Modulation of the ATPase and Transport Activities of Broad-Ac ting Multidrug Resistance Factor ABCC10 (MRP7)

Ekaterina V. Malofeeva, Natalya Domanitskaya, Mariya Gudima, and Elizabeth A. Hopper-Borge

Abstract

The cell surface molecule ABCC10 is a broad-acting transporter of xenobiotics, including cancer drugs, such as taxanes, epothilone B, and modulators of the estrogen pathway. Abcc10−/− mice exhibit increased tissue sensitivity and lethality resulting from paclitaxel exposure compared with wild-type counterparts, arguing ABCC10 functions as a major determinant of taxane sensitivity in mice. To better understand the mechanistic basis of ABC10 action, we characterized the biochemical and vectorial transport properties of this protein. Using crude membranes in an ABCC10 overexpression system, we found that the ABCC10 transport substrates estrogen estradiol-glucuronide (E₂17βG) and leukotriene C₄ (LTC₄) significantly stimulated ABC10 beryllium fluoride (BeFx)-sensitive ATPase activity. We also defined the E₂17βG antagonist, tamoxifen, as a novel substrate and stimulator of ABCC10. In addition, a number of cytotoxic substrates, including docetaxel, paclitaxel, and Ara-C, increased the ABCC10 basal ATPase activity. We determined that ABCC10 localizes to the basolateral cell surface, using transepithelial well assays to establish that ABCC10-overexpressing LLC-PK1 cells exported [³H]-docetaxel from the apical to the basolateral side. Importantly, we found that the clinically valuable multikinase inhibitor sorafenib, and a natural alkaloid, cepharanthine, inhibited ABCC10 docetaxel transport activity. Thus, concomitant use of these agents might restore the intracellular accumulation and potency of ABCC10-exported cytotoxic drugs, such as paclitaxel. Overall, our work could seed future efforts to identify inhibitors and other physiologic substrates of ABCC10.

Introduction

The phenomenon of multidrug resistance (MDR) remains a substantial problem in the chemotherapeutic treatment of cancer. One important contributing factor in MDR is the overexpression of a class of efflux pumps known as ATP-binding cassette (ABC) transporters. The C subfamily of ABC proteins is alternatively known as the ABCC proteins, or the ATP-binding cassette (ABC) transporters. The C subfamily of ABC transporters includes many other members, including ABCC1, ABCC2, ABCC3, and ABCC6 that have been described for some of the longer ABCC subfamily members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.

Together, these findings suggest that modulation of ABCC10 activity by inhibitors may have clinical value in management of human cancers, such as NSCLC. Currently ATPase activities have been described for some of the longer ABCC subfamily members, including ABCC1, ABCC2, ABCC3, and ABCC6 (MRP3), ABCC6 (MRP6), and ABCC10 (MRP7) have additional N-terminal transmembrane domains, whereas ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8), and ABCC12 (MRP9) do not (2).

ABCC10 consists of 3 TMDs and 2 NBDs, and is one of the least well-characterized family members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.

Together, these findings suggest that modulation of ABCC10 activity by inhibitors may have clinical value in management of human cancers, such as NSCLC. Currently ATPase activities have been described for some of the longer ABCC subfamily members, including ABCC1, ABCC2, ABCC3, and ABCC6 (MRP3), ABCC6 (MRP6), and ABCC10 (MRP7) have additional N-terminal transmembrane domains, whereas ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8), and ABCC12 (MRP9) do not (2).

ABCC10 consists of 3 TMDs and 2 NBDs, and is one of the least well-characterized family members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.

Together, these findings suggest that modulation of ABCC10 activity by inhibitors may have clinical value in management of human cancers, such as NSCLC. Currently ATPase activities have been described for some of the longer ABCC subfamily members, including ABCC1, ABCC2, ABCC3, and ABCC6 (MRP3), ABCC6 (MRP6), and ABCC10 (MRP7) have additional N-terminal transmembrane domains, whereas ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8), and ABCC12 (MRP9) do not (2).

ABCC10 consists of 3 TMDs and 2 NBDs, and is one of the least well-characterized family members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.

Together, these findings suggest that modulation of ABCC10 activity by inhibitors may have clinical value in management of human cancers, such as NSCLC. Currently ATPase activities have been described for some of the longer ABCC subfamily members, including ABCC1, ABCC2, ABCC3, and ABCC6 (MRP3), ABCC6 (MRP6), and ABCC10 (MRP7) have additional N-terminal transmembrane domains, whereas ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8), and ABCC12 (MRP9) do not (2).

ABCC10 consists of 3 TMDs and 2 NBDs, and is one of the least well-characterized family members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.

Together, these findings suggest that modulation of ABCC10 activity by inhibitors may have clinical value in management of human cancers, such as NSCLC. Currently ATPase activities have been described for some of the longer ABCC subfamily members, including ABCC1, ABCC2, ABCC3, and ABCC6 (MRP3), ABCC6 (MRP6), and ABCC10 (MRP7) have additional N-terminal transmembrane domains, whereas ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8), and ABCC12 (MRP9) do not (2).

ABCC10 consists of 3 TMDs and 2 NBDs, and is one of the least well-characterized family members (3), although we and others have shown that ABCC10 tissue expression is widespread (4). Recent work has suggested that ABCC10 expression level is elevated in non–small cell lung cancer (NSCLC) in relation to normal lung, with ABCC10 expression in adenocarcinoma correlated with tumor grade and stage (5). Supporting a potential role for ABCC10 in control of the response of tumors to the administration of therapeutics, we have previously shown that overexpression of ABC10 in vitro confers resistance to an unusually wide range of clinically valuable drugs, including taxanes, vinca alkaloids, nucleoside analogs, and epothilone B (6–8). Excitingly, we have recently used a newly developed Abcc10−/− mouse model to show that absence of this transporter in vivo sensitizes animals to taxanes, with Abcc10−/− mice experiencing increased sensitivity (i.e., neutropenia, and bone marrow hypoplasia) as compared with their wild-type counterparts following paclitaxel treatment.
(9–12) and also for ABCC4 (13). However, to date, neither the enzymatic activity of the ABCC10 ATPase nor the mechanistic basis for ABCC10 transport of substrates have been substantially investigated. This study addresses these points, by characterizing the effects of modulators on biochemical and transport properties of ABCC10.

Materials and Methods

Cell lines

LLC-PK1 cells were purchased from the American Type Culture Collection (ATCC) 7 years ago. All ATCC cell lines undergo authentication tests during the accessioning process using methods described in the online ATCC brochure Maintaining High Standards in Cell Culture. These characterizations are applied to the final seed and distribution stocks of cell lines for certification include testing viability of the cell population just before freezing and immediately after thawing by Trypan-blue dye exclusion test. Observations of recovery and growth are recorded along with morphologic appearance. The ATCC also uses isoenzymology and/or the cytochrome C subunit I (COI) PCR assay is conducted for species confirmation. Cells were passaged in our laboratory for fewer than 3 months after receipt or resuscitation. The High Five cell line was purchased 3 years ago from Invitrogen. Cells were passaged in our laboratory for fewer than 3 months after receipt or resuscitation. These cells have not been authenticated.

Reagents

Trizma hydrochloride, D-mannitol, EGTA, dithiothreitol, ammonium molybdate, antimony potassium tartrate, sulfuric acid, potassium chloride, ouabain powder, magnesium chloride, T-asparagine acid, SDS, sodium azide, beryllium sulfate tetrahydrate, sodium fluoride, sodium orthovanadate (Vi), cobalt (II) chloride, calcium chloride, manganese (II) chloride, protease inhibitors, bovine serum albumin (BSA), glycerol, ATP, ADP, lucifer yellow CH dipotassium salt, tamoxifen, 17β-estradiol-β-17β-glucuronide, glutathione, leukotriene C4 (LTC4), docetaxel, paclitaxel, cytosine β-arabinofuranoside (Ara-C), cisplatin, and epothilone B were purchased from Sigma-Aldrich. [3H]-docetaxel (5 Ci/mmol) was obtained from Moravek Biochemicals Inc.

Preparation of ABC10-transfected LLC-PK1 cells

ABCC10 expression vector and parental plasmid were transfected into LLC-PK1 cells using Lipofectamine (according to the manufacturer's instructions, Invitrogen). Individual colonies were selected in medium containing gentamicin (1,000 μg/mL) and expanded for further analysis. Two clones in which ABCC10 protein was detected by immunoblot analysis were used in the present study. The cells are routinely tested (every 3–6 months) for mycoplasma contamination and for ABCC10 protein expression. LLC-ABCC10 and empty vector–transfected control cells were cultured in medium 199 supplemented with 10% FBS, 50 μM penicillin, 50 μg/mL streptomycin, 2 mM/L L-glutamine, and 800 μg/mL gentamicin. All cell lines were grown at 37°C with 5% CO₂ under humidifying conditions.

Expression and identification of ABCC10, ABCB1 and ABCC1 in High Five insect cells

High Five insect cells (Invitrogen) were infected with the recombinant baculovirus containing the ABCB1 (Addgene plasmid 10957), ABCC1 or ABCC10 cDNA. To create the recombinant baculovirus, ABCB1, ABCC1 and ABCC10 cDNA were cloned into pFastBac CT-TOPO vector (Invitrogen). Crude membranes were prepared as previously described (14) and used in subsequent ATPase assays. Total protein was estimated using an Amido Black protein-filter assay of Schaffner and Weissmann with BSA as a standard. The membrane fraction was then resuspended to a concentration of 1 mg/mL and stored at −80°C until use. Crude membranes were electrophoresed on a 3 to 8% NuPAGE gel (Invitrogen) and stained with Colloidal blue (Invitrogen) following the manufacturer’s instructions. Following electrotransfer to nitrocellulose paper, blots were probed with the previously described ABC10 monoclonal antibody at a dilution of 1:10 (7) or the previously described Abcc10 polyclonal antibody (15) at a dilution of 1:3,000 and an anti-ABCC1 mouse monoclonal QCR1-1 (Santa Cruz Biotechnology, Inc.) at a dilution of 1:100.

Preparation of membranes

Total cell membranes were prepared from LLC-PK1 cells by Dounce homogenization in Plasma Membrane (PM) PM-buffer (1 mol/L HEPES, 1 mol/L MgCl₂, and 1 mol/L KCl) containing protease inhibitors: 5 μg/mL aprotinin, 5 μg/mL leupeptin, 2 μg/mL pepstatin, 100 μmol/L phenylmethylsulfonylfluoride (PMSF). Intact cells and nuclei were removed by centrifugation at 500 × g for 10 minutes at 4°C, and then the supernatant spun at 3,000 × g for 10 minutes at 4°C. Cell membranes were pelleted by centrifugation at 15,000 × g for 45 minutes at 4°C and resuspended in PM-buffer.

For immunoblot analysis, 10 to 40 μg of membrane proteins was analyzed on a 8% SDS-PAGE gel and transferred to nitrocellulose filters using a wet transfer system, as described previously (16). The blots were incubated with the previously described ABC10 monoclonal antibody at a dilution of 1:10 (7) or the previously described Abcc10 polyclonal antibody (15). After washing, the blots were incubated with horseradish peroxidase (HRP) secondary goat anti-rabbit immunoglobulin G (IgG; NEN). β-Actin-HRP (Abcam) conjugated antibody was used at a dilution of 1:5,000.

Beryllium fluoride-induced [α-32P]-8-azidoADP trapping in ABC10

Beryllium fluoride (BeFx)-induced [α-32P]-8-azidoADP trapping assays contained ATPase assay buffer, 0.5 mM/L BeFx, 20 μM/L MgCl₂, 1 mg/mL of membrane ABCC10, and 100 μmol/L [α-32P]-8-azidoATP (2.5–10 μCi/mmol; Affinity Photoprobe, LLC). Reactions were preincubated in low light in the absence of [α-32P]-8-azidoATP at 37°C for 3 minutes, initiated by the addition of [α-32P]-8-azidoATP and quenched by adding ice-cold ATP (100 μmol/L). Reactions were irradiated by UV light (365 nm wavelength) on ice for 10 minutes and subjected to SDS-PAGE, and after drying, the gel was exposed to film for 12 to 72 hours.
Measurement of ATPase activity

ATPase activity was measured by the endpoint inorganic phosphate (Pi) assay as previously described (17). ABCC10-, ABCB1- and ABCC1-specific activity was recorded by vana
date- or BeFx-sensitive ATPase activity. The amount of inor
nate phosphate released over 20 minutes at 37 °C was mea
sured. 2 × ATPase assay buffer (100 mmol/L Tris/Cl
sured. 2

media containing 0.1
mol/L KCl, 0.25 mol/L sodium azide, 0.125 mol/L EGTA, 1
mol/L ouabain, and 1 mol/L dithiothreitol (DTT) was
combined with 2 mol/L MgCl₂, 5 to 10
mol/L ouabain, and 1 mol/L dithiothreitol (DTT) was

and various drugs or substrates for a 5-minute preincubation at

ATPase assay buffer (100 mmol/L Tris/C

Plant epithelial transport

C. The reaction was initiated by 5 mmol/L ATP addition and

quenched with 100
mol/L [3H]-docetaxel (5 Ci/mmol,

Published OnlineFirst October 19, 2012; DOI: 10.1158/0008-5472.CAN-12-1340

www.aacjrournals.org

ABCC10 Biochemistry, Transport, and Localization of ABCC10

for approximately 3 days until cells reached confluence. After PBS
washing, fixation, solubilization, and blocking, cells were incu
bated with rabbit polyclonal C-terminus-ABCC10 antibody
(diluted 1:50 in blocking buffer; ref. 15) and mouse anti-

β-catenin (dilution 1:500; BD Transduction Laboratories) for
1 hour at room temperature. Secondary antibody included
anti-rabbit conjugated to Alexa-488 and anti-mouse conjugat
ed to Alexa-568. 4',6-Diamidino-2-phenylindole (DAPI; Molecu
lar Probes/Invitrogen) was used to stain DNA at a dilution of
1:2,000. The cells were mounted on a glass slide with Pro

Longed Antifade Reagent (Molecular probes). Confocal laser
scanning microscopy was conducted with a Nikon C1 spectral
confocal microscope (Nikon).

Results

Expression and identification of human ABCC10 and
ABCC1 in High Five insect cells

To support study of ABCC10 ATPase activity, ABCC10 and
ABCC1 (a well-characterized transporter used as a positive
control; refs. 20, 21) were overexpressed using a baculovirus
system. ABCC10 and ABCC1 were readily detected in crude
membrane fractions as full-length proteins, with almost no
truncation or degradation byproducts (Fig. 1A and B). Puri
fied ABCC10 bound effectively to the nucleotide analog
[γ-32P]-8-azidoATP, confirming structural integrity of the
NBDs (13; Fig. 1C).

Basal properties of ABCC10-mediated ATP hydrolysis

ABCC10 ATPase activity was measured using a Pi release
assay (17), with ouabain, EGTA, and sodium azide added to
crude membrane preparations to eliminate confounding Na+
/K⁺, Ca²⁺ and mitochondrial ATPase activity, as in ref. (22).
Under these conditions, the basal rate of ATP hydrolysis of
ABCC10 ranged from 5.5 to 12 nmol/min/mg protein (Fig. 2A
and data not shown), depending on the preparation. For
reference, ABCC1 activity was 5 to 10 nmol/min/mg protein
using purified and reconstituted protein (9), and approximate
ly 4 to 5 nmol/min/mg protein in our system (data not shown).
The noncovalent ATPase inhibitors Vi and BeFx replace phos
phate during ATP hydrolysis, and stabilize a specific, transition
state conformation, inhibiting ATPase activity; prior work has
shown individual ABC transporters respond differently to
these inhibitors, reflecting differences in catalytic activity
(13, 23, 24). We determined that ABCC10 ATPase activity is
更是对BeFx比Vi更为敏感（32%和11.4%的抑制，分别见图2A和B）。对于ABCC1，BeFx依赖性抑制大约是Vi抑制的两倍（60% vs. 35%，分别见之前报告）。

环境pH可能显著影响运输器ATP酶活性（19, 22, 26-28）。Optimal ABCC10 ATPase activity occurred at pH 7.5 (Fig. 2C)，与ABCC1（9），Titration of ATP revealed maximal ABCC10 activity at a concentration of approximately 6 mmol/L（Fig. 2D）。我们分析了ATP浓度对运输器介导的ATP酶活性的浓度依赖性影响。ATP浓度为0到8 mmol/L时，ATP酶活性在3.2 mol/L时达到最大。然后，我们分析了在浓度范围（13, 30）。如所预期，ABCC10-mediated ATP hydrolysis is concentration dependent; we established a rank order preference of Mn$^{2+}$ > Mg$^{2+}$ > Ca$^{2+}$ > Co$^{2+}$ (Fig. 2E)，与Mn$^{2+}$-增强的ATP酶活性相比，Mg$^{2+}$的ATP酶活性降低52%。

Dose-dependent induction of ABCC10 ATPase activity by physiologic substrates and anticancer agents

LTC$_4$，estrogen estradiol-glucuronide（E217G）和glutathione是生理底物，ABCC1和ABCC10 ATPase activity (31, 32)。我们测试了这些化合物对ABCC10的活性，使用膜系统描述的原位系统。我们发现LTC$_4$和E217G诱导ABCC10 ATPase activity by 79.7% and 30%，分别（Fig. 3A and C）。Maximal induction of ABCC10 ATPase activity was observed for LTC$_4$ at 1 μmol/L. Further analyses of the effect of LTC$_4$ and E217G on ABCC10 ATPase activity revealed that at concentrations less than 1 μmol/L，LTR$_4$ = 0.057 μmol/L for LTC$_4$（Fig. 3C inset）。The compound tamoxifen is frequently used in breast cancer treatments as an estrogen receptor antagonist, based on competition with estradiol。Interestingly, we found that tamoxifen is also a modest substrate for ABCC10，and at lower tamoxifen concentrations（less than 2 μmol/L）the K_m = 0.078 μmol/L（Fig. 3B inset）。However, at higher concentrations LTC$_4$ and tamoxifen both inhibited ABCC10 ATPase activity. In contrast, glutathione had no significant effect on ABCC10 ATPase activity at approximately 1 μmol/L，a concentration stimulatory for ABCC1（Fig. 3D）。As controls, we confirmed that leukotriene C4 and glutathione are ATPase-inducing substrates for ABCC1（Fig. 3E and F）。Taken together, these data indicate that LTC$_4$ and E217G interact similarly with the ABC1 and ABCC10 ATPase domains，glutathione does not stimulate ABCC10 ATPase activity。We observed that at high concentrations all substrates inhibited ABC1 and ABCC10 ATPase activity as previously described for ABCB1（33）。It has been previously described that ABC transporter substrates can be categorized into 3 distinct types: (i) agents that stimulate ATPase activity at low concentration but inhibit activity at high concentration；(ii) agents that enhance ATPase activity in a dose-dependent manner；and (iii) agents that inhibit ATPase activity（as for ABCB1; ref. 34）。Therefore, the ABCC10 substrates LTC$_4$ and E217G are classified into the first group and glutathione fits into the third class of agents。

We have shown that the growth of ABCC10-transfected HEK293 cells is resistant to taxanes，vinca alkaloids，the non-taxane antimicrotubule agent epothilone，and the nucleoside analog Ara-C，but not to cisplatin（7, 35）。We assessed the drug-stimulatable ATPase activity of ABCC10 using 2 drug concentrations（0.625 and 5 μmol/L）of the taxanes（docetaxel and paclitaxel），Ara-C，epothilone B，and cisplatin。We used vector transfected pFastBac membranes as a control，and ABCB1-overexpressing membranes for comparison（Fig. 4A-C）。A maximal 31.8% stimulation in activity of ABCC10 was induced by Ara-C at a concentration of 0.625 μmol/L and（Fig. 4A）。At 5 μmol/L，paclitaxel，and docetaxel stimulated ABCC10 ATPase activity by 15% and 24.38%，respectively（Fig. 4B），whereas in contrast，these compounds stimulated ABCB1 ATPase activity by 63% and 36%，respectively。However，the basal ATPase activity for ABCB1 was reduced 3-fold in comparison with
ABCC10 activity. (Fig. 4C). Surprisingly, epothilone B did not affect ABCC10 ATPase activity, even though overexpressed ABCC10 causes resistance to this compound (7). As expected, the negative control cisplatin, a nonsubstrate (6), did not influence the ATPase activity of ABCC10 or ABCC1.

Localization and docetaxel transport properties of ABCC10 in polarized LLC-PK1 cells

ABC transporters variously localize to the apical or basolateral cell surface, affecting their transport properties (36, 37). To study the localization and transport properties of ABCC10, we overexpressed ABCC10 in a polarized pig kidney epithelial cell line, LLC-PK1 (Fig. 5A). ABCC10 localized predominantly to the basolateral membranes in 2 independent ABCC10-overexpressing LLC-PK1 derivative cell lines (Fig. 5B).

As anticipated, these ABCC10-overexpressing cell lines exhibited reduced accumulation of [3H]-docetaxel compared with parental vector-transfected LLC-pcDNA3.1 cells (51% and 63%, respectively, at 60 minutes time point; Fig. 5B). A transepithelial well assay was used to assess transport of [3H]-docetaxel into the apical or basolateral side of a cell monolayer. Polarized LLC-PK1 ABCC10-overexpressing cells line predominantly exported [3H]-docetaxel from the apical to the basolateral side (Fig. 6B). While the parental cell line revealed no differences between apical-to-basolateral or basolateral-to-apical docetaxel transport, in contrast, we found that apical-to-basolateral transport of ABCC10-overexpressing cell lines were 70% to 80% higher than for LLC-PK1 parental apical-to-basolateral transport. These data correlated with the localization of ABCC10 (Fig. 5): ABCC10's basolateral localization indicated that ABCC10-dependent transport should be directional from the apical-to-basolateral side.

Cepharranthine and TKIs modulate ABCC10 ATPase activity, accumulation, and transcellular transport of [3H]-docetaxel

The natural product cepharranthine has previously been established as a modulator of ABCC10-dependent resistance and transport activity (38). Clinically valuable TKIs, such as imatinib, lapatinib, erlotinib, and nilotinib, have also been shown to inhibit ABCC10 in vitro (39–41). We determined that at 5 μmol/L, cepharranthine, sorafenib, imatinib, nilotinib, erlotinib, and lapatinib were effective inhibitors of ABCC10 ATPase activity. At 0.625 μmol/L, nilotinib and erlotinib potently inhibited ABCC10 ATPase activity by 41.4% and
47%, respectively (Fig. 7A). Finally, dasatinib had no effect on ATPase activity of ABCC10 at any concentration tested.

Treatment of ABCC10-overexpressing cells (LLC-ABCC10-11 and LLC-ABCC10-16) with 5 μmol/L cepharanthine significantly increased accumulation of [3H]-docetaxel (by 48.4% and 22.5%, at 60 minutes, respectively), compared with accumulation levels without inhibitor. In contrast, 2.5 μmol/L sorafenib increased [3H]-docetaxel accumulation by 22.4% in LLC-ABCC10-16 cells and by 49% in LLC-ABCC10-11 cells, compared with accumulation levels without inhibitor (Fig. 7B). A total of 2.5 μmol/L dasatinib also increased [3H]-docetaxel intracellular accumulation without significant effects on ABCC10 ATPase activity. Conversely, 2.5 μmol/L lapatinib (a reported ABCC10 reversal agent) did not affect the accumulation levels of docetaxel but decreased ABCC10 ATPase activity. Other TKIs with reported activity in inhibiting ABCC10, such as nilotinib and erlotinib, only affected [3H]-docetaxel accumulation of the LLC-ABCC10-11 cell line, whereas imatinib only inhibited the LLC-ABCC10-16 cell line (Fig. 7B). Interestingly, nilotinib, dasatinib, imatinib, and lapatinib significantly decreased [3H]-docetaxel accumulation of the parental LLC-pcDNA3.1 cell line, indicating additional activities not targeted at ABCC10.

Because our data revealed that [3H]-docetaxel accumulation was significantly inhibited by sorafenib in both transfectants, we tested if sorafenib could also inhibit ABCC10-trans epithelial transport using cepharanthine as a positive control. We showed that cepharanthine was the most potent inhibitor of ABCC10-mediated [3H]-docetaxel accumulation in both transfectants (Fig. 7B). Finally, we also established that trans epithelial apical-to-basolateral transport of labeled docetaxel was inhibited by 5 μmol/L cepharanthine in LLC-ABCC10-16 (Fig. 7C). A total of 2.5 μmol/L sorafenib maximally inhibited apical-to-basolateral transport for the LLC-ABCC10-16 cell line at 6 to 30 minutes (Fig. 7C).

Discussion

To date, the localization, biochemical, and transport properties of ABCC10 have been largely unexplored, with the exception of a single study that used a membrane vesicle...
transport system (42). In the present study, the biochemical properties of ABCC10 were compared with the well-described properties of ABCC1, the first identified ABCC subfamily member (20). Despite significant sequence identity (50.3%/52.7%) within the 2 NBDs and appreciable overall amino acid identity (33.8%) between ABCC10 and ABCC1 (6), ABCC10 transports taxanes and confers in vivo taxane resistance and does not require glutathione for transport, in contrast to Figure 4. Stimulation of ABCC10 activity by anticancer drugs. Survey of ABCC10 (A and B) and pFastBac-control (4A inset and 4B inset), ABCC1 (C) ATPase activity was conducted after addition of 2 separate concentrations of docetaxel (Doc), paclitaxel (Pac), epothilone B (EpoB), cytarabine (Ara-C), and cisplatin (Cis). A and B, 0.625 μmol/L (A) and 5 μmol/L (B). Bars represent the mean of 3 separate experiments carried out in duplicate ± SD. Statistical analysis was calculated using a Student unpaired t test; P values for ABCC10 are 0.0288 (docetaxel), 0.0169 (paclitaxel), and 0.0124 (cytarabine); P values for ABCB1 are 0.0456 (docetaxel), 0.0168 (paclitaxel), 0.0319 (cytarabine), and 0.0495 (epothilone B). * P < 0.05.

Figure 5. Detection of expression by Western blot analysis and localization of ABCC10 in LLC-ABCC10 monolayers. A, 30 μg of crude membranes prepared from LLC-PK1, LLC-ABCC10-11, and LLC-ABCC10-16 cells was analyzed by Western blot analysis. The ABCC10 monoclonal antibody detected 2 bands with apparent M, approximately 168,000 kDa and 202,000 kDa. B, immunofluorescence analysis of confluent LLC-PK1 cells transfected with pcDNA 3.1 (left) and LLC-PK1 cells transfected with ABCC10 expression vector (middle and right). ABCC10 (green), β-catenin (red), and DAPI-stained DNA (blue) are indicated. Arrows indicate the location of xz-section shown later each panel. Scale bar, 20 μmol/L, ×60 magnification.
ABCC1 (6). Our characterization of ABCC10 basal activity revealed that ABCC10 was far less sensitive to vanadate (11%) or BeFx (32%) inhibition than ABCC1 (35% and 60%, respectively), or the other major taxane pump, ABCB1, which has been reported to be completely inhibited (43). Taken together, these data imply that the catalytic cycle of ABCC10 differs from the well-described cycles of ABCC1 and ABCB1. As anticipated, we found that ABCC10 ATPase activity is stimulated by its substrates, the taxanes and Ara-C, similar to the best-described taxane pump, ABCB1 (44). Surprisingly, however, the extremely weak ABCC10 transport substrate LTC4, stimulated ABCC10 activity significantly more than ABCC1 activity (~80% vs. ~30%), even though LTC4 is a well-established physiologic substrate for ABC1. This unexpected result further highlights differences between these proteins, and emphasizes the need for further study (9, 45).

Knowledge of intracellular distribution is important for understanding the potential effects of ABCC10-mediated transport in normal tissues, and to provide insight with respect to putative substrates. In the present study, we have shown that ABCC10 localizes basolaterally when ectopically expressed in the LLC-PK1 kidney cell line, similar to the localization reported for ABCC1 in small intestine and kidney cells. In contrast, ABCB1 localizes apically in brain, liver, small intestine, and kidney (46, 47). ABCC10 transcript expression is widespread, with highest levels detected in the gonads and spleen (7). The ABCC10 transcript has been detected in multiple types of adenocarcinoma that are routinely treated with taxanes, including breast, ovary, and lung (4, 48). Recent studies have shown that ABCC10 is also upregulated in hepatocellular carcinoma compared with normal adjacent healthy liver samples (49), and that ABCC10 gene levels in colorectal tumors correlate with tumor grade ($P = 0.01$; ref. 50), implying that increased ABCC10 expression might be a biomarker for and regulator of treatment response in certain cancers. However, besides a single study examining ABCC10 protein expression in lung cancer (5), no studies have been published about ABCC10 protein expression. It will be of considerable interest to assess ABCC10 protein expression levels in tumors versus normal tissues in the context of treatment with taxanes.

Our recent work has indicated that loss of Abcc10 function in vivo causes taxane sensitization (15). In this report, we have shown that cepharanthine and sorafenib (an agent used to treat unresectable and advanced hepatocellular carcinoma) were effective inhibitors of ABCC10 ATPase activity. Likewise, we showed that cepharanthine increased docetaxel accumulation in ABCC10-overexpressing cells and inhibited apical-to-basolateral transport, particularly at early timepoints (at 6–12 minutes). Interestingly, we found that sorafenib promoted increased $[^{3}H]$-docetaxel accumulation in 2 LLC-ABCC10 transfectants. The identification of sorafenib as an ABCC10 inhibitor suggests that in vivo action of this inhibitor may involve modulation of ABCC10-dependent docetaxel transport. Currently, no identified inhibitors have been shown to have in vivo efficacy against ABCC10; an important goal for future work would be the exploration of the ability of sorafenib, cepharanthine, and other putative inhibitors to modulate in vivo taxane transport capabilities of ABCC10 in preclinical models. ABCC10 inhibition is particularly nominated as a potentially high value target for inhibition based on its physiologic relevance to in vivo taxane resistance. The loss of no other single transporter (including ABCB1) has resulted in tissue sensitization in the context of treatment with taxanes. Thus, it is possible that ABCC10 sensitizes solid tumors to taxanes while not leading to unacceptable toxicity in normal tissue remains to be determined. These investigations are currently ongoing in our laboratory.

In summary, this study provided the first analysis of ABCC10 ATPase activity, showed that ABCC10 localized basolaterally in a polarized kidney cell line, and confirmed this localization by showing apical-to-basolateral transport. Importantly, we also...
Figure 7. Effect of modulators on ABCC10 ATPase activity and accumulation of [3H]-docetaxel. For all experiments, each point represents the mean ± SD of 3 experiments. A, ATPase activity of ABCC10 in the presence of 5 or 0.625 μmol/L cepharanthine (Ceph) or sorafenib (Sor), dasatinib (Das), imatinib (Imat), nilotinib (Nil), erlotinib (Erl), lapatinib (Lap); 2.5 μmol/L. P values at 5 μmol/L are 0.0219 (cepharanthine), 0.0434 (sorafenib), 0.024 (imatinib), 0.0431 (nilotinib), 0.002 (erlotinib), and 0.012 (lapatinib). P values at 0.625 μmol/L are 0.0367 (erlotinib) and 0.0333 (nilotinib). B, cellular accumulation of [3H]-docetaxel in cells treated with cepharanthine or TKIs. P value in LLC-ABCC10-11 and LLC-ABCC10-16, respectively: for cepharanthine = 0.0472, 0.0218; for sorafenib = 0.0491, 0.0046; for dasatinib = 0.0055, 0.0065; for erlotinib in LLC-ABCC10-11 = 0.0423; for nilotinib in LLC-ABCC10-11 = 0.0104; and for imatinib in LLC-ABCC10-16 = 0.0062. C, effect of modulators on the basolateral-to-apical or apical-to-basolateral transport of [3H]-docetaxel. Basolateral-to-apical, and apical-to-basolateral transport of [3H]-docetaxel in cells treated with cepharanthine or sorafenib. For 5 μmol/L cepharanthine treatment of LLC-ABCC10-16 and LLC-ABCC10-11, P = 0.0312 and P = 0.05 at 6 minutes, respectively. For 2.5 μmol/L sorafenib, the LLC-ABCC10-16 cell line showed maximal inhibition of apical-to-basolateral transport at 6 minutes (P = 0.0341). *P < 0.05. For all experiments, each point represents the mean ± SD of 3 experiments. Curves shown represent apical-to-basolateral transport (squares); basolateral-to-apical transport (circles); without modulator (full symbols); and with modulator (open symbols).
identified a novel inhibitor of ABCC10 transport. These ABCC10 assays can be used to identify and validate potential ABCC10 modulators that can be validated in preclinical models with the goal to increase the clinical effectiveness of ABCC10 drug substrates.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: E.A. Hopper-Borge

Development of methodology: E.V. Malofeeva, M. Gudima, E.A. Hopper-Borge

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): E.V. Malofeeva, M. Gudima, E.A. Hopper-Borge

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): N. Domanitskaya, M. Gudima, E.A. Hopper-Borge

Writing, review, and/or revision of the manuscript: E.V. Malofeeva, M. Gudima, E.A. Hopper-Borge

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Gudima, E.A. Hopper-Borge

References

