKs to the growth factor FGF-induced MSC proliferation,
studies by Ahn and colleagues showed that JNK, but not ERK or
p38, is critical for the proliferation of the MSCs in response to
FGF (101).

Conclusions

Despite varying opinions among researchers in the field,
revealing the role and regulation of intracellular signaling
pathways is undoubtedly the most important task in under-
standing how the capacity for both the self-renewal and multi-
potency of a given stem cell is maintained. It is known that
epigenetic modifications, especially modifications of the his-
tone proteins, determine the accessibility of the chromatin for
the differentiation programs to produce divergent cell types.
Accordingly, any signaling that occurs to maintain the stem-
ness of a cell must be achieved by the epigenetic activation of
the stemness programs and the termination of the differenti-
ation programs. In addition to the JNK-regulated signaling
pathways discussed above, JNKs have also been implicated in
the phosphorylation of histoneH3 serine 10 and serine 28 (102),
which affects the binding of the trithorax and PRC2 to chro-
matin and, thus, the propagation of active and silent chroma-
tin, respectively. Furthermore, JNKs or JNK-signaling mole-
cules have been implicated in the antagonizing of the PRC
complexes formation of a permissive chromatin structure on
some of the genes that are involved in cell growth and lineage
development (6, 103). Important issues about the mechanism
by which JNKs affect the balance between the stability and
plasticity of stem cells must now be addressed. A critical
question is whether JNKs are essential kinases for the multi-
potency of stem cells or whether the kinases are required for

the earlier differentiation of stem cells. It might be overreach-
ing to claim that JNKs are the central kinases for the key
properties of stem cells. However, it would be fair to state that
JNKs are critical kinases in concert with other key signaling
molecules or transcription factors that govern the develop-
ment and fate of stem cells and CSCs.

The achievement of effective cancer treatments remains a
challenge. Some of the new treatment strategies, such as
personalized medicine, are too cumbersome to be scaled up.
Because cancers very frequently originate from CSCs, the
targeting of a particular signaling pathway, such as JNK, in
CSCsmight circumvent someof the setbacks that conventional
therapies currently face, such as fast relapse and chemoresis-
tance. The significance of stem cell research is its promise for
the stem cell–based treatment for some degenerative diseases
or for cancer. The recently recognized tumorigenic nature of
hESCs, adult stem cells, and induced pluripotent stem cells has
put stem cell–based therapies in jeopardy. It is plausible to
assume that this tumorigenicity of stem cells might be a
consequence of aberrant JNK activation. Thus, the inhibition
of JNK will not only force the differentiation of stem cells to
replace damaged tissues but also reduce the tumor burden in
cancer patients by eliminating CSCs. Recent evidence has
shown that the administration of an inhibitor against the
downstream target of JNK, JAK, is clinically beneficial in
treating some forms of myeloproliferative neoplasm (104).
Accordingly, a JNK-based therapeutic strategy that targets
CSCs for cancers could be developed in the foreseeable future.
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