Arsenic Trioxide Treatment Decreases the Oxygen Consumption Rate of Tumor Cells and Radiosensitizes Solid Tumors

Caroline Diepart¹, Oussama Karroum¹, Julie Magat¹, Olivier Feron², Julien Verrax², Pedro Buc Calderon², Vincent Grégoire³, Philippe Leveque¹, Julie Stockis⁵, Nicolas Dauguet⁵, Bénédicte F. Jordan¹, and Bernard Gallez¹

Abstract

Arsenic trioxide (As₂O₃) is an effective therapeutic against acute promyelocytic leukemia and certain solid tumors. Because As₂O₃ inhibits mitochondrial respiration in leukemia cells, we hypothesized that As₂O₃ might enhance the radiosensitivity of solid tumors by increasing tumor oxygenation [partial pressure of oxygen (pO₂)] via a decrease in oxygen consumption. Two murine models of radioresistant hypoxic cancer were used to study the effects of As₂O₃. We measured pO₂ and the oxygen consumption rate in vivo by electron paramagnetic resonance oximetry and ¹⁹Furine-MRI relaxometry. Tumor perfusion was assessed by Patent blue staining. In both models, As₂O₃ inhibited mitochondrial respiration, leading to a rapid increase in pO₂. The decrease in oxygen consumption could be explained by an observed decrease in glutathione in As₂O₃-treated cells, as this could increase intracellular reactive oxygen species that can disrupt mitochondrial membrane potential. When tumors were irradiated during periods of As₂O₃-induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with control mice. Notably, this effect was abolished when temporarily clamped tumors were irradiated. Together, our findings show that As₂O₃ acutely increases oxygen consumption and radiosensitizes tumors, providing a new rationale for clinical investigations of As₂O₃ in irradiation protocols to treat solid tumors.

Cancer Res; 72(2); 482–90. ©2011 AACR.

Introduction

The partial pressure of oxygen (pO₂) is a crucial factor in the response of tumors to irradiation and other cytotoxic treatments. Several studies have shown superior outcomes for cancer patients whose tumors had lower hypoxic fractions (1). Tumor hypoxia results from an imbalance between oxygen delivery and oxygen consumption, either of which may potentially be targeted by therapeutic interventions to transiently alleviate tumor hypoxia and potentiate cytotoxic treatments. It has been suggested that modifying oxygen consumption is more efficient at alleviating hypoxia than modifying oxygen delivery (2). Several pharmacologic drugs that inhibit cellular oxygen consumption have been characterized for their potential to increase tumor oxygenation and thereby enhance radiosensitivity. Meta-iodobenzylguanidine (3), insulin (4), anti-inflammatory drugs (5), corticoids (6), some antagonists of VEGF receptor tyrosine kinase (SU5416 and ZD6474; refs. 7, 8), and thyroid hormones (9) all play a major role in the metabolism of tumor cells by modifying the rate of oxygen consumption.

In the 1970s, arsenic trioxide (As₂O₃) was reported to induce complete remission in patients with acute promyelocytic leukemia (APL) in China (10). Additional studies confirmed that low doses of As₂O₃ could induce complete remission in 90% of relapsed APL patients (10). Importantly, it has become evident that the apoptotic effects of As₂O₃ are not restricted to APL cells but have also been observed in other malignant cells in preclinical studies, including myeloma cells, chronic myeloid leukemia cells, and various solid tumors cells, such as prostate, esophageal, and ovarian carcinomas (11–13).

Arsenic acts on cells through a variety of mechanisms, influencing numerous signal transduction pathways and resulting in a vast range of cellular effects that include apoptosis induction, growth inhibition, promotion, or inhibition of differentiation and inhibition of angiogenesis (11, 14–16). As₂O₃ also seems to inhibit mitochondrial respiratory function in human leukemia cells (17). We therefore hypothesized that As₂O₃ could be an important modulator of tumor oxygenation in solid tumors by affecting the oxygen consumption of tumor cells. The first step of the study was to monitor pO₂ in experimental tumors using electron paramagnetic resonance...
(EPR) oximetry (18) after administration of As₂O₃ to determine the window of increased tumor oxygenation. These results were confirmed by ¹⁹F-fluorine MRI (¹⁹F-MRI) oxygen mapping, a technique that can probe the spatial heterogeneity of response (19, 20). Patent blue staining (blood flow) and in vitro oxygen consumption experiments were done to investigate the origin of the observed increase in pO₂. The intracellular glutathione (GSH) content and the mitochondrial membrane potential were also evaluated to explain a possible mechanism by which As₂O₃ could decrease oxygen consumption. Finally, the window of increased oxygenation was exploited to enhance response of tumors to radiotherapy. Our study is the first report of the acute effect of As₂O₃ on oxygen consumption in solid tumors and provides a new rationale for combining As₂O₃ with radiotherapy.

Materials and Methods

Tumor model
Two tumor models were implanted by intramuscular injection in the rear leg of male mice: the transplantable mouse liver tumor (TLT) model in NMRI mice and the Lewis lung carcinoma (LLC) in C57Black6N mice. Measurements were done when the tumor size reached 8.0 ± 1.0 mm. All animal experiments were conducted in accordance with national animal care regulations.

Treatments
As₂O₃ was purchased from Sigma-Aldrich. For the treated group, As₂O₃ was dissolved in PBS (Invitrogen) and given by intraperitoneal injection (5 mg/kg body weight, 100 μL injected). Control animals were treated with PBS only. Animals were anesthetized by inhalation of isoflurane mixed with air in a continuous flow (3% induction, 1.8% maintain for a minimum of 15 minutes before any measurement).

Tumor oxygenation
Electron paramagnetic resonance oximetry. EPR oximetry, using charcoal (CX 0670-1; EM Sciences) as the oxygen-sensitive probe, was used to evaluate changes in tumor oxygenation after treatment with As₂O₃ using a protocol described previously (21). EPR spectra were recorded using an EPR spectrometer (Magnetech) with a low-frequency microwave bridge operating at 1.2 GHz and an extended loop resonator, or using a Bruker Elexsys system with an L-band microwave bridge working at 1.1 GHz and equipped with an E540R23 L-Band EPR coil resonator. A suspension of charcoal was slowly injected into the center of the tumor 1 day before measurement (100 mg/mL; 70 μL injected, particle size of 1–25 μm; needle diameter, 0.4 mm). The acute effect of As₂O₃ was measured by following the tumor pO₂ status before and for 2 hours after the single injection.

¹⁹F-MRI measurements. MRI was done with a 4.7 T, 40-cm inner diameter bore system (Bruker Biospec) and a tuneable ¹H/¹⁹F surface coil. Parametric images of the spin-lattice relaxation time (T₁) were estimated using a snapshot inversion recovery (SNAP-IR) pulse sequence, using a protocol described previously (19). Hexafluorobenzene (HFB) was slowly injected into the tumor and deposited along 3 tracks (3 × 30 μL) encompassing central and peripheral regions. As₂O₃ was administered in 5 mice by a catheter and the tumor pO₂s were monitored for 2 hours. Two measurements were acquired as baseline before injection. The mice used for this study were different from those used for EPR oximetry.

Patent blue staining
Patent blue (Sigma-Aldrich) was used to obtain a rough estimate of the TLT tumor perfusion fraction 90 minutes after administration of As₂O₃ or PBS, using a protocol described previously (7, 8). The assay was applied on a separate cohort. Briefly, this technique involved the injection of 200 μL of Patent blue solution (1.25%) into the tail vein of the mice, which were sacrificed after 1 minute, with tumors excised and cut into 2 size-matched halves. For each with tumors, the percentage of stained area of the whole cross section was determined using an in-house program running on Matlab, used as an indicator of tumor perfusion fraction.

In vitro evaluation of oxygen consumption rate
TLT cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS, 4.5 mg/L glucose, and 1% penicillin-streptomycin. Confluent cells were suspended in medium without serum 2 hours before treatment with As₂O₃ (25 μmol/L) or PBS. EPR spectra were recorded on a Bruker EMX EPR spectrometer operating at 9 GHz. Tumor cells (2 × 10⁸/mL) were suspended in 10% dextran in complete medium. A neutral nitroxide, ¹⁵N 4-oxo-2,6,6-tetramethylpiperidine-1-oxyl (CDN Isotopes), was added to 100-μL aliquots of tumor cells that were then drawn into glass capillary tubes. Oxygen consumption rates were obtained by measuring the pO₂ in the closed tube over time and finding the slope of the resulting linear plot, using a protocol described previously (9).

Cell survival assay
Cellular viability was estimated by measuring the activity of lactate dehydrogenase (LDH), both in the culture medium and in the cell pellet obtained after centrifugation (22). The results were expressed as the ratio of released activity to total activity.

Tumor regrowth delay assay
The TLT tumor-bearing leg was irradiated locally with 10 Gy of 250 kV X-rays (RT 250; Philips Medical Systems; 1.2 Gy/min). The tumor was centered in a 3-cm circular irradiation field. A single-dose irradiation of 10 Gy was given 90 minutes after injection of As₂O₃ or PBS. After radiotherapy, tumor growth was determined daily using a caliper until the diameter reached 16 mm, at which time the mice were sacrificed. A linear fit was carried out between 8 and 16 mm, which allowed determination of the time to reach a particular size for each mouse.

Measurement of intracellular GSH
The glutathione content was determined using the Tietze enzyme recycling assay (23), with slight modifications (24). TLT cells were cultured in DMEM containing 10% FBS,
4.5 mg/L glucose, and 1% penicillin–streptomycin. Tumor cells were treated with As2O3 (25 μmol/L) or PBS over a period of 90 minutes for TLT cells. Cells were then washed twice with ice-cold PBS and then lysed with a solution of 5-sulfosalicylic acid (5%). After 2 freeze-thaw cycles, samples were centrifuged at 10,000 g for 10 minutes and the resulting supernatants were kept at −80°C. Ten microliters of the samples was then placed in a mixture containing 0.2 U/mL of glutathione reductase, 50 μg/mL 5,5′-dithio-bis(2-nitrobenzoic acid), and 1 mmol/L EDTA at pH 7. The reaction was initiated by the addition of 50 μmol/L NADPH, and changes in absorbance were recorded at 412 nm. GSH and oxidized glutathione were distinguished by the addition of methyl-2-vinylpyridine, and their respective concentrations were determined from appropriate standard curves. Results were normalized to the protein content using the method of Lowry and colleagues (25).

Measurement of mitochondrial membrane potential

TLT cells were treated with As2O3 (25 μmol/L) in 6-well plates. Mitochondrial membrane potential was monitored using a fluorescent cationic dye known as JC-1 (Sigma Mitochondria Staining Kit). In healthy cells, JC-1 enters the negatively charged mitochondria, where it aggregates and fluoresces red. In cells in which the mitochondrial potential has collapsed, JC-1 exists as monomers throughout the cell. When dispersed in this manner JC-1 fluoresces green. Consequently, mitochondrial depolarization is indicated by a decrease in the red–green fluorescence intensity ratio (26). Data acquisition was done using a FACSCalibur flow cytometer (Becton Dickinson), and data were analyzed with FlowJo software (Tree Star, Inc.). Valinomycin and carbonyl cyanide m-chlorophenylhydrazone (mCICCP) were used as positive controls (depolarizing agents).

Statistical analysis

Means ± SEs were compared using the unpaired Student t test or ANOVA (multiple comparisons post tests for 3 groups or more). P values less than 0.05 were considered statistically significant.

Results

As2O3 rapidly increases tumor oxygenation

The administration of As2O3 at 5 mg/kg induced an acute increase in pO2 in pO2 in TLT (Fig. 1A) and LLC (Fig. 1B) tumors, an effect that was not observed for the control group (Fig. 1A–B) or for the group treated at 1 mg/kg of As2O3 (data not shown). After injection of As2O3, the pO2 increased rapidly in TLT and LLC tumors, after which pO2 decreased, enabling a window of the increased oxygenation to be determined (Fig. 1). For TLT tumors, the mean tumor pO2 (measured by EPR oximetry) after 90 minutes was 38.6 ± 7.2 mm Hg for treated mice (n = 6) and 4.3 ± 0.5 mm Hg for controls (n = 6; P < 0.01, t test). For LLC tumors, the mean pO2 after 45 minutes was 10.5 ± 1.3 mm Hg for treated mice (n = 5) and 4.3 ± 0.3 mm Hg for control mice (n = 5; P < 0.01, t test). The effect of 5 mg/kg of As2O3 on pO2 was further confirmed by 19F-MRI relaxometry in TLT tumors, which provides an estimation of the temporal and spatial heterogeneity of response. The mean tumor pO2 was 15.9 ± 2.2 mm Hg before the injection of the drug and 30.8 ± 5.5 mm Hg 60 minutes after As2O3 injection (time of maximal pO2, according to this oximetry technique; P < 0.05, t test, n = 5). The evolution of pO2 over time, as measured by 19F-MRI relaxometry, is shown in Fig. 2. 19F-MRI relaxometry confirmed the trend of an early increase in pO2 after As2O3 administration, although the treated and control dynamic curves were not significantly different due to a large variation in the pO2 readings. Using 19F-MRI relaxometry, it is possible to probe the spatial heterogeneity of response: color pO2 maps and their corresponding histograms were generated, as shown in Fig. 3A. The color maps show an increase in pO2 after treatment with As2O3, marked by a global increase in the red color (corresponding to pO2 higher than 10 mm Hg). The histograms show a clear shift of the pO2 values to the right after As2O3 treatment (n = 5; Fig. 3B). For all further experiments (flow estimation and therapeutic relevance), the experiments were conducted 90 minutes after injection of As2O3 in mice bearing the TLT tumor model.
The reoxygenation induced by As$_2$O$_3$ is mediated by an effect on oxygen consumption

To explain the increase in pO$_2$ induced by As$_2$O$_3$, blood perfusion in TLT tumors was investigated using the Patent blue staining assay 90 minutes after As$_2$O$_3$ injection (Fig. 4A and B). This method has previously been validated by our group and compared with dynamic contrast-enhanced MRI data (6, 7). The colored area observed in tumors 1 minute after injection of the dye (Patent blue) was decreased in As$_2$O$_3$-treated mice (n = 8) compared with control mice (n = 7; 38.8 ± 4.6% vs. 61.2 ± 4.9%, P < 0.01, Fig. 4A), indicating that blood perfusion fraction was decreased in treated mice. Typical images are shown in Fig. 4B.

The oxygen consumption was investigated in vitro on TLT tumor cells exposed to As$_2$O$_3$ during 90 minutes. The incubation in the presence of As$_2$O$_3$ significantly decreased the rate of oxygen consumption (Fig. 5), with mean slopes of −1.68 ± 0.07 μmol/L/min (n = 6) and −3.5 ± 0.1 μmol/L/min (n = 7; P < 0.001) for treated and control cells, respectively. As$_2$O$_3$-treated cells thus consumed oxygen 2 times slower than control cells. To exclude a possible direct cytotoxic effect of As$_2$O$_3$, we also measured the activity of LDH in TLT cells 90 minutes and 4 hours after incubation in the presence of As$_2$O$_3$. Treatment induced LDH leakage of 23.4 ± 2.5% (90 minutes after treatment) and 27 ± 2.1% (4 hours after treatment) compared with 34.1 ± 2.1% and 34.2 ± 2.3% (similar timings) in control mice. These results indicated that this concentration of As$_2$O$_3$ (25 μmol/L) did not influence the viability of TLT cells early after the exposure (1-way ANOVA).
As$_2$O$_3$ radiosensitizes tumors by an oxygen effect

To determine whether the lowering of intracellular GSH content was a possible mechanism by which As$_2$O$_3$ could decrease the oxygen consumption of tumor cells, we measured the intracellular content of GSH. GSH contents were 18.3 nmol/mg protein and 42.6 nmol/mg protein for TLT-treated and control cells, respectively (Fig. 6A). Inhibiting GSH production may lead to oxidative stress by enhancing intracellular reactive oxygen species (ROS), and accumulation of intracellular ROS leads to disruption of the mitochondrial membrane potential. This hypothesis is supported by the fact that the number of TLT cells with depolarized mitochondria was increased in the presence of As$_2$O$_3$ as shown in the JC-1 assay (Fig. 6B).

As$_2$O$_3$ radiosensitizes tumors by an oxygen effect

To evaluate the effect of As$_2$O$_3$ on tumor regrowth after irradiation, tumor-bearing mice were irradiated with a single dose of 10 Gy of X-rays. Figure 7A shows the tumor growth of TLT tumors treated or not with As$_2$O$_3$, with or without irradiation. In the nonirradiated groups, there was no significant difference between tumors treated with PBS and those treated with As$_2$O$_3$ (P > 0.05). All irradiated groups showed a significant regrowth delay compared with their respective control group (P < 0.01). When irradiation was applied during the time window of increased oxygenation produced by As$_2$O$_3$ administration, the regrowth delay (33.2 ± 2 days to reach 12 mm) was significantly increased compared with irradiation alone (14.8 ± 2 days; P < 0.001, 1-way ANOVA, Tukey multiple comparison test, Fig. 7B), resulting in a 2.2-fold increase in radiation response. Importantly, tumors were individually monitored with EPR oximetry after administration of As$_2$O$_3$ to make sure that the pO$_2$ was increased at the time of irradiation. To discriminate between an oxygen effect and a direct radiosensitizing effect, we also irradiated a group of As$_2$O$_3$-treated mice whose legs had been temporarily ligated to induce complete hypoxia at the time of irradiation. We checked the efficiency of the ligation by measuring pO$_2$ using EPR oximetry. In these conditions, the tumors were anoxic [pO$_2$ = 0.1 ± 0.2 mm Hg (n = 3) after leg ligation]. The regrowth delays were similar for the control irradiated group and the As$_2$O$_3$ + hypoxia irradiated group (Fig. 7B). Finally, in an independent set of mice that were not treated with As$_2$O$_3$, we found no significant difference in regrowth delays between an irradiated group and a similar group that was deprived with oxygen at the time of irradiation (by leg ligation; 12 ± 0.6 days vs. 11.1 ± 0.9 days), indicating that this tumor model presents a highly hypoxic pattern that is relevant to study hypoxia-induced radioresistance. As$_2$O$_3$ therefore induces an additional regrowth delay due to an oxygen effect. In Fig. 7C, we used Kaplan–Meier curves to compare survival times (times at which mice were sacrificed, when the tumor diameter reached 16 mm) in the different groups. As$_2$O$_3$ administration combined with radiation extended the median survival of mice by more than 20 days compared with control.

Figure 5. Effect of As$_2$O$_3$ administration on tumor oxygen consumption rate in TLT tumor cells. Oxygen consumption measurements were done 90 minutes after As$_2$O$_3$ treatment (25 μmol/L). As$_2$O$_3$-pretreated cells consumed oxygen significantly more slowly than control cells (n = 6 for treated cells and n = 7 for control cells).

Figure 6. A, Intracellular GSH level in TLT tumor cells. GSH levels were measured 90 minutes after As$_2$O$_3$ treatment (25 μmol/L). The GSH levels decrease in As$_2$O$_3$-treated cells compared with control cells. GSH levels were expressed as nmol/mg protein. GSH values are the mean of triplicate measurements. **P < 0.01; ***P < 0.001. B, % of TLT cells with depolarized mitochondria was measured 90 minutes after As$_2$O$_3$ treatment (25 μmol/L) compared with untreated cells. Valinomycin and mCICCP were used as positive controls.
The major findings of this study are (i) As$_2$O$_3$ significantly reduced the tumor hypoxic fraction (pO$_2$ < 10 mm Hg) early after administration of a single dose; (ii) the early increased oxygenation effect was linked to a decrease in tumor cell oxygen consumption rate; (iii) As$_2$O$_3$ significantly increased the effectiveness of tumor radiotherapy when irradiation was performed in the time window of increased oxygenation.

In this study, we report that As$_2$O$_3$ can induce an acute and transient increase in tumor oxygenation in experimental tumors. The basal pO$_2$ values and the time window of the increased oxygenation in TLT tumors measured using EPR and 19F-MRI relaxometry techniques were not exactly the same. The differences in observed pO$_2$ readings coming from these techniques can be partly explained by different factors that have been discussed in detail in other methodologic publications, including differences in sampling volumes (18–20, 27). The fact that we used 2 independent sets of tumor-bearing mice may also explain some differences observed. Despite differences in the nature of the measurements, both techniques indicated that the increase in oxygenation was rapidly occurring after As$_2$O$_3$ administration, that it lasted for more than 1 hour, and that this effect was distributed in all areas of the tumors. A previous study reported an increase in pO$_2$, measured with an Eppendorf pO$_2$ histograph, after chronic administration of As$_2$O$_3$ in FSa II tumors; the maximal increased oxygenation was observed at day 3 (28). The authors interpreted the As$_2$O$_3$-induced increase in tumor oxygenation to be related to an increased supply of oxygen to the remaining viable regions of the tumor and a decrease in total oxygen demand of the tumor because of the significant amount of cell death involved in As$_2$O$_3$-induced necrosis (28). As the increased tumor oxygenation may result from an increase in oxygen delivery and/or a decrease in oxygen consumption, we investigated both aspects to determine the origin of the observed effect responsible for the rapid change in tumor oxygenation. We showed a decrease in tumor perfusion after administration of As$_2$O$_3$, which excludes this parameter as a possible cause of the early tumor reoxygenation. This is in accordance with other studies that showed that a single dose of As$_2$O$_3$ induced a decrease in perfusion in tumors (28, 29, 30). Tumor cell oxygen consumption was reduced significantly after exposure to As$_2$O$_3$. We excluded a possible direct cytotoxic effect of As$_2$O$_3$ by measuring the activity of LDH in TLT cells after As$_2$O$_3$ exposure. LDH assay is a well-recognized test used to assess plasma membrane breakdown as a sign of cytotoxicity. We excluded the MTT assay because it is dependent on the mitochondrial function and a clonogenic assay because the effect of As$_2$O$_3$ was rapid and transient. Our results indicate that the concentration of As$_2$O$_3$ used in this assay (25 μmol/L) did not influence the viability of TLT cells early after the exposure. A mathematical model predicted that modification of oxygen consumption would be much more efficient at alleviating hypoxia than modification of oxygen delivery (2), a theoretical hypothesis that has been extensively shown experimentally by our group (4–9). Thus, it is theoretically and experimentally possible for tumor oxygenation to improve even in the face of diminished perfusion (31). In comparison with previously described approaches to target oxygen consumption in TLT tumors (32), As$_2$O$_3$ induces a higher increase in oxygenation than all previously considered inhibitors. Also, the resulting factor of increase in tumor regrowth delay is
above 2, which is superior to the effect observed with the majority of consumption inhibitors.

The effects of As\textsubscript{2}O\textsubscript{3} on oxygen consumption have already been observed in vitro by others, and the suggested mechanism was the inhibition of respiration upstream of complex IV in the mitochondrial respiratory chain (17). Another mechanism could involve the redox status of the tumor. The GSH redox system is known to modulate the effects of As\textsubscript{2}O\textsubscript{3}. Previous findings showed that sensitivity to As\textsubscript{2}O\textsubscript{3}-induced apoptosis was inversely related to the intracellular GSH content and that pharmacologic modulation of intracellular GSH content altered sensitivity to As\textsubscript{2}O\textsubscript{3} (33). A study also showed that As\textsubscript{2}O\textsubscript{3}-induced adhesion molecule expression in vitro was abolished when the antioxidant N-acetyl-cysteine (NAC) was introduced prior to exposure, whereas the addition of NAC in vivo partially blocked As\textsubscript{2}O\textsubscript{3}-induced vascular shutdown (30). In our study, we observed a decrease in GSH content in As\textsubscript{2}O\textsubscript{3}-treated cells compared with control cells. This decrease in GSH levels could explain the inhibitory effect of As\textsubscript{2}O\textsubscript{3} on oxygen consumption. Indeed, the GSH redox system represents one of the most important cellular defense systems against oxidative stress. Inhibiting GSH production may lead to oxidative stress by enhancing intracellular ROS, and accumulation of intracellular ROS leads to disruption of the mitochondrial membrane potential (34). This hypothesis is supported by the fact that the number of TLT cells with depolarized mitochondria was increased after exposure to As\textsubscript{2}O\textsubscript{3}. It is important to note that changes in oxygen consumption can occur a long time before changes in membrane potential become measurable (26). Overall, these observations indicate that As\textsubscript{2}O\textsubscript{3} could act on the mitochondrial respiratory chain by enhancing intracellular ROS production mediated by decreased GSH levels. Although these experiments provide rational mechanisms that may explain the change in oxygen consumption by the tumor cells and increase in tumor oxygenation, it is important to note that it is difficult to extrapolate the kinetics of the effects observed in vivo from these in vitro experiments, as the result will be dependent on the dynamic evolution in concentration of As\textsubscript{2}O\textsubscript{3} (perfusion and washout) inside the solid tumor.

We conducted radiosensitizing experiments to test the therapeutic value of the use of As\textsubscript{2}O\textsubscript{3} in combination with radiotherapy. There was a significant increase in the response of tumors to radiotherapy (by a factor of 2.2) when X-ray irradiation was applied during the increased oxygenation window. As\textsubscript{2}O\textsubscript{3} has previously been shown to induce tumor growth delay and to improve fractionated radiotherapy response in other studies that considered different mechanisms and timings of administration (28, 29, 35, 36). Lew and colleagues showed a significant regrowth delay after a single dose or fractionated schedule of radiation when As\textsubscript{2}O\textsubscript{3} was administered 60 minutes after radiation, explained by the increased production of TNF-\(\alpha\) known to enhance the antitumor effects of radiation (29). In other tumor cell lines, it seemed that As\textsubscript{2}O\textsubscript{3} was also able to directly radiosensitize tumor cells, contrary to our findings in TLT cells (36). One area related to As\textsubscript{2}O\textsubscript{3} exposure that has been widely studied is the depletion of the GSH level in cells, which may lead to oxidative stress and has been linked to increases in radiosensitivity (36, 37). Griffin and colleagues reported the greatest regrowth delay when combining treatment and radiation every 3 days, at the time of maximal tumor oxygenation in their model, suggesting that the oxygen level is an important factor in terms of radiosensitization by As\textsubscript{2}O\textsubscript{3} (28). In these chronic experiments, the main factor was likely the decrease in oxygen demand due to the cell death. In this study, the acute increased oxygenation after administration of a single dose of As\textsubscript{2}O\textsubscript{3} was likely due to an effect on the mitochondrial respiration. Furthermore, tumors that were clamped during the irradiation were not radiosensitized, which identifies the ‘oxygen effect’ as the major factor responsible for the rapid radiosensitization of TLT tumors by As\textsubscript{2}O\textsubscript{3}, rather than an intrinsic direct radiosensitizing effect of the drug.

It is important to mention that there are large differences between the dose used in humans and animals. The usual dose used to treat APL is 0.15 mg/kg/d, and larger doses (up to 35 mg/kg/d) have been used in phase II clinical trials in patients with metastatic melanoma and renal cell carcinoma (38–40). In mice and rats, the usual doses ranged from 2 to 8 mg/kg (28, 30) and generally exceed the doses used in humans. This is related to the difference in route of administration [i.v. vs. intraperitoneal (i.p.)] and the good tolerance of mice to As\textsubscript{2}O\textsubscript{3} (the LD\textsubscript{50} in mice is 11–18 mg/kg i.p.), which is linked to a difference in metabolism. The metabolism of arsenic in humans produces more toxic methylated arsenic compounds than in other animals (41). Even at a high dose (6.5 mg/kg), the levels of As\textsubscript{2}O\textsubscript{3} in brain, kidney, and liver were low and the histologic examination showed no pathologic changes (42). No obvious sign of toxicity was observed in studies that investigated the possible adverse effects of combined treatment with As\textsubscript{2}O\textsubscript{3} and radiation (43, 44). More information about arsenic toxicity and pharmacokinetics is available in the official document linked to the Initial Marketing Authorization of Trisenox (45). Finally, it has also been shown that As\textsubscript{2}O\textsubscript{3} selectively accumulated in tumors (28, 29, 41). As the difference in dose is approximately a 10-fold increased sensitivity to arsenic effects in humans and as the extrapolation of the animal data to humans is not straightforward, initial clinical studies that could benefit from our present observations should likely start with doses currently used in the clinic to treat APL or solid tumors.

In conclusion, we report for the first time that a single dose of As\textsubscript{2}O\textsubscript{3} can decrease oxygen consumption by tumor cells in experimental tumors, resulting in a transient increased oxygenation of the tumors. This increased oxygenation window could be exploited to significantly enhance tumor radiation response, after individual monitoring of the tumor pO\textsubscript{2} before radiotherapy. The oxygen effect was identified as the major factor involved in the sensitization process induced by As\textsubscript{2}O\textsubscript{3}. Although additional fractionated radiation studies and TCD\textsubscript{50} experiments should be conducted for further preclinical validation in a larger panel of tumor models, our study suggests that As\textsubscript{2}O\textsubscript{3} could be used as a potential cotreatment for radiation therapy when this is applied at the time of maximum increased oxygenation induced by the drug.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work is supported by grants from the Belgian National Fund for Scientific Research (FNRS), the Tlevie, the Fonds Joseph Maisin, the Saint-Luc Founda-
tion, the “Actions de Recherches Concertées–Communauté Française de Belgi-
que:ARC/09/14-020”, and the “Pôle d’attraction Interuniversitaire PAI1V (P6/38)”. B.F. Jordan is a research associate of the FNRS.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 31, 2011; revised November 25, 2011; accepted November 29, 2011; published OnlineFirst December 2, 2011.

References

trioxide through modulation of the glutathione redox system. Blood
34. Dalton WS. Targeting the mitochondria: an exciting new approach to
Study of arsenic trioxide-induced vascular shutdown and enhance-
37. Jones EL, Douple EB. The effect of in vivo GSH depletion on thermo-
sensitivity, radiosensitivity and thermal radiosensitization. Int J Hyper-
with metastatic renal cell carcinoma. Invest New Drugs 2002;20:
327–30.
39. Kim KB, Bedikian AY, Camacho LH, Papadopoulos NE, McCullough C.
A phase II trial of arsenic trioxide in patients with metastatic melanoma.
40. Tarhini AA, Kirkwood JM, Tawbi H, Gooding WE, Islam MF, Agarwala
SS. Safety and efficacy of arsenic trioxide for patients with advanced
41. Carter DE, Aposhian HV, Gandolfi AJ. The metabolism of inorganic
oxides, gallium arsenide, and arsine: a toxicological review. Toxicol
Antitumor effect of arsenic trioxide in murine xenograft model. Cancer
43. Ning S, Knox SJ. Optimization of combination therapy of arsenic
trioxide and fractionated radiotherapy for malignant glioma. Int J Radiat
44. Xie LX, Lin XH, Li DR, Chen JY, Hong CQ, Du CW. Synergistic
therapeutic effect of arsenic trioxide and radiotherapy in BALB/C nude
mice bearing nasopharyngeal carcinoma xenografts. Exp Oncol
45. The Official document linked to the Initial Marketing Authorization of
Trisenox (European Public Assessment Report - Scientific Discussion -
Arsenic Trioxide Treatment Decreases the Oxygen Consumption Rate of Tumor Cells and Radiosensitizes Solid Tumors

Caroline Diepart, Oussama Karroum, Julie Magat, et al.

Updated version Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-11-1755

Cited articles This article cites 44 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/72/2/482.full.html#ref-list-1

Citing articles This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/72/2/482.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.