p53 Negatively Regulates Transcription of the Pyruvate Dehydrogenase Kinase Pdk2

Tanupriya Contractor1 and Chris R. Harris1,2,3

Abstract

In cancer cells, the aberrant conversion of pyruvate into lactate instead of acetyl-CoA in the presence of oxygen is known as the Warburg effect. The consequences and mechanisms of this metabolic peculiarity are incompletely understood. Here we report that p53 status is a key determinant of the Warburg effect. Wild-type p53 expression decreased levels of pyruvate dehydrogenase kinase-2 (Pdk2) and the product of its activity, the inactive form of the pyruvate dehydrogenase complex (P-Pdc), both of which are key regulators of pyruvate metabolism. Decreased levels of Pdk2 and P-Pdc in turn promoted conversion of pyruvate into acetyl-CoA instead of lactate. Thus, wild-type p53 limited lactate production in cancer cells unless Pdk2 could be elevated. Together, our results established that wild-type p53 prevents manifestation of the Warburg effect by controlling Pdk2. These findings elucidate a new mechanism by which p53 suppresses tumorigenesis acting at the level of cancer cell metabolism. Cancer Res; 72(2); 560–7. ©2011 AACR.

Introduction

Cancer and noncancer cells can differ in the metabolism of glucose. In cancer cell lines, as much as 90 percent of glucose is converted into lactate (1), whereas nontumor cells tend to fully oxidize glucose into carbon dioxide. High production of lactate by tumor cells occurs even in the presence of oxygen and is known as aerobic glycolysis or the “Warburg effect.” Although first noted by Otto Warburg (2, 3), aerobic glycolysis has drawn more research interest lately, and it is hoped that drugs that attack the Warburg effect will prove to be effective in fighting tumor formation. It is not completely clear why the Warburg effect is favored by tumor cells, but presumably, it is beneficial for cell proliferation. Glycolysis produces ATP more quickly than oxidative phosphorylation, which may favor rapid growth if glucose is plentiful. Also, interruption of glycolysis can divert glycolytic intermediates toward synthesis of important cell-cycle molecules such as deoxyribonucleotides and phospholipids, which would be favorable for DNA replication and membrane synthesis (4). Another consideration is that complete oxidation of glucose produces reactive oxygen species (ROS; ref. 5), leading to apoptosis (6), so tumor cells may restrict oxidative phosphorylation as a survival mechanism.

In this study, we tested whether the tumor suppressor protein p53 helps to prevent the Warburg effect. Approximately half of all tumors harbor a mutation in the p53 gene (7), and the remaining tumors likely have mutations in one or more of the many pathways impacted by p53. p53 plays several key roles in the prevention of tumors, such as inducing cell-cycle arrest, senescence, or apoptosis in response to DNA damage (8). More recently, p53 has been shown to affect cellular metabolism, such as the mTOR pathway (9).

Clinically, p53 mutations correlate with increased uptake of the glucose analog 18FDG (10), which is a marker for aerobic glycolysis. These data suggest that p53 could lower glucose uptake and/or glucose catabolism by tumors. Indeed, as detailed in the discussion section, p53 is known to increase the expression of genes that should decrease glycolysis (11, 12). However, p53 is also known to increase the expression of genes that should increase glucose metabolism (13, 14). Thus, the precise mechanism by which p53 alters glucose metabolism has not been completely clear.

We decided to test the effect of p53 on a key decision point in glucose metabolism: the conversion of pyruvate, the end product of glycolysis, into acetyl-CoA, which is one of the entry points into the citric acid cycle. This decision point is controlled in large part by the enzyme pyruvate dehydrogenase kinase isoenzyme-2 (Pdk2), which inactivates acetyl-CoA production by phosphorylating the Pdc. We show that transcription of Pdk2 is negatively regulated by p53. Thus p53 can affect the most singular feature of the Warburg effect, the production of lactate.

Materials and Methods

Plasmids

A plasmid expressing Pdk2 under CMV promoter control was purchased from Origene. pCMV-wtp53 was a gift from Arnold Levine, and the pCMV-esp53 control plasmid was prepared by inserting 2 frame-shift mutations into the p53 gene. pHA-E2F1, pHA-E2F2, and pCMV-neo plasmids were

Published OnlineFirst November 28, 2011; DOI: 10.1158/0008-5472.CAN-11-1215
p53 Negatively Regulates Transcription of Pdk2

Cell lines
MCF7 was obtained from American Type Culture Collection. MCF7 CL.17 was constructed by transfection of a plasmid expressing Pdk2 under control of the CMV promoter. G418-resistant colonies were screened for Pdk2 expression in presence and absence of nutiln-3a. MCF7shp53 was kindly provided by Xinbin Chen. The cell lines EB and EB1 were gifts from Arnold Levine, and the HCT116, HCT116 kindly provided by Xinbin Chen. The cell lines EB and EB1 expression. G418-resistant colonies were screened for Pdk2 expression. EB and EB1 were gifts from Arnold Levine, and the HCT116, HCT116 were gifts from Alain Nepveu. Human Pdk2/luciferase was prepared by PCR of the Pdk2 promoter from human genomic DNA, using primers 5'-AAAGAATCTATTGTTGCCGCCCAGT-3' and 5'-TTTCAAGGGGACGGATCCGATG-3'. The PCR product was digested with KpnI and XhoI sites of pGL3-Basic (Promega). Murine Pdk2/luciferase was prepared by PCR of the Pdk2 promoter from mouse genomic DNA, using primers 5'-AAAAAGTACGACAGCGCCAGCAA-3' and 5'-AAAAAGATCAGGTGATGTTCT-3'. The PCR product was digested with KpnI and BamHI sites of pGL3-Basic.

Western blots and RT-PCR
For protein analysis, lysates were isolated by radioimmunoprecipitation assay extraction in the presence of protease and phosphatase inhibitors (Sigma-Aldrich). Ten micrograms of protein extracts were separated using NuPage 4% to 12% BisTris gels (Invitrogen). Pdk2 and PDH E1α antisera were purchased from Cell Signaling Technologies. For RNA analysis, RNA was extracted using RNeasy columns (Qiagen), then converted into cDNA using reverse transcription reagents (Applied Biosystems). All TaqMan assays were purchased from Applied Biosystems. Assays were read in real time using an Applied Biosystems 7500 and normalized to β-actin mRNA.

Chromatin immunoprecipitation assays
Two million EB1 cells were treated with 200 μmol/L zinc chloride, or mock treated, for 7 hours. Cells were then treated for 10 minutes with 0.01% formaldehyde at 37°C. Cells were washed and lysed, then chromatin was fragmented using a Sonic Dismembrator 50 (Fisher Scientific) at 30% to 40% output in 3 sets of 15 seconds. A kit for chromatin immunoprecipitation (ChIP) was purchased from Millipore. Antisera against E2F1 (Novus Biologicals) and acetyl-histone H4 (Millipore) were used for immunoprecipitation experiments. Immunoprecipitation was carried out as recommended by the manufacturer. Relative amounts of Pdk2 promoter in the precipitated samples were assayed using 70 nmol/L concentrations of 2 oligonucleotides. 5'-CCCGAGTTGTTTCTATCCAGTGAG-3' and 5'-GCTTCCTCCCTACCTTGG-3'. Relative amounts of Pdk2 promoter in the input (nonimmunoprecipitated) preparations were also determined and used for normalization. SYBR green was used to monitor PCR amplifications in real time.

Lactate assays
Cells were plated in 6-well plastic tissue culture dishes at a density of 500,000 cells. After 24 hours, fresh DMEM-10% FBS was added along with 10 μmol/L nutiln-3a (Sigma-Aldrich) or dimethyl sulfoxide (DMSO) alone. After 4 hours, media were removed and replaced with fresh media containing DMSO or nutiln-3a. After 12 additional hours, media were removed and centrifuged through 10K spin columns (BioVision) to remove cell debris and contaminating enzymes. The low molecular weight flow through was assayed for lactate using lactate assay kit II (BioVision). A no-cell control was used to get a basal level of lactate in the media. Each test condition was sampled in quadruplicate wells. The quantity of lactate was normalized to the number of viable cells in the same wells, which was determined by Guava ViaCount assay (Millipore).

Luciferase and other transient transfection experiments
HCT116(p53−/−) cells were plated in 6-well plastic tissue culture dishes at a density of 500,000 cells. An amount of 0.8 μg of pPdk2-luciferase (either human or murine Pdk2 promoter) was transfected along with 0.8 μg of purified native Renilla luciferase (Promune Ltd). Native Renilla was used because Renilla reporters were sensitive to added E2F1, E2F2, and p53. Also added was 0.8 μg of pCMV-p53wt, pCMV-p53fs, pHA-E2F1, pHA-E2F2, or pCMV-neo. Lipofectamine 2000 (Invitrogen) was used for transfection as recommended by the manufacturer. After 24 hours, transfected cells were lysed and assayed for luciferase using a dual-glo luciferase kit (Promega). All siRNAs were purchased from Ambion and were transfected with siPORT, as recommended by the manufacturer. For p21 knockdown, HCT116(p53−/−) cells were transfected and 24 hours later, cells were trypsinized and replated for luciferase experiments. For p53 knockdown, MCF7 were transfected and 24 hours later, cells were trypsinized and replated for nutiln-3a treatment.

Mouse experiments
Wild-type or isogenic p53−/− male mice were irradiated with 10 Gray gamma from a Cesium source. Mice had no visible health problems at the time of assay. Three mice from both backgrounds were used, and 3 untreated mice from both backgrounds were also studied. Six hours after irradiation, mice were euthanized with carbon dioxide, in accordance with the Institutional Animal Care and Use Committee of Rutgers University. Spleen or epithelial lining of colon were isolated and were centrifuged through 10K spin columns (BioVision) to remove cell debris and contaminating enzymes. The low molecular weight flow through was assayed for lactate using lactate assay kit II (BioVision). A no-cell control was used to get a basal level of lactate in the media. Each test condition was sampled in quadruplicate wells. The quantity of lactate was normalized to the number of viable cells in the same wells, which was determined by Guava ViaCount assay (Millipore).
Results

Lactate is produced from pyruvate, the end product of glycolysis. As shown in Fig. 1, pyruvate can also be converted into acetyl-CoA, which can enter the citric acid cycle. Production of acetyl-CoA is catalyzed by the Pdc, whose activity is controlled by the action of several kinases and phosphatases. Pdc can be inactivated by phosphorylation, which should cause more lactate production. Because lactate production is a key controlled by the action of several kinases and phosphatases.

Phosphorylation of Pdc can be reversed by either of 2 phosphatases, Pdp1 or Pdp2.

A, MCF7 cells were treated with 10 μmol/L nutlin or DMSO for 24 hours. Protein was extracted and Western blotted for Pdk2.

Figure 2. Western blots of proteins involved in pyruvate metabolism. A, MCF7 cells were treated with 10 μmol/L nutlin-3a or mock-treated with DMSO for 24 hours. Protein was extracted and Western blotted for Pdk2.

B, MCF7 cells transfected with negative control or p53 siRNA were treated with 10 μmol/L nutlin-3a or DMSO for 24 hours, then lysed and Western blotted for Pdk2.

We ran our experiments on the MCF7 human breast carcinoma cell line, which encodes wild-type p53 from its natural promoter. To test the effects of p53 on lactate production, we challenged the cell line by addition of nutlin-3a, a compound that increases p53 activity by interfering with the interaction between p53 and its negative regulator, Mdm2 (15). As shown in Fig. 2A, the addition of nutlin-3a decreased the amount of phosphorylated Pdc, without altering the amount of unphosphorylated Pdc.

Phosphorylation of Pdc can be controlled by 4 different Pdks, that is, Pdks 1 to 4 and by 2 different pyruvate dehydrogenase phosphatases (Fig. 1). Pdks 1, 3, and 4 are expressed only in certain cell types, or under times of cellular stress (16). Pdk2 is more prevalent, with expression in all tissues. Indeed, under normal conditions, Pdk2 is seen as the key control point in normal conditions. In the left fork, pyruvate is converted into lactate, which regenerates NAD+ which can be used to drive more glycolysis and production of more pyruvate. In the right fork, pyruvate is converted into acetyl-CoA, which can be converted into carbon dioxide by the citric acid cycle. The right fork is catalyzed by Pdc, which is negatively regulated by phosphorylation. Pdk2 is the major inactivator of Pdc, but Pdk1, Pdk3, and Pdk4 are employed by certain cell types. Phosphorylation of Pdc can be reversed by either of 2 phosphatases, Pdp1 or Pdp2.

Figure 1. A decision point in pyruvate metabolism. In the left fork, pyruvate is converted into lactate, which regenerates NAD+ which can be used to drive more glycolysis and production of more pyruvate. In the right fork, pyruvate is converted into acetyl-CoA, which can be converted into carbon dioxide by the citric acid cycle. The right fork is catalyzed by Pdc, which is negatively regulated by phosphorylation. Pdk2 is the major inactivator of Pdc, but Pdk1, Pdk3, and Pdk4 are employed by certain cell types. Phosphorylation of Pdc can be reversed by either of 2 phosphatases, Pdp1 or Pdp2.
level of Pdk2 mRNA was higher in the untreated wild-type mice than in the untreated p53 null mice.

We returned to cultured cell systems to investigate the mechanism of repression of the Pdk2 promoter by p53. p53 can repress transcription of certain promoters by binding to DNA directly, but the Pdk2 promoter has no p53 binding motifs nor did we observe p53 binding to the Pdk2 promoter by ChIP (data not shown). Another common mechanism by which p53 represses promoters is shown in Fig. 5A, in which p53 inhibits the activity of E2F transcription factors (18, 19), which activate by promoting histone acetylation (20, 21). This type of regulation depends upon p53-dependent transcriptional activation of the cyclin-dependent kinase inhibitor p21, whose expression prevents phosphorylation of proteins of the retinoblastoma family (Rb, p107, and p130), which repress E2F factors (Fig. 5A).

Analysis of the Pdk2 promoter revealed many GC-rich sequences that might serve as E2F binding sites (data not shown).

Using a Pdk2/luciferase transcriptional fusion reporter construct, we tested 3 parts of the model in Fig. 5A: the influence of p21 expression on Pdk2 promoter repression, the effect of E2F factors E2F1 and E2F2 on Pdk2 promoter activation, and the effect of histone deacetylation on repression. First, we knocked down p21 expression using siRNA. Reduction of p21 decreased repression of Pdk2/luciferase by p53 (Fig. 5B). Next, cotransfection with plasmids expressing either E2F1 or E2F2 activated Pdk2/luciferase transcription (Fig. 5C). Finally, a histone deacetylase inhibitor, trichostatin A, partially prevented repression of Pdk2 transcription by p53 (Fig. 5D).

Data from transcriptional fusions must be viewed with caution because these constructs lack more distal sequences that might also influence transcription. Therefore, we also looked for effects of p21, E2F1, and histone deacetylation on genomic Pdk2. To test for p21 effects, we used 3 versions of the human colon cell line HCT116. The parental line has wild-type p53 and p21, whereas isogenic versions are knocked out for both copies of p53 or for both copies of p21. We compared the amount of Pdk2 mRNA in each cell line with and without treatment with nutlin-3a. The wild-type cell line showed 60% repression of Pdk2 transcription after nutlin-3a treatment, but Pdk2 transcription was not repressed in either the p53 or p21 knockout lines (Fig. 6A). These data showed that both p53 and p21 are required for repression of Pdk2 transcription by nutlin-3a.

To test for the importance of E2F1 and histone deacetylation on genomic Pdk2, we carried out ChIP experiments on EB1...
cells, which repress Pdk2 transcription in a p53-dependent fashion (Fig. 3B). E2F1 bound less well to the Pdk2 promoter when p53 is induced with zinc (Fig. 6B). This suggests that E2F1 activation of Pdk2 transcription is blocked by p53. Moreover, when EB1 is treated with zinc, acetylation of histone H4 decreased, which is consistent with more compact chromatin and decreased transcription (Fig. 6C). Chromatin compaction may release E2F1 from the Pdk2 promoter.

Finally, to determine the functional consequences of down-regulation of Pdk2 by p53, we engineered a cell line in which Pdk2 expression was under control of a promoter, CMV, which is less repressed by p53. The new cell line, MCF7 CL. 17, expresses near-physiologic levels of Pdk2 in the presence of DMSO, but retains its Pdk2 expression even in the presence of nutlin-3a (Fig. 7A). We then assayed lactate production. As shown in Fig. 7B, lactate production by MCF7 decreased more than 2-fold upon nutlin-3a treatment, but lactate production was mostly restored in MCF7 CL. 17. Lactate production did not decrease at all in another cell line, MCF7shp53, in which p53 expression is knocked down by short hairpin RNA. These data showed that p53 decreases lactate production by MCF7 by decreasing the transcription of Pdk2.

A potential consequence of decreased Pdk2 expression is increased oxidative phosphorylation, which can produce ROS through the electron transport chain (5, 22). ROS can damage DNA, and a major mechanism of tumor suppression by p53 is induction of apoptosis in the presence of high ROS. Indeed, Pdk2 has previously been shown to lower ROS and to decrease apoptosis (23). We decided to test whether p53-dependent apoptosis requires downregulation of Pdk2. Because MCF7 does not express caspase 3 (24, 25), we were unable to view late apoptotic events in this cell line. However, a key early step in apoptosis is proteolytic processing of procaspases 7 and 9, which are upstream of caspase 3 (26). When we treated MCF7 with nutlin-3a, processing of caspases 7 and 9 occurred (Fig. 7C). Conversely, caspases 7 and 9 were not processed when MCF7 CL. 17 was treated with nutlin-3a. These data clearly indicated that early apoptotic events do not occur unless p53 can downregulate the transcription of Pdk2.

Discussion

A role for p53 in downregulating the Warburg effect was previously surmised, mostly due to the effect of p53 on the transcription of genes involved in glycolysis and oxidative phosphorylation. For instance, p53 activates transcription of TIGAR, whose gene product can lower the quantity of fructose 2/6 bisphosphate (11), which is a positive regulator of glycolytic enzymes phosphofructokinase and pyruvate kinase. P53 also decreases the transcription of glucose transporter isoenzymes 1 and 4 (12). But the precise effect of p53 on aerobic glycolysis
was not certain because some activities of p53 would likely increase glycolysis. A key activity required for glucose uptake, hexokinase-2, is actually upregulated by p53 (13). The glycolytic enzyme phosphoglycerate mutase is also upregulated by p53 (14).

We show that activation of p53 causes a decrease in the production of lactate by the human breast carcinoma cell line MCF7. Because lactate production in the presence of oxygen is the key step in aerobic glycolysis, this study provides a critical link between p53 and downregulation of the Warburg effect.

Figure 6. Tests of mechanism of p53-dependent repression of genomic Pdk2. A, the amount of Pdk2 mRNA relative to β-actin was determined following 24-hour nutlin-3a treatment (or mock DMSO treatment) of 3 isogenic cell lines: HCT116, HCT116(p53−/−), or HCT116(p21−/−). Fold repression was determined by comparing the amount of normalized mRNA in the absence to the amount of mRNA in the presence of nutlin-3a. B and C, the EB1 human colon cell line has zinc-inducible p53 and was treated with zinc for 7 hours or mock treated. Protein/chromatin cross-links were formed by formaldehyde treatment. The presence of a Pdk2 chromatin complex with either E2F1 (B) or acetyl-histone H4 (C) was determined by immunoprecipitation of the protein/chromatin complexes, followed by quantitation of Pdk2 promoter sequences in real time by PCR.

Figure 7. Functional consequences of downregulation of Pdk2 by p53. A, MCF7 CL17 was engineered to stably express Pdk2 under control of the CMV promoter as described in Materials and Methods. MCF7 and MCF7 CL17 were treated with DMSO or 10 μmol/L nutlin-3a for 16 hours and lysed. The lysate was used to generate a Western blot against Pdk2 and β-actin, as shown. B, MCF7, MCF7 CL17, and MCF7shp53 were treated with DMSO or 10 μmol/L nutlin-3a for 16 hours, followed by assay of lactate in the tissue culture supernatants. Fold decrease in lactate production upon nutlin-3a treatment is shown. The differences in fold decrease between MCF7shp53 and MCF7, and between MCF7 CL17 and MCF7, were determined to be statistically significant (P value less than 0.01) by two-tailed Student’s t test. C, MCF7 or MCF7 CL17 were treated with DMSO or with 10 μmol/L nutlin-3a for 72 hours then lysed. Western blots against processed Caspases 7 or 9, or β-actin loading control, are shown.

p53 Negatively Regulates Transcription of Pdk2
We also show that activation of p53 results in higher amounts of the active, unphosphorylated form of Pdc and decreased amounts of Pdk2, a major kinase of Pdc. Finally, we show that adding back Pdk2 under control of a heterologous promoter prevents p53 from downregulating lactate production. Pdk2 has long been seen as the primary gatekeeper over pyruvate metabolism. Thus p53, which has been called the cellular gatekeeper for growth and division (27), seems to downregulate the Warburg effect by controlling the expression of the gatekeeper of pyruvate metabolism.

Previously, Pdk2 activity was thought to be modulated in a strictly posttranslational fashion, through inhibition by pyruvate or activation by acetyl-CoA (16). Ours is the first study to suggest that control of Pdk2 transcription may also be important in pyruvate metabolism. P53 decreases the amount of Pdk2 transcription. In separate experiments, we show that p21 is required for p53-dependent repression of both a Pdk2 transcriptional fusion (Fig. 5B) and genomic Pdk2 (Fig. 6A). E2F1 can activate transcription of Pdk2/luciferase (Fig. 5C) and also binds to the active but not to the less active form of the genomic Pdk2 promoter (Fig. 6B). Finally, a histone deacetylase inhibitor decreases repression of the Pdk2/luciferase fusion (Fig. 5D), whereas acetylation of histone H4 at the Pdk2 promoter decreases upon p53 activation (Fig. 6C). These data support the model in Fig. 5A, in which p53 prevents activation of Pdk2 transcription by inhibiting an E2F activator. Although the model in Fig. 5A suggests that another key tumor suppressor protein, Rb, may also be involved in the Warburg effect through control over Pdk2 transcription, we did not directly show a role for Rb in Pdk2 transcription. It remains possible that one of the other members of the retinoblastoma protein family member, p107 or p130, is more important than Rb in Pdk2 transcription; alternatively, a mechanism independent of the Rb protein family cannot be ruled out at this time. However, it is noteworthy that Rb/E2F control over another Pdk gene, Pdk4, has been shown (28).

In addition to lowering Pdk2 transcription, p53 may also lower Pdk2 activity indirectly and posttranslationally. For instance, in mice p53 promotes the expression of the thiamine transporter (29). Greater uptake of thiamine increases cellular thiamine pyrophosphate, which is a cofactor of the Pdc and which is also an inhibitor of phosphorylation of Pdc by Pdk2 (30). Also, acetyl-CoA activates Pdk2, so more rapid conversion of acetyl-CoA into citrate during the citric acid cycle might serve the same role as downregulating Pdk2 transcription. This could be achieved by accelerating steps downstream of pyruvate oxidation. Indeed, in muscle p53 seems to control aerobic glycolysis through upregulation of SCO2 (31), which encodes a protein that aids in assembly of the cytochrome C oxidase component of the oxidative phosphorylation pathway. Higher SCO2 activity may decrease acetyl-CoA and inactivate Pdk2. In liver, p53 can also upregulate glutaminase-2, which may accelerate the citric acid cycle by converting glutamine into the citric acid cycle intermediate α-ketoglutarate (32). Thus the mechanism by which p53 downregulates Pdk2 activity may differ depending on the cell and tissue type, as well as the available carbon sources.

The laboratory of Michelakis has previously shown that Pdk2 is important for the growth of some human cell lines, and that an inhibitor of Pdk2, dichloroacetate (DCA), can block growth of tumors in xenograft models (23). Moreover, DCA may have decreased the progression of glioblastomas in a very small human trial of 5 patients (33). Our work, which links Pdk2 to key cancer factors such as p53, p21, E2F1, and possibly Rb, reinforces the idea that Pdk2 plays a role in tumor biology. Other Pdk isoenzymes have been linked to cancer genes. As mentioned above, pdk4 can be activated by the Rb/E2F1 pathway (28). Pdks 1 and 3 are activated by Hif-1 (34–36), which may allow tumors to control glucose metabolism under oxygen-limiting conditions. For these reasons, it seems likely that phosphorylation of the Pdc will turn out to be important in tumor formation or progression.

Control over Pdk2 expression may be central to some aspects of p53 biology. First, induction of apoptosis did not occur when p53 could not downregulate Pdk2 (Fig. 7C). DNA damage is thought to trigger p53 to activate transcription of genes that produce ROS, which cause more DNA damage that triggers even more p53 activity, thus creating a positive feedback loop that eventually leads to apoptosis (37, 38). Downregulation of Pdk2 by p53 may be sufficient to produce ROS at the levels required for apoptosis. Second, another role of p53 is to decrease tumor metastasis by preventing invasion (reviewed in Muller and colleagues; ref. 39). Conversely, lactate secretion, which acidifies the tumor microenvironment, is thought to increase invasion (40, 41). Therefore, the ability to decrease lactate production through repression of Pdk2 may help to explain the effect of p53 on metastasis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank the Raymond and Beverly Sackler Foundation for funding this study and also thank Arnold Levine, Robert Harris, and Evan Vosburgh for valuable advice, and Angie Teresky and Rich Clausen for technical assistance. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 17, 2011; revised November 10, 2011; accepted November 21, 2011; published OnlineFirst November 28, 2011.

References

p53 Negatively Regulates Transcription of Pdk2
