Ovarian Cancer Risk Associated with Inherited Inflammation-Related Variants

Précis: A large case–control study reveals that an inherited variant of the proinflammatory interleukin gene IL1A is associated with the risk of most types of ovarian cancer, offering powerful genetic support for a common role of inflammation in this disease.

Exploiting the Mutanome for Tumor Vaccination
John C. Castle, Sebastian Kreiter, Jan Diekmann, Mark E. Smolkin, Donna H. Deacon, Sofia M. Shea, Lynn T. Dengel, James W. Patterson, and Craig L. Slingluff Jr

Précis: This important study heralds strategies for personalized vaccinations of cancer patients, through the use of deep sequencing analysis, which shows that many nonsynonymous somatic mutations in a tumor are sufficient to confer antitumor activity to a peptide vaccine.
Tumor-Derived Chemokine CCL5
Enhances TGF-β-Mediated Killing of
CD8+ T Cells in Colon Cancer by
T-Regulatory Cells
Li-Yuan Chang, Yung-Chang Lin,
Jayashri Mahalingam, Ching-Tai Huang,
Ten-Wen Chen, Chiao-Wen Kang,
Hui-Min Peng, Yu-Yi Chu, Jy-Ming Chiang,
Avijit Dutta, Yuan-Ji Day, Tse-Ching Chen,
Chau-Ting Yeh, and Chun-Yen Lin

Precise: This intriguing study tightens the emerging
connections in cancer between inflammation,
immune escape, and metastasis by showing how a
chemokine implicated in inflammation and
metastasis also drives immune escape by
recruiting Treg cells that promote progression into
tumors.

VEGF Receptor Inhibitors Block the
Ability of Metronomically Dosed
Cyclophosphamide to Activate Innate
Immunity–Induced Tumor Regression
Joshua C. Doloff and David J. Waxman

Precise: Anti-VEGFR drugs can block beneficial
antitumor immune responses that are triggered by
periodic administration of cytotoxic
chemotherapy, with implications for clinical trials
that combine these drug classes.

Effective Treatment of Metastatic
Forms of Epstein-Barr Virus–
Associated Nasopharyngeal
Carcinoma with a Novel Adenovirus-
Based Adoptive Immunotherapy
Corey Smith, Janice Tsang, Leone Beagley,
Daniel Chua, Victor Lee, Vivian Li, Denis J. Moss,
William Coman, Kwok H. Chan, John Nicholls,
Dora Kwong, and Rajiv Khanna

Precise: Early clinical findings reported in this
study support the ongoing development of an
immunotherapy for progressed forms of the most
common throat cancer in the Far East, an endemic
disease associated with EBV infections in a
manner analogous to the association of HPV
infections in cervical cancer.

MOLECULAR AND CELLULAR
PATHOBIOLOGY

Upregulation of miR-196a and HOTAIR
Drive Malignant Character in
Gastrointestinal Stromal Tumors
Takeshi Niinuma, Hiromu Suzuki,
Masanori Nojima, Katsuhiko Nosho,
Hiroyuki Yamamoto, Hiroyuki Takamara,
Eiichiro Yamamoto, Reo Maruyama,
Takayuki Nohuoka, Yasuaki Miyazaki,
Toshihisa Nishida, Takeo Burnha, Tatsuo Kanda,
Yoichi Aijoka, Takahiro Taguchi,
Satoshi Okahara, Hiroaki Takahashi,
Yasunori Nishida, Masao Hosokawa,
Tadashi Hasegawa, Takashi Tokino,
Koichi Hirata, Kohzoh Imai, Minoru Toyota, and
Yasuhiisa Shinomura

Precise: This study is among the first to reveal an
important role in human cancer for HOTAIR, a
member of an as yet little studied new category of
long noncoding RNAs that may have broad
applications as biomarkers or therapeutic targets
in oncology.

KR-POK Interacts with p53 and
Represses Its Ability to Activate
Transcription of p21WAF1/CDKN1A
Bu-Nam Jeon, Min-Kyeong Kim, Won-il Choi,
Dong-In Koh, Sung-Yi Hong, Kyung-Sup Kim,
Minjung Kim, Chae-Ok Yun, Juyong Yoon,
Kang-Yell Choi, Kyung-Ryul Lee,
Kenneth P. Nephew, and Man-Wook Hur

Precise: Findings provide important novel insights
into how the transcriptional activation function of
p53 is repressed in cells, with implications for
understanding a new oncogenic pathway in
kidney cancers.

ATR–ATRIP Kinase Complex Triggers
Activation of the Fanconi Anemia DNA
Repair Pathway
Tomoko Shigechi, Junya Tomida, Koichi Sato,
Masahiko Kobayashi, John K. Eykelenboom,
Fabio Pessina, Yanbin Zhang, Emi Uchida,
Masamichi Ishii, Noel F. Lowndes,
Kenichi Yamamoto, Hitoshi Kurumizaka,
Yoshisho Maehara, and Minoru Takata

Precise: Findings advance pathophysiologic
understanding of a cancer-disposing disorder,
Fanconi anemia, and reveal key insights into
fundamental control pathways for S-phase DNA
repair and cell-cycle checkpoint defective in
cancer.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1157</td>
<td>Kaposi Sarcoma Herpesvirus Promotes Endothelial-to-Mesenchymal Transition through Notch-Dependent Signaling</td>
<td>Paola Gasperini, Georgina Espigol-Frigole, Peter J. McCormick, Ombretta Salvucci, Dragan Maric, Thomas S. Uldrick, Mark N. Polizzotto, Robert Yarchean, and Giovanna Tosato</td>
<td>This study identifies a basis to understand the aggressiveness of a mesenchymal cancer that occurs commonly in AIDS patients, with implications for its better treatment with Notch pathway inhibitors currently being explored in clinical trials.</td>
<td></td>
</tr>
<tr>
<td>1170</td>
<td>DNA Methylation Does Not Stably Lock Gene Expression but Instead Serves as a Molecular Mark for Gene Silencing Memory</td>
<td>Noël J.-M. Baynal, Jiali Si, Rodolphe F. Taby, Vazganush Gharibyan, Saira Ahmed, Jaroslav Jelinek, Marcos R.H. Esteício, and Jean-Pierre J. Issa</td>
<td>Chromatin is a target for epigenetic cancer therapies that reactivate gene expression, but removal of DNA methylation signals is required first to achieve durable long-term effects.</td>
<td></td>
</tr>
<tr>
<td>1190</td>
<td>Impact of Circulating Vitamin D Binding Protein Levels on the Association between 25-Hydroxyvitamin D and Pancreatic Cancer Risk: A Nested Case-Control Study</td>
<td>Stephanie J. Weinstein, Rachael Z. Stolzenberg-Solomon, William Kopp, Helen Rager, Jarmo Virtamo, and Demetrius Albanes</td>
<td>Findings suggest an explanation for the adverse influence of vitamin D on risk of pancreatic cancer, which contrasts with some other solid tumors, with implications for how future risk association studies of vitamin D may be designed.</td>
<td></td>
</tr>
<tr>
<td>1199</td>
<td>Cathepsin B Inhibition Limits Bone Metastasis in Breast Cancer</td>
<td>Nimani P. Withana, Gaha Blum, Mansourheh Sameni, Clare Slaney, Arulselvi Anbalagan, Mary B. Olive, Bradley N. Bidwell, Laura Edgington, Ling Wang, Kamiar Moin, Bonnie F. Sloane, Robin L. Anderson, Matthew S. Bogyo, and Belinda S. Parker</td>
<td>Important findings suggest a new strategy to block metastasis of breast cancer cells to bone, a common feature of malignant progression in breast cancer patients with few effective treatment options at present.</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>DNA Methylation Does Not Stably Lock Gene Expression but Instead Serves as a Molecular Mark for Gene Silencing Memory</td>
<td>Noël J.-M. Baynal, Jiali Si, Rodolphe F. Taby, Vazganush Gharibyan, Saira Ahmed, Jaroslav Jelinek, Marcos R.H. Esteício, and Jean-Pierre J. Issa</td>
<td>Chromatin is a target for epigenetic cancer therapies that reactivate gene expression, but removal of DNA methylation signals is required first to achieve durable long-term effects.</td>
<td></td>
</tr>
<tr>
<td>1221</td>
<td>RNAi-Mediated Targeting of Noncoding and Coding Sequences in DNA Repair Gene Messages Efficiently Radiosensitizes Human Tumor Cells</td>
<td>Zhiming Zheng, Woon Loon Ng, Xiangning Zhang, Jeffrey J. Olson, Chunhai Hao, Walter J. Curran, and Ya Wang</td>
<td>This study defines a generalized approach for highly efficient RNAi-based gene silencing, using a combinatorial targeting strategy to illustrate how knockdown of DNA repair genes can effectively radiosensitize tumor cells.</td>
<td></td>
</tr>
<tr>
<td>1229</td>
<td>LRIG1 Modulates Cancer Cell Sensitivity to Smac Mimetics by Regulating TNFα Expression and Receptor Tyrosine Kinase Signaling</td>
<td>Longchuan Bai, Donna McEachern, Chao-Yie Yang, Jianfeng Lu, Haiying Sun, and Shaomeng Wang</td>
<td>This study provides key insights into the basis for resistance to IAP inhibitors, possibly critical to the successful clinical development of this new class of cancer drugs.</td>
<td></td>
</tr>
</tbody>
</table>
Adoptive Cell Therapy for Lymphoma with CD4 T Cells Depleted of CD137-Expressing Regulatory T Cells
Matthew J. Goldstein, Holbrook E. Kohrt, Roch Houot, Bindu Varghese, Jack T. Lin, Erica Swanson, and Ronald Levy

Precis: This important study provides knowledge that can immediately be translated into the clinical setting to optimize cell-based cancer immunotherapies based on adoptive transfer of CD4⁺ T lymphocytes.

TUMOR AND STEM CELL BIOLOGY

Targeting Pioneering Factor and Hormone Receptor Cooperative Pathways to Suppress Tumor Progression
Supriya Shah, Shikha Prasad, and Karen E. Knudsen

Precis: Findings reveal that the turmeric spice component curcumin can act in a combinatorial manner to disrupt histone modification and androgen receptor signaling to control prostate cancer growth.

PRAS40 Is a Functionally Critical Target for EWS Repression in Ewing Sarcoma
Lin Huang, Yuji Nakai, Iku Kuwahara, and Ken Matsumoto

Precis: An Akt substrate is identified as a critical oncogenic mediator in an aggressive type of pediatric cancer that has had an elusive molecular pathobiology.

p53 Inhibits Angiogenesis by Inducing the Production of Arresten
Sarah Assadian, Wissal El-Assaad, Xue Q.D. Wang, Phillippe O. Gannon, Véronique Barrès, Mathieu Latour, Anne-Marie Mes-Masson, Fred Saad, Yoshikazu Sado, Josée Dostie, and Jose G. Teodoro

Precis: In addition to its well studied effects on tumor cell growth, senescence, and survival, p53 also acts in many ways to modify the cellular microenvironment, including through regulation of antiangiogenic factors.

Pocket Proteins Suppress Head and Neck Cancer
Myeong-Kyun Shin, Henry C. Pitot, and Paul F. Lambert

Precis: Genetic inactivation of the tumor suppressor protein Rb, and its relative p107, is sufficient to phenocopy the oncogenic activity of the human papillomavirus E7 oncoprotein in stimulating formation of head and neck cancer in mice, thereby establishing the importance of Rb/p107 functions in virally associated forms of this cancer which are rising rapidly in incidence.

Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB-Mediated Transcriptional Upregulation of Twist1
Chia-Wei Li, Weiya Xia, Longlei Huo, Seung-Oe Lim, Yun Wu, Jennifer L. Hsu, Chi-Hong Chao, Hirohito Yamaguchi, Neng-Kai Yang, Qingqing Ding, Yan Wang, Yun-Ju Lai, Adam M. LaRaff, Ting-Jung Wu, Been-Ren Lin, Muh-Hwa Yang, Gabriel N. Hortobagyi, and Mien-Chie Hung

Precis: Results offer key mechanistic insights into how a major proinflammatory driver in the tumor microenvironment promotes epithelial-to-mesenchymal transition and stemness properties in breast cancer cells, with implications into how to therapeutically reverse these features of aggressive progression.

Oncogenicity of the Developmental Transcription Factor Sox9
Ander Matheu, Manuel Collado, Clare Wise, Lorea Manterola, Lina Cekaite, Angela J. Tye, Marta Canadero, Luis Bujanda, Andreas Schedl, Kathryn S.E. Cheah, Rolf I. Skotheim, Ragnhild A. Lothe, Adolfo López de Munain, James Briscoe, Manuel Serrano, and Robin Lovell-Badge

Precis: Sox9, a gene active during embryogenesis and in adult stem cells, is found to be widely upregulated in various cancers where its expression is associated with unrestricted cell proliferation, immortalization, and tumorigenesis.

CORRECTIONS

Correction: Increased Survival of Glioblastoma Patients Who Respond to Antiangiogenic Therapy with Elevated Blood Perfusion

Correction: Regulation of Matrix Metalloproteinase Genes by E2F Transcription Factors: Rb–Raf-1 Interaction as a Novel Target for Metastatic Disease
ABOUT THE COVER

A number of cathepsin proteases have been documented to promote tumor invasion and metastasis. However, the role of specific proteases in breast cancer metastasis and the therapeutic potential of their selective inhibition in clinically relevant models are not clear. Using 3D and in vivo models, Withana and colleagues have shown that the cysteine protease cathepsin B has important roles in breast cancer metastasis and that therapeutic inhibition of this protease using small-molecule inhibitors dramatically decreases metastasis to lung and bone. The cover image was produced with fluorescent whole-body imaging using a cysteine cathepsin activity–based fluorescent probe (GB123) and the fluorescent diposphonate probe Osteosense 750, which detects bone remodeling. The image shows cysteine cathepsin activity along the spine of mice bearing bone metastatic tumors. This activity is reduced in mice treated with the cathepsin B selective small-molecule inhibitor CA-074. For details, see the article by Withana and colleagues on page 1199 of this issue.
Cancer Research

72 (5)


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/5

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.