RALBP1/RLIP76 Depletion in Mice Suppresses Tumor Growth by Inhibiting Tumor Neovascularization

Seunghyung Lee1, Jeremy G. T. Wurtzel1, Sharad S. Singhal2, Sanjay Awasthi2, and Lawrence E. Goldfinger

Abstract
RALBP1/RLIP76 is a widely expressed multifunctional protein that binds the Ral and R-Ras small GTPases. In the mouse, RLIP76 is nonessential but its depletion or blockade promotes tumorigenesis and heightens the sensitivity of normal and tumor cells to radiation and cytotoxic drugs. However, its pathobiologic functions, which support tumorigenesis, are not well understood. Here, we show that RLIP76 is required for angiogenesis and for efficient neovascularization of primary solid tumors. Tumor growth from implanted melanoma or carcinoma cells was blunted in RLIP76−/− mice. An X-ray microcomputed tomography-based method to model tumor vascular structures revealed defects in both the extent and form of tumor angiogenesis in RLIP76−/− mice. Specifically, tumor vascular volumes were diminished and vessels were fewer in number, shorter, and narrower in RLIP76−/− mice than in wild-type mice. Moreover, we found that angiogenesis was blunted in mutant mice in the absence of tumor cells, with endothelial cells isolated from these animals exhibiting defects in migration, proliferation, and cord formation in vitro. Taken together, our results establish that RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.

Cancer Res; 72(20); 5165–73. ©2012 AACR.

Introduction
Angiogenesis, the outgrowth of new blood vessels from existing ones, is required for progression of pathologies such as tumor growth and metastasis. Solid tumors require a nutrient blood supply to grow beyond approximately 1 mm diameter, and inhibiting tumor angiogenesis has long been pursued as an approach to preventing tumor growth and subsequent metastasis (1). Therefore, it is important to identify specific modulators of tumor angiogenesis for therapeutic intervention in cancer. Angiogenesis is a complex process resulting from combined upregulation of proliferation and migration in endothelial cells, driven by responses of these cells to angiogenic stimulants such as VEGF. Endothelial cells are specialized squamous epithelia that form the inner core of all blood vessels, and are the sole cellular components of the microvasculature (capillaries). During initial stages of angiogenesis, proliferating and migrating endothelial cells convert to a spindle-shaped morphology and organize into branched capillary networks, which ultimately differentiate into fully formed luminal vessels carrying blood from the source vasculature to the new sites such as into solid tumors (1). These processes are regulated by complex cellular signaling networks (2).

Molecular controllers of angiogenic signaling networks are logical targets for therapeutic intervention. RLIP76 (Ral-interacting protein of 76 kDa, also RalBP1) has emerged as a particularly promising target, due both to its cellular and physiologic functions that are still being elucidated, and to the marked regression in tumors that has been achieved by blockade of RLIP76 in multiple tumor models (reviewed in ref. 3). RLIP76 is a multifunctional protein, originally identified as a Ral GTase effector protein linking Ral to Rho pathways through its RhoGAP activity (4–7). RLIP76 also functions as an ATP-dependent glutathione-conjugate transporter for small molecules, including anticancer drugs and endogenous metabolites (8–10), and in endocytosis (11, 12), mitochondrial fission (13), cell spreading, and migration (14). The protein contains binding sites for numerous signaling molecules (4, 5, 14–18); thus, RLIP76 appears to support a scaffolding function to regulate signaling. RLIP76 is expressed in most human tissues including liver, heart, ovary, lung, muscle, and kidney as well as in most human tumor cell lines, and is overexpressed in multiple cancers, such as lung and ovarian carcinomas and melanomas (3, 19–21). Blockade of RLIP76 with targeting antibodies or antisense is associated with increased sensitivity to radiation and chemotherapy and leads to pronounced tumor regression in nonsmall cell lung and colon carcinomas (22), prostate cancer (23), and B16 melanomas (24) in mice. However, tumor regression in these studies...
may have resulted from effects in the tumor cells, the animal host cells, or both. Thus, RLIP76 is required for cancer progression and survival but the mechanisms remain unclear.

In this study we investigated a putative role of RLIP76 in neovascularization of solid tumors in mice. For this purpose we refined a new technique of modeling tumor vasculature in 3 dimensions, using X-ray microcomputed tomography (25). Here, we present data demonstrating that RLIP76 depletion blocks efficient angiogenesis in tumors, and prevents angiogenesis in Matrigel plugs lacking tumor cells in mice, and we describe correlated defects in endothelial cells in the absence of RLIP76. We propose that RLIP76 regulates tumor progression by modulating survival of the tumor cells themselves as previously shown, as well as supporting neovascularization derived from the host vascular cells.

Materials and Methods

Mice

Generation of RLIP76+/− mice was described previously (26). These mice were backcrossed into the C57Bl/6 background; hence, we used C57Bl/6 wild-type mice as isogenic controls. All animal experiments followed protocols approved by the Institutional Animal Care and Use Committee at Temple University.

Cell culture and inoculation of tumor cells in vivo

B16F10 mouse melanoma cells and Lewis lung carcinoma (LL/2, LLC) cells were obtained from American Type Culture Collection. The cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS in a humidified, 5% CO2 atmosphere at 37°C. B16F10 and LLC cells were harvested, washed, and resuspended at 1×10^6 cells/500 µL of DMEM without serum, and this suspension was injected subcutaneously into the flank of 8-week-old RLIP76+/− or C57Bl/6 mice. Mice were euthanized at 7 or 10 days postinjection. Primary endothelial cells were maintained in endothelial cells medium (D/F with 20% FBS, 5% microvascular growth supplement, 0.1% gentamicin/amphotericin B).

Generation of B16F10 and LLC-RLIP76 knockdown cell lines

A plasmid encoding a short hairpin RNA (shRNA) targeting the murine RLIP76 mRNA was generated in pSUPER. retro.puro (OligoEngine) according to the manufacturer’s instructions, using the target sequence 5’-GTAGAGAGGACCATGATGT-3’. B16F10 and LLC cells were transfected with the shRNA plasmid or with empty vector using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions, and stable transfectants were selected using puromycin. Clones were screened for suppression of RLIP76 expression by Western blotting of cell extracts with RLIP76 and α-tubulin antibodies (Santa Cruz Biotechnologies) by standard procedures.

Angiogenesis in Matrigel plugs

The angiogenesis model was based on the use of Matrigel (BD Biosciences) implants in C57Bl/6 or RLIP76−/− mice. A total of 500 µL growth factor–reduced Matrigel with or without 100 ng/mL of VEGF was injected in the mouse flank. After 7 days the mice were euthanized and the Matrigel plugs were dissected away from the tissue, photographed, and then maintained for 24 hours at 4°C. Total hemoglobin levels in the Matrigel plugs were then determined using aqueous extracts as described elsewhere (27). Briefly, a 50 µL aliquot of the extract was removed for analysis. After a 5-minute incubation with 200 µL of DIHB-250 reagent (QuantiChrom hemoglobin assay, BioAssay Systems), hemoglobin content was quantified with a microplate reader at 405 nm.

Endothelial cell isolation

Mice were euthanized, followed by exposure of the thoracic cavity. A total of 10 mL of cold PBS and DMEM was injected via the right ventricle to flush the lungs of blood cells, and then the lungs were subsequently removed and incubated for 60 minutes at 37°C with gentle agitation, with 10 mL of 0.1% collagenase A in a 50-mL centrifuge tube. The tissue/cell suspension was filtered through a 70-μm strainer. The filtered cell suspension was centrifuged for 5 minutes at 1,300 rpm, the cell pellet was washed once with 0.1% bovine serum albumin (BSA)/PBS, and then incubated with anti-PECAM-1 (CD31) antibody-conjugated magnetic beads (1×10^7/25 µL Dynabeads) for 60 minutes at room temperature. Bead-bound cells were washed 3 times by resuspending in 0.1% BSA/PBS, and separated using a magnet (Invitrogen). Washed cells were resuspended in 1 mL of complete endothelial cell media and plated into a 100-mm tissue culture dish coated with a 0.1% collagen, 0.1% amino acid solution. Cells were cultured for 3 to 7 days before processing.

X-ray microcomputed tomography

A freshly prepared solution of Microfil compound (MV-120, Flow Tech, Inc.) was prepared and used immediately, according to the manufacturer recommendations. The solution consisted of 42% of MV-120, 53% of the diluent solution, and 5% of a curing agent. The abdominal cavity and rib cage of each tumor-bearing mouse was opened under anesthesia. Cannulation of the left ventricle was done with a needle connected to a polyethylene catheter while simultaneously nicking the right atrium, and the mouse circulation was perfused with a 0.1% heparinized solution through a pressurized pump. Thereafter, 20 mL of the Microfil mixture was perfused through the same catheter (28). The dark blue Microfil suspension readily perfused the peripheral circulation, as within seconds, blood vessels could clearly be seen to fill with the blue Microfil throughout peripheral tissues, including the spleen, colon, and other organs, and upon later inspection, blood vessels in the brain were also perfused (results not shown). The tumor vasculature was also obviously perfused in the LLC tumors, although perfusion of B16 melanomas was difficult to detect because of the dark background of the melanomas themselves (results not shown). The Microfil solution was allowed to polymerize at 4°C overnight, after which the tumors were extracted, fixed in 10% formalin/PBS, and scanned in a microcomputed tomography (μCT) unit (Skyscan1172, Skyscan).
Skyscan). The X-ray system is based on a microfocus tube reaching a minimum spot size of 3 μm at 8 W, generating projection images irradiating X-ray in cone-beam geometry. Samples were positioned on a computer-controlled rotation stage and scanned 180° around the vertical axis in rotation steps of 0.45°. The samples were operated at a 60 kV peak and 130 μA. Scanned images were processed and analyzed with Analyze 10.0 (AnalyzeDirect) and Skyscan accompanying software.

Migration
Endothelial cell migration was assessed in modified Boyden chambers. 1 × 10^5 cells/well were suspended in 250 μL of complete endothelial cell media. The cells were placed in the top compartment of a standard Boyden chamber with 8 μm membrane pores, coated on the top of the filter with 1 μg/mL collagen, and 500 μL of complete endothelial cells media was added to the bottom compartment. Chambers were returned to the incubator, and nonmigrating endothelial cells were removed from the top compartment with 0.25% trypsin at 3, 6, 9, and 24 hours after adding the cells. Endothelial cells that had migrated to the bottom compartment were fixed and stained using 0.05% crystal violet. The stained endothelial cells in each well were photographed with the aid of a phase contrast microscope, and mean gray values were determined with Image J.

Proliferation
MTT assay was carried out to examine endothelial cell proliferation (29). Briefly, 1 × 10^4 endothelial cells were incubated with 12 mmol/L MTT for 3 hours at 37°C. The amount of MTT formazan product was determined by measuring absorbance at 570 nm using a microplate reader.

In vitro cord formation assay
A total of 80 μL of growth factor-containing Matrigel was added to each well of a 24-well tissue culture plate, and the plates were incubated at 37°C for 30 minutes to solidify the gel. 1 × 10^5 primary endothelial cells were seeded in each well in 100 μL of growth medium. After 3, 6, and 9 hours, the center of each well was photographed under a microscope. Branch numbers were counted as branches per each field at 9 hours (n = 3).

Animal model for 2-stage phorbol ester carcinogenesis
Phorbol 12-myristate 13-acetate (PMA) and 7,12-dimethylbenz[a]anthracene (DMBA) were from Sigma. RLIP76 as well as scrambled antisense were purchased from Biosynthesis, Inc. (24). Control as well as RLIP76 proteoliposomes were prepared using established procedures as described previously (6). Avidin-Biotin Complex (ABC) detection kits were purchased from Vector. Skin carcinogenesis experiments were conducted as described previously (30). Briefly, thirty-two (16 WT and 16 RLIP76 -/-) 12-week-old mice were divided into 4 groups of 8 animals. The backs of the mice were shaved with electric clippers and the treatment was applied by a cotton applicator to a 1 cm² shaved area of skin on the animal’s back. Treatments were as follows: Group # 1, RLIP76 -/- mice treated first with DMBA (25 nmol in 0.1 mL acetone) followed 2 weeks later by 200 μg/0.2 mL scrambled antisense, intraperitoneally, then PMA (10 nmol in 0.1 mL acetone single dose) treatment 24 hours after the antisense treatment; Group # 2, RLIP76 -/+ mice treated first with DMBA and followed 2 weeks later by 200 μg/0.2 mL RLIP76 antisense, intraperitoneally, then PMA treatment 24 hours after the RLIP76 antisense treatment; Group # 3, RLIP76 -/- mice treated first with DMBA and followed 2 weeks later by 200 μg/0.2 mL RLIP76 liposomes, intraperitoneally, and then PMA treatment 24 hours after the liposomes treatment; Group # 4, RLIP76 -/- mice treated first with DMBA and followed 2 weeks later by 200 μg/0.2 mL RLIP76 liposomes, intraperitoneally, and then PMA treatment 24 hours after the liposomes treatment. Skin from all the groups was harvested 4 days later and prepared for histopathologic analyses with anti-CD31 (Invitrogen) and anti-Ki67 antibodies (Santa Cruz Biotechnology) and Universal ABC Detection Kit as described below.

Hematoxylin and eosin staining of tumor sections
Sections of paraffin-embedded B16F10 and LLC tumors were immersed in xylene for 5 minutes to dissolve the paraffin and then rehydrated. Subsets of sections were then stained with hematoxylin and eosin. Sections were stained in Biebrich scarlet-acid fuchsian solution for 15 minutes and then rinsed in ddH₂O. Sections were then washed in 1% acetic acid solution for 15 minutes and then transferred directly (without rinse) to aniline blue solution and stained for 5 to 10 minutes. Sections were then rinsed in ddH₂O and washed in 1% acetic acid solution for 2 to 5 minutes and then rinsed in ddH₂O. Stained sections were dehydrated, mounted under coverslips with distyrene (plasticizer) and xylene mixture (DPX) as a mounting medium, and observed using a Nikon-Eclipse E300 light microscope [×10 objective; numerical aperture (n.a.) = 0.3] connected to a Nikon Digital Sight camera. Images were captured and processed using NIS-Elements F3.0 software.

Immunohistochemistry
B16F10 and LLC primary tumors from 8-week-old RLIP76 -/- and C57Bl/6 mice were harvested, fixed in 3.7% paraformaldehyde, embedded in paraffin, and sectioned into 5 μm horizontal sections. Sections were dried overnight at room temperature after placement onto charged slides. Sections were then immersed in 100% xylene for 5 minutes and then rehydrated through graded alcohol and xylene mixture (DPX) as a mounting medium, and observed using a Nikon-Eclipse E300 light microscope [×10 objective lens; numerical aperture (n.a.) = 0.3] connected to a Nikon Digital Sight camera. Images were captured and processed using NIS-Elements F3.0 software.
glycerol/PBS, and observed using a Nikon-Eclipse E1000 epi-fluorescent microscope (20× objective lens; n.a. = 0.75) connected to a Q Imaging RETIGA EXi camera.

Statistical analysis

One-way ANOVA followed by Fisher protected least significant difference analysis was used for all statistical data analysis, using StatView. A 5% probability was considered significant.

Results and Discussion

We established a model of tumor formation and growth in RLIP76 knockout (−/−; 26) and wild-type isogenic C57Bl/6 mice, xenografted with B16F10 melanoma cells or LLC cells, injected as a bolus into the mouse flanks. After 7 days the tumors were removed for morphometric and histologic analyses. Although discreet, dense neoplasias grew rapidly at the sites of injection in all cases, solid tumors of both types were significantly smaller in RLIP76−/− mice than in the wild-type mice (Fig. 1). Tumor regression in earlier studies with RLIP76 antisense or antibodies may have resulted from effects in the tumor cells, the animal host cells, or both. In the present study, RLIP76 was expressed in the tumor cells, suggesting that the inhibition of tumor growth we observed in RLIP76−/− mice was primarily due to blockade of a RLIP76-dependent response in the animal host. To address this possibility, we generated B16F10 and LLC cell lines in which endogenous RLIP76 expression is constitutively knocked down by expression of a stably incorporated targeting shRNA (Supplementary Fig. S1). When implanted into mice, the RLIP76 knockdown cells produced tumors that were slightly smaller than their normal cell counterparts in either wild-type or RLIP76−/− mice, but as before the tumors were significantly smaller in RLIP76−/− compared with wild-type mice for each case (Fig. 1B). Together these data suggested a strong host-dependent role of RLIP76 in tumor growth. Therefore, we considered that neovascularization of the tumors, essential for tumor progression, may be impaired in RLIP76−/− mice.

Inspection of histologic sections revealed the presence of large and small blood vessels in the tumors xenografted in the wild-type mice. Sections from tumors derived in RLIP76−/− mice also contained blood vessels, although there appeared to be fewer large vessels and the overall vascular density appeared diminished compared with wild-type, suggesting diminished neovascularization in tumors in the RLIP76−/− mice (Supplementary Fig. S2). However, such 2-dimensional snapshots provide an incomplete picture of the tumor vasculature and can introduce artifacts (31). We adapted X-ray μCT to reproduce and subsequently analyze the competent vasculature in 3 dimensions in tumors derived in these mice (32). To visualize competent blood vessels and to resolve them from surrounding tumor tissue by X-ray scanning, we perfused the peripheral blood circulation in the mice through a needle inserted in the left ventricle of the heart, attached by tubing to a perfusion pump, first with heparin to prevent coagulation followed by Microfil. Microfil is a silicon-based, electron-dense suspension with sufficiently limited viscosity to perfuse blood vessels down to small diameter capillaries, after which the Microfil hardens to form a cast of the vascular luminal space connected to the peripheral circulation (28). We applied this technique to form vascular casts within the tumors 7 days after injection of tumor cells. We extracted the tumors after Microfil perfusion and scanned them by X-ray μCT to visualize the tumor vasculature.

The X-ray μCT scanning allowed us to reconstruct 3-dimensional models of the vasculature in the tumors by computer-assisted assembly of 3-dimensional structures from several thousand 2-dimensional X-ray scans per sample (Fig. 2A and Supplementary Movies S1–S4). These reconstructions offered new views of the vasculature in the xenografted tumors that could not be appreciated from histologic analysis of 2-dimensional sections. Branched vascular networks could be seen in both LLC and B16F10 tumors derived in wild-type and RLIP76−/− mice, in all cases apparently based around a single major vessel in the center of the tumor mass from which smaller vessels had branched. Thus, the Microfil perfusion coupled with X-ray μCT scanning

Figure 1. Primary solid tumor growth is inhibited in RLIP76−/− mice. A, macroscopic appearance of 7-day-old B16F10 melanomas (left) and LLC carcinomas (right) derived from a bolus injection of 1 × 10⁶ tumor cells in the flanks of wild-type (WT) and RLIP76−/− mice, B, dry mass of B16F10 (left) and LLC (right) tumors from wild-type (−/−) and RLIP76−/− (−/−) mice (n = 5 each). Left panels, normal (nonknockdown) tumor cells; right panels, RLIP76 knockdown tumor cells. *, P < 0.001; **, P < 0.015; ***, P < 0.003. Average dry mass of B16F10 tumors: WT 0.277 ± 0.013, RLIP76−/− 0.193 ± 0.007; LLC tumors: WT 0.274 ± 0.007, RLIP76−/− 0.168 ± 0.007. Average masses of RLIP76 knockdown tumors, B16F10: WT 0.238 ± 0.014, RLIP76−/− 0.150 ± 0.013; RLIP76 knockdown tumors, LLC: WT 0.212 ± 0.012, RLIP76−/− 0.128 ± 0.009. Results are shown ± SEM.
reproduced 3-dimensional reconstructions of intact tumor vasculature. The substantial degree of angiogenesis in the nascent tumors at only 7 days postinjection was somewhat surprising, even given the aggressive nature of both cancer types (33, 34); however, clear differences between tumors in wild-type and RLIP76–/– mice were readily apparent. Gross observations indicated that a generally more advanced stage of angiogenesis had been reached in the tumors xenografted in wild-type mice (at 7 days), in contrast to RLIP76–/– mice (Fig. 2B). Similarly, CD31 staining of paraffin sections from tumors showed extensive angiogenesis in wild-type mice (at 7 days), in contrast to RLIP76–/– mice (at 10 days), from which the tumor sections showed sparse CD31 staining mostly concentrated in smaller vessels (Supplementary Fig. S3).

Consistent with these results, small diameter vessels (notably in the range of 3–14 μm) made up a higher percentage of the total individual vessels in both tumor types in RLIP76–/– mice than in wild-type mice (Fig. 2C). The smaller diameters of blood vessels in the RLIP76–/–-derived tumors correlated with diminished individual vessel volumes (and thus, indicative of shorter vessel lengths) compared with wild-type-derived tumors, which showed a range of vessel diameters in B16F10 (left) and LLC (right) tumors in RLIP76–/– (C) and wild-type mice (D). Individual vessel volumes plotted against vascular diameters in B16F10 (left; P < 0.003; **, P < 0.05) and LLC (right; *, P < 0.001; **, P < 0.001; ***, P < 0.005) tumors derived in RLIP76–/– (white bars) and wild-type (black bars) mice. Results are shown ± SEM.

Figure 2. Tumor neovascularization is inhibited in RLIP76–/– mice. A, images of B16F10 (top) and LLC (bottom) acquired by X-ray μCT scanning and 3-dimensional reconstruction of tumors perfused with Microfil in RLIP76–/– and wild-type (WT) mice. Bar, 10 mm. B, total vessel volumes were determined using μCT 3-dimensional reconstructions of intact tumor vasculature. The substantial degree of angiogenesis in the nascent tumors at only 7 days postinjection was somewhat surprising, even given the aggressive nature of both cancer types (33, 34); however, clear differences between tumors in wild-type and RLIP76–/– mice were readily apparent. Gross observations indicated that a generally more advanced stage of angiogenesis had been reached in the tumors xenografted in wild-type mice (at 7 days), in contrast to RLIP76–/– mice (Fig. 2B). Similarly, CD31 staining of paraffin sections derived from these tumors showed extensive angiogenesis in wild-type mice (at 7 days), in contrast to RLIP76–/– mice (at 10 days), from which the tumor sections showed sparse CD31 staining mostly concentrated in smaller vessels (Supplementary Fig. S3).

Consistent with these results, small diameter vessels (notably in the range of 3–14 μm) made up a higher percentage of the total individual vessels in both tumor types in RLIP76–/– mice than in wild-type mice (Fig. 2C). The smaller diameters of blood vessels in the RLIP76–/–-derived tumors correlated with diminished individual vessel volumes (and thus, indicative of shorter vessel lengths) compared with wild-type-derived tumors, which showed a range of vessel diameters.
diameters including many vessels with diameters of more than 100 μm; some of these wide diameter vessels were more than $5 \times 10^6 \mu m^3$ in volume (Fig. 2D). Thus, targeted depletion of RLIP76 in mice prevented efficient neovascularization in implanted solid tumors. This blockade effect was due to diminished vessel growth and maturation in the absence of RLIP76. These results further highlight the value of X-ray μCT for comprehensive analysis of whole vascular structures in solid tumors in vivo.

The above results showed that angiogenesis was blocked in the implanted tumors in mice depleted of RLIP76; however, the tumor cells expressed RLIP76 in this system, and RLIP76 blockade has widespread antitumor effects (3). To assess the relationship between the antitumor effects of RLIP76 inhibition and its roles in tumor angiogenesis, we measured vascular volumes in tumors derived from RLIP76-knockdown cells. Angiogenic vascular volumes in these tumors were slightly diminished overall from those seen in tumors derived from the nonknockdown cells, but displayed similar ratios comparing RLIP76 –/– tumors derived from the nonknockdown cells, but displayed similar ratios comparing RLIP76 –/– with wild-type mice in each case, i.e., significantly diminished vascular volumes in RLIP76 –/– mice compared with wild-type (Supplementary Fig. S4, cf. Fig. 2B). Thus, RLIP76 contributes independently to growth of tumor cells and to angiogenesis from the host vasculature in solid tumors, such that combined depletion in both compartments further reduces tumor growth and tumor angiogenesis more than those observed by knockout in the host animal only. The added effects of knockdown in the tumor cells on overall tumor growth were minimal; however, residual effects of low levels of RLIP76 expression in these cells could not be ruled out.

We next considered whether angiogenesis would be blocked in RLIP76 –/– mice in the case of induced tumor angiogenesis, using a model of spontaneous skin carcinogenesis after treatment with DMBA (tumor initiator) followed by PMA (tumor promoter). We have previously shown that these mice are strongly resistant to chemical neoplasia in response to these agents; hence, the induced tumors were much smaller in these mice than in wild-type mice (30). Paraffin sections of the treated areas in RLIP76 –/– mice showed significantly diminished staining for Ki67, a proliferation marker, in contrast to robust proliferation in treated areas in wild-type mice. CD31 staining was minimal in these sections from RLIP76 –/– mice, whereas chemically induced tumors showed strong staining for CD31 in wild-type mice (Supplementary Fig. S5). Thus, RLIP76 depletion blocked angiogenesis in a model of spontaneous chemical carcinogenesis in mice. Moreover, depletion of RLIP76 in induced skin tumors in wild-type mice by treatment with RLIP76 antisense suppressed skin carcinogenesis in this model, as we have previously observed (30), and also blocked angiogenesis as indicated by minimal CD31 staining in these sections. Conversely, topical lisosome-mediated application of RLIP76 protein (26) in RLIP76 –/– mice restored both chemical carcinogenesis (Ki67) and angiogenesis (CD31) in the induced tumors (Supplementary Fig. S5). Thus, RLIP76 is necessary for angiogenesis in chemically induced carcinogenesis in mice.

On the basis of the above results, we considered whether RLIP76 depletion is associated with a general defect in angiogenic responses, in the absence of tumors. To investigate this possibility, we assessed angiogenesis in growth factor-depleted Matrigel plugs containing 100 ng/mL VEGF as an added angiogenic stimulant. Matrigel plugs with or without VEGF were removed 7 days after implantation. Matrigel plugs from wild-type mice appeared blood-filled, indicating robust angiogenesis (Fig. 3A), and this effect was enhanced slightly but significantly by infusion of the plug with VEGF (Fig. 3B). In sharp contrast, Matrigel plugs implanted in RLIP76 –/– mice with or without VEGF were completely devoid of blood and blood vessels (Fig. 3). Thus, RLIP76 is required for angiogenesis in Matrigel in vivo.

To investigate the cellular mechanisms of suppressed tumor angiogenesis in RLIP76 –/– mice, we isolated microvascular endothelial cells from wild-type and RLIP76 –/– mice, and analyzed functions of these cells in vitro. Migration through collagen-coated filters was substantially impaired in the RLIP76 –/– endothelial cells compared with wild-type (Fig. 4A). Moreover, RLIP76 –/– endothelial cells grown in culture
proliferated at a slower rate than wild-type endothelial cells (Fig. 4B). As an in vitro approximation of angiogenesis we assessed cord formation by endothelial cells seeded on Matrigel-coated surfaces. Whereas wild-type cells rapidly coalesced to form anastomosed networks, this response was greatly diminished in RLIP76−/− endothelial cells (Fig. 4C). Although the RLIP76−/− cells aggregated partially in small clusters, these clusters did not form coherent networks as indicated by a marked diminution in branch points after 9 hours in Matrigel (Fig. 4D). Together these data indicate that RLIP76 is necessary for efficient endothelial cell migration, proliferation, and cord formation in vitro. Antibodies targeting RLIP76 have been shown to induce apoptosis in these cells; hence, RLIP76 is also important for endothelial cell survival (35). These diminished endothelial cell responses in the absence of RLIP76 correlated with decreased angiogenesis in RLIP76−/− mice, and suggest that the angiogenesis defects in RLIP76−/− mice were due substantially to defects in endothelial cell functions. However, as RLIP76 is globally deleted in these mice, RLIP76-dependent functions in other cells may also contribute to the angiogenesis defect and reduction in tumor growth.

In this study we identified and characterized new physiologic and pathophysiologic roles for RLIP76: angiogenesis, and neovascularization of solid tumors. These results substantiate earlier findings that RLIP76 is required for tumor growth and tumor cell survival (3), and expand our understanding of the contributions of RLIP76 to cancer. Together these results indicate a dual requirement for RLIP76 for survival of the tumor cells themselves, and for angiogenesis from the host, necessary for cancer progression. The former has been correlated with glutathione transport function (36), but may also be due to other functions such as its role in mitochondrial fission (13). Similarly, RLIP76 interacts in cells with the small GTPase R-Ras to regulate cell motility (14); however, R-Ras has been described as an angiogenesis inhibitor (37, 38) whereas RLIP76 is required for angiogenesis. Alternatively, RLIP76 regulation of endocytosis (11, 12, 39) or actin dynamics (40), mediated in part by interaction with Ral GTPase, may also play prominent roles in its effects on angiogenesis. Thus, the relationships between the cellular and molecular functions of RLIP76 and its roles in cancer progression and angiogenesis remain to be fully explained but are likely to be manifold. We anticipate that approaches such as X-ray μCT will be valuable in uncovering the roles of RLIP76 and other proteins in vascular pathologies and cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: S. Lee, S. Awasthi, L.E. Goldfinger
Development of methodology: S. Lee, J.G.T. Wurtzel, S.S. Singhal
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Lee, J.G.T. Wurtzel, S.S. Singhal
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Lee, L.E. Goldfinger
References

RALBP1/RLIP76 Depletion in Mice Suppresses Tumor Growth by Inhibiting Tumor Neovascularization

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-0468

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2012/08/16/0008-5472.CAN-12-0468.DC1

Cited articles
This article cites 40 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/72/20/5165.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/72/20/5165.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.