BREAKING ADVANCES

829 Highlights from Recent Cancer Literature

REVIEWS

831 The Dark Side of Mast Cell–Targeted Therapy in Prostate Cancer
Paola Pittoni and Mario Paolo Colombo

836 Regulation of Cancer Progression by β-Endorphin Neuron
Dipak K. Sarkar, Sengottuvelan Murugan, Changjing Zhang, and Nadka Boyadjieva

MEETING REPORT

841 Twenty-Third Annual Pezcoller Symposium: Engineering Influences in Cancer Research
Peter Friedl, Jeff Hubbell, David Livingston, and Enrico Milich

CLINICAL STUDIES

845 N-Myc Regulates Expression of the Detoxifying Enzyme Glutathione Transferase GSTP1, a Marker of Poor Outcome in Neuroblastoma

INTEGRATED SYSTEMS AND TECHNOLOGIES

854 Hyperpolarized ^13^C Spectroscopy Detects Early Changes in Tumor Vasculature and Metabolism after VEGF Neutralization
Sarah E. Bohndiek, Mikko I. Kettunen, De-en Hu, and Kevin M. Brindle

MICROENVIRONMENT AND IMMUNOLOGY

865 Metastatic Cells Can Escape the Proapoptotic Effects of TNF-α through Increased Autocrine IL-6/STAT3 Signaling
Shun Li, Ni Wang, and Pnina Brodt

Précis: This study identifies a mechanism of cancer cell survival that is critical for metastatic colonization of the liver, suggesting that IGF-I receptor antagonists currently in clinical trials may have particular utility in treating colon cancers and other cancers that metastasize frequently to liver.

876 Monocytic CCR2^+^ Myeloid-Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T-cell Infiltration into the Tumor Microenvironment
Alexander M. Lesokhin, Tobias M. Hohl, Shigehisa Kitano, Cristina Cortez, Daniel Hirschhorn-Cymerman, Francesca Avogadri, Gabriele A. Rizzuto, John J. Lazarus, Eric G. Pamer, Alan N. Houghton, Taha Merghoub, and Jedd D. Wolchok

Précis: The cytokine GM-CSF, which is used to enhance white cell counts in many cancer patients, also expands a population of immune-suppressive monocytic cells that can block the entry of activated antitumor T cells into the tumor microenvironment, perhaps unwittingly contributing to immune escape.

887 CD8^+^ T Cells Specific for Tumor Antigens Can Be Rendered Dysfunctional by the Tumor Microenvironment through Upregulation of the Inhibitory Receptors BTLA and PD-1
Julien Fourcade, Zhaojun Sun, Ornella Pugliano, Philippe Guillaume, Immanuel F. Luescher, Cindy Sander, John M. Kirkwood, Daniel Olive, Vijay Kuchroo, and Hassane M. Zarour

Précis: This study extends knowledge concerning how an important inhibitory class of co-receptor molecules on T cells acts to block their specific cytotoxic activity against tumor cells, thereby deepening insights into how to reverse this key mechanism of immune escape in tumors for therapeutic benefit.

897 Hedgehog Signaling Inhibition Blocks Growth of Resistant Tumors through Effects on Tumor Microenvironment
Précis: Findings demonstrate a novel role for hedgehog signaling in osteoclast function and demonstrate that hedgehog inhibitors reduce tumor burden through direct effects on tumor cells, osteoclasts, and stromal cells within the tumor microenvironment.

miR-20a Encoded by the miR-17–92 Cluster Increases the Metastatic Potential of Osteosarcoma Cells by Regulating Fas Expression

Gangzong Huang, Kazumasa Nishimoto, Zhichao Zhou, Dennis Hughes, and Eugenie S. Kleinerman

Précis: Findings provide insights into the means by which bone cancers gain access to the lung, by modulating expression of a microRNA program that permits cancer cell survival in the lung microenvironment.

Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape

Dmitry I. Gabrilovich, Pingyan Cheng, David Quiceno, and Dario A.A. Vignali

Précis: Analogous to combination strategies for targeted drugs, this study shows how combination strategies for immunotherapeutic antibodies that target important negative regulatory immune receptors can produce powerful antitumor effects, in essence, by correcting immune escape.

Antigen-Specific CD4+ T Cells Regulate Function of Myeloid-Derived Suppressor Cells in Cancer via Retrograde MHC Class II Signaling

Sarah Lizard-Nacol, and Olivier Feron

Précis: This study identifies the lactate transporter MCT1 as a critical mediator of p53-driven metabolic controls on glycolysis and respiration, and thus also potentially critical for supporting malignant progression of p53-deficient cancers.

Myc Posttranscriptionally Induces HIF1 Protein and Target Gene Expression in Normal and Cancer Cells

Megan R. Doe, Janice M. Ascano, Mandeep Kaur, and Michael D. Cole

Précis: Myc overexpression is linked to induction of a core regulator of tumor hypoxia, highlighting a previously unrecognized effector pathway for oncogenic transformation by Myc.

A Positive Feedback Signaling Loop between ATM and the Vitamin D Receptor Is Critical for Cancer Chemoprevention by Vitamin D

Huei-Ju Ting, Sayeda Yasmin-Karim, Shian-Jang Yan, Jong-Wei Hsu, Tzu-Hua Lin, Wei-Si Zeng, James Messing, Tzong-Jeng Sheu, Bo-Ying Ruo, Willis X. Li, Edward Messing, and Yi-Fen Lee

Précis: Findings suggest that vitamin D prevents cancer by stimulating a positive feedback signaling loop from the vitamin D receptor to the DNA repair machinery, increasing its efficiency.

Resistance to Selective BRAF Inhibition Can Be Mediated by Modest Upstream Pathway Activation

Fei Su, William D. Bradley, Qiongqiong Wang, Hong Yang, Lizhong Xu, Brian Higgins, Kenneth Kolinsky, Kathryn Packman, Min Jung Kim, Kerstin Trunzer, Richard J. Lee, Kathleen Schostack, Jade Carter, Thomas Albert, Soren Germer, Jim Rosinski, Mitchell Martin, Mary Ellen Simcox, Brian Lestini, David Heimbrook, and Gideon Bollag

Précis: Findings address the present clinical challenge to prevent or reverse acquired resistance to mutant BRAF inhibition, which can produce powerful but only transient therapeutic responses in melanoma.

Potentiation of the Novel Topoisomerase I Inhibitor Indenoisoquinoline LMP-400 by the Cell Checkpoint and Chk1-Chk2 Inhibitor AZD7762

Sheena M. Aris and Yves Pommier

Précis: This study provides a proof-of-concept that a combination therapy composed of non-camptothecin topoisomerase 1 inhibitors plus checkpoint kinase inhibitors can trigger synergistic cancer cell deaths.
Tumor and Stem Cell Biology

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Dysregulation of Ezrin Phosphorylation Prevents Metastasis and Alters Cellular Metabolism in Osteosarcoma</td>
<td>Ling Ren, Sung-Hyuk Hong, Qing-Bong Chen, Joseph Briggs, Jessica Cassavanga, Satish Sriniwasan, Michael M. Lizardo, Arnulfo Mendoza, Ashley Y. Xia, Narayan Avadhani, Javed Khan, and Chand Khanna</td>
</tr>
<tr>
<td>1013</td>
<td>Hedgehog and Notch Signaling Regulate Self-Renewal of Undifferentiated Pleomorphic Sarcomas</td>
<td>Chang Ye Yale Wang, Qingsxia Wei, Ilkyu Han, Shingo Sato, Ronak Ghanbari-Azarnier, Heather Whetstone, Raymond Poon, Jiayi Hu, Feifei Zheng, Phil Zhang, Weishi Wang, Jay S. Wunder, and Benjamin A. Alman</td>
</tr>
</tbody>
</table>

Letters to the Editor

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1035</td>
<td>Impact of Epithelial Organization on Myc Expression and Activity—Letter</td>
<td>Johanna I. Partanen and Juha Klefstrom</td>
</tr>
<tr>
<td>1036</td>
<td>Impact of Epithelial Organization on Myc Expression and Activity—Response</td>
<td>David Simpson Senthil Muthuswamy, and William P. Tansey</td>
</tr>
</tbody>
</table>

Corrections

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1037</td>
<td>Correction: Endoglin Regulates Cancer–Stromal Cell Interactions in Prostate Tumors</td>
<td></td>
</tr>
<tr>
<td>1038</td>
<td>Correction: Sirtuin 1 Is Upregulated in a Subset of Hepatocellular Carcinomas where It Is Essential for Telomere Maintenance and Tumor Cell Growth</td>
<td></td>
</tr>
<tr>
<td>1039</td>
<td>Correction: Long Noncoding RNA HOTAIR Regulates Polycomb-Dependent Chromatin Modification and Is Associated with Poor Prognosis in Colorectal Cancers</td>
<td></td>
</tr>
</tbody>
</table>

About the Cover

Vemurafenib recently achieved FDA approval for treating patients with metastatic melanoma harboring the BRAF V600E mutation. The BRAFV600E-driven uncontrolled proliferation is effectively blocked by vemurafenib, reflected in the remarkable regressions observed in the clinic. However, most patients eventually relapse, and in many instances, progression is associated with reactivation of ERK signaling, as observed by high levels of ERK phosphorylation in tumor biopsies taken at progression. The cover shows an example of a tumor biopsy taken at progression. Su and colleagues identify a novel KRAS mutation that mediates the acquired resistance of melanoma cells to vemurafenib. Both MAPK and PI3K pathways are active despite the presence of drug. Combinations of vemurafenib with either MEK or AKT inhibitors are able to overcome this resistance, providing hope that these combinations could mitigate disease relapse in patients. For details, see the article by Su and colleagues on page 969 of this issue.