Tumor-Derived Chemokine CCL5 Enhances TGF-β-Mediated Killing of CD8+ T Cells in Colon Cancer by T-Regulatory Cells

Li-Yuan Chang1,3, Yung-Chang Lin2, Jayashri Mahalingam3, Ching-Tai Huang2,4, Ten-Wen Chen3, Chiao-Wen Kang1, Hui-Min Peng3, Yu-Yi Chu3, Jay-Ming Chiang4, Avijit Dutta4, Yuan-Ji Day2,6, Tse-Ching Chen2, Chau-Ting Yeh1,2,3, and Chun-Yen Lin1,2,3

Abstract
Chemokine CCL5/RANTES is highly expressed in cancer where it contributes to inflammation and malignant progression. In this study, we show that CCL5 plays a critical role in immune escape in colorectal cancer. We found that higher levels of CCL5 expression in human and murine colon tumor cells correlated with higher levels of apoptosis of CD8+ T cells and infiltration of T-regulatory cells (Treg). In mouse cells, RNA interference (RNAi)-mediated knockdown of CCL5 delayed tumor growth in immunocompetent syngeneic hosts but had no effect on tumor growth in immunodeficient hosts. Reduced tumor growth was correlated with a reduction in Treg infiltration and CD8+ T-cell apoptosis in tumors. Notably, we found that CCL5 enhanced the cytotoxicity of Treg against CD8+ T cells. We also found tumor growth to be diminished in mice lacking CCR5, a CCL5 receptor, where a similar decrease in both Treg cell infiltration and CD8+ T-cell apoptosis was noted. TGF-β signaling blockade diminished apoptosis of CD8+ T cells, implicating TGF-β as an effector of CCL5 action. In support of this concept, CCL5 failed to enhance the production of TGF-β by CCR5-deficient Treg or to enhance their cytotoxic effects against CD8+ T cells. CCR5 signaling blockade also diminished the in vivo suppressive capacity of Treg in inhibiting the antitumor responses of CD8+ T cells, in the same way as CCL5 signaling blockade. Together, our findings establish that CCL5/CCR5 signaling recruits Treg to tumors and enhances their ability to kill antitumor CD8+ T cells, thereby defining a novel mechanism of immune escape in colorectal cancer. Cancer Res; 72(5); 1092-102. ©2012 AACR.

Introduction
Colorectal cancer (CRC) is one of the most common cancers worldwide and a major cause of cancer-related death (1). The presence of tumor-infiltrating lymphocytes (TIL) could predict the clinical outcome in patients with CRC (2–5), as evidenced by high density of CD8+ and CD45RO+ T cells in TILs associated with decreased invasiveness, lower stage, and improved survival (2). T-regulatory cells (Treg) play an indispensable role in the maintenance of immunologic tolerance and in control of excessive immune responses (6, 7). The percentage of Treg cells is inversely related to the outcomes of various malignant diseases (4, 5, 8–10). Furthermore, depletion of Treg cells can enhance antitumor immune responses and improve the efficacy of tumor immunotherapy in several mouse tumor models (11, 12). For patients with CRC, increased numbers of Treg cells had been shown in peripheral blood, tumor-draining lymph node (DNL), and tumor and these Treg cells could suppress the autologous effector T-cell responses (13–16). In CT26 mouse colon tumor model, we have shown that Treg cells increased in number as the progression of tumor and these Treg cells could suppress antitumor functions of CD8+ T cells (17). Furthermore, Casares and colleagues also reported that functional inhibition of Treg cells by the Foxp3-inhibitory peptide P60 enhanced antitumor immunotherapy in CT26 mouse colon tumor model (18). All these evidence highlights the important regulatory role of Treg cells in CRC either in human or in mouse model.

CCL5/RANTES is one of the C-C chemokines and interacts with the G-protein–coupled receptors CCR1, CCR3, and CCR5. CCL5 is a potent chemoattractant for T lymphocytes, monocytes, natural killer cells, and eosinophils (19). It has been reported that CCL5 is highly expressed in various tumors and promotes tumor growth and metastasis by inducing tumor cell proliferation, angiogenesis, or expression of matrix metalloproteinases (20–22). In addition, CCL5 has been shown to diminish antitumor immune responses by increasing the presence of tumor-associated macrophages and Treg cells in...
tumors (22, 23). Recent studies have shown that CCL5 was highly expressed in colon tumor tissues when compared with paired normal tissues in early-stage tumor of patients with CRC (24). However, whether the tumor-helping role of CCL5 is through evading the immune attack or not remains unclear.

Thus, the purpose of this study was to investigate the possible tumor-helping role of CCL5 in evading the immune attack in CRC. We found that CCL5 was highly expressed in human colorectal tumor tissues, as well as in CT26 mouse colon tumor cells. Knockdown of CCL5 secretion from CT26 cells resulted in decreased apoptosis of tumor-infiltrating CD8⁺ T cells and delayed growth of tumor in mice. Interestingly, CCL5 expression could not only promote migration of Treg cells to tumors but also enhance their killing ability on CD8⁺ T cells. Furthermore, this enhancement of killing ability was associated with increased production of TGF-β by Treg cells. These results provide a better understanding of interplay between tumor cells and Treg cells and identify an unrevealed mechanism by which tumor cells induce immune tolerance in CRC.

Materials and Methods

Study population

Healthy control subjects (n = 20) were recruited from health check-up center in Chang Gung Memorial Hospital, Taiwan. A total of 25 human colon cancer tissues and peripheral blood specimens were collected immediately after a regular colon check-up center in Chang Gung Memorial Hospital, Taiwan. All patients in this study had provided written informed consent. This study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the ethical committees of Chang Gung Memorial Hospital.

Mice

BALB/c mice and nude mice were purchased from the National Laboratory Animal Center of Taiwan (Taipei, Taiwan). RAG-1⁻/⁻ deficient mice (BALB/c background), CCR3-deficient mice (BALB/c background), and CCR5-deficient mice (C57BL/6 background) were purchased from Jackson Laboratory. CCR5-deficient mice were fully backcrossed to BALB/c background for 10 generations. All mice were maintained in the animal house of Chang Gung Memorial Hospital and used in experiments at ages 8 to 10 weeks. All animal breeding and experiments were in accordance with guidelines of the institutional animal ethics committee.

Cell lines and reagents

Both CT26 mouse colon carcinoma cell line and NIH 3T3 mouse fibroblast cell line were purchased from the American Type Culture Collection and maintained in our laboratory. Peptide P17, a known inhibitor of TGF-β (25) was synthesized by Kelowna and GzmB inhibitor I (β-AAD-CMK) was purchased from Merck.

CCL5 small hairpin RNA transfection

Knockdown of CCL5 was done by RNAintro GIPZ lentiviral shRNAmir starter Kits following manufacturer’s instruction (Open Biosystem). Two CCL5 (NM_013655) RNA interferences were used with 3 RNA interference targets glyceraldehyde-3-phosphate dehydrogenase (GAPDH) lentiviral shRNAmir, EG5 lentiviral shRNAmir, and Nonsilencing control shRNAmir. After 48 hours of transfection, CT26 cells were selected in 60 μg/mL puromycin to enrich pure population. CCL5 knockdown CT26 cells were determined by ELISA (R&D Systems) of culture supernatants.

Quantitative real-time PCR

Cell lines or tumor tissues were homogenized with 1 mL TRI reagent to extract total RNA. cDNA was synthesized by reverse transcription of total RNA (Epicentre). Quantitative real-time PCR (qRT-PCR) was carried out as previously described (26). Previously described primers of the targeted genes were used in the study (26, 27).

Flow cytometry

All antibodies were purchased from BD Biosciences or eBiosciences, except for anti-LAP monoclonal antibody (mAb; R&D Systems) and anti-TGF-β mAb (IQ Products). Single-cell suspensions were stained for surface or intracellular proteins and cytokines as previously described (17). For intracellular cytokine staining, 1 × 10⁶ cells were stimulated with 50 ng/mL phorbol 12-myristate 13-acetate and 500 ng/mL ionomycin in the presence of GolgiStop for 5 hours, followed by surface and intracellular staining.

Cell isolation

Human peripheral blood mononuclear cells were separated from blood samples by Ficoll density (Pharmacia). Tumors were chopped into small pieces and incubated with collagenase IV (0.1%; Sigma-Aldrich) in Hank’s Balanced Salt Solution (HBSS) for 30 minutes at 37°C. After passing through nylon mesh, single-cell suspensions were separated with Ficoll, and leukocytes were recovered from the interphase.

Cell purification

Single-cell suspensions were prepared from spleen of BALB/c mice bearing CT26 tumors, and CD8⁺ T cells were enriched using magnetic microbeads conjugated with anti-mouse CD8 (Miltenyi Biotech) by AutoMACS (Miltenyi Biotech). For CD4⁺CD25⁺ T-cell purification, single-cell suspensions were first enriched for CD4⁺ T cells via negative selection by the CD4 isolation kit (Miltenyi Biotech). Enriched CD4⁺ T cells were then labeled with CD25-PE and sorted using FACSARIA (BD Biosciences). Cell purity (>90%) for all populations was confirmed by flow cytometry.

Tumor experiments

In peptide P17 treatment experiments, BALB/c mice were inoculated subcutaneously with 1 × 10⁷ CT26 cells and 3 days later, mice were treated with/without peptide P17 (intraperitoneally; 100 μg/mouse) 5 times per week in a 14-day interval. In adoptive transfer experiments, CD4⁺CD25⁺ T cells were isolated spleen from BALB/c or CCR5-deficient mice bearing CT26 tumors, and these cells (2 × 10⁶ cells) were co-transferred with CD8⁺ T cells (1 × 10⁶ cells) into CCR5-deficient mice.
bearing CT26 tumors or CCL5 knockdown CT26 tumors generated 1 day earlier by subcutaneous inoculation (1 × 10^5 cells). In all case, the tumor size was measured twice a week and volume was calculated [(length × width^2)/2].

Treg cell killing ability assay in vitro

CD4^+^CD25^+^ T cells and CD8^+^ T cells were enriched from spleen or DLN of BALB/c mice bearing CT26 tumors. CD4^+^CD25^+^ T cells were cultured with interleukin (IL)-2 (2,000 U/mL) in presence or absence of CCL5 (500 ng/mL) for 18 hours and were then washed twice in RPMI-1640 medium. For the analysis of Treg cell killing ability, these CD4^+^CD25^+^ T cells were cultured with CD8^+^ T cells (1 × 10^5 each) in presence of plate-bound anti-CD3 antibody (10 µg/mL) and soluble anti-CD28 antibody (2 µg/mL) for 48 hours. The apoptosis of CD8^+^ T cells was measured by flow cytometry using Annexin V staining. To determine the mechanisms underlying the killing ability of Treg cells against CD8^+^ T cells, anti-mouse FasL mAb (10 µg/mL, MFL-3; eBiosciences), GzmB inhibitor I (10 µg/mL), peptide P17 (10 µg/mL), or anti-mouse TGF-β mAb (10 µg/mL, 1D11; R&D Systems) was added in the coculture of CD8^+^ T cells and CCL5-pretreated Treg cells.

Statistical analysis

Two-tailed unpaired Student t test was used for statistical analyses of differences between groups, and a paired t test was used to determine pairwise differences. The calculations were made with GraphPad Prism 5 Software. Differences were recognized as significant at *P* less than 0.05.

Results

Increased CCL5 expression, increased infiltration of Treg cells, and increased apoptosis of CD8^+^ T cells in human colorectal cancer tissues

First, we examined CCL5 expression in both tumor part and nontumor part of colon from patients with CRC using qRT-PCR. The CCL5 mRNA was significantly increased in tumor tissues compared with their nontumor counterpart (Fig. 1A). We next investigated phenotypes of Treg cells and CD8^+^ T cells in peripheral blood lymphocytes (PBL) and TILs in patients
with CRC and found that the frequency of Treg cells increased in PBLs and TILs of patients with CRC compared with PBLs of healthy volunteers. In addition, Treg cells accumulated in tumor due to higher percentage of Treg cells in the TILs than in PBLs in patients with CRC (Fig. 1B). On the other hand, the percentage of Annexin V$^+$CD8$^+$ T cells in TILs was significantly increased compared with PBLs of patients with CRC or healthy volunteers (Fig. 1C). These results indicate increased CCL5 expression, increased infiltration of Treg cells, and increased apoptosis of CD8$^+$ T cells in the tumor microenvironment in patients with CRC.

CCL5 contributes to the tumor development in the mouse CT26 colon tumor model

For further exploring the possible role of CCL5 in the colorectal tumor development, we chose the CT26 mouse colon cancer model because of high CCL5 mRNA expression and CCL5 protein secretion by CT26 cells (Fig. 2A and B). We then knocked down CCL5 secretion from CT26 cells by lentiviral small hairpin RNA (shRNA; CCL5low CT26 cells, Fig. 2C). The in vitro growth pattern of CCL5low CT26 cells was similar to CT26 cells transfected with control lentivector (control CT26 cells, Fig. 2D). Regarding their in vivo behavior, the tumor growth of CCL5low CT26 cells was also similar to control CT26 cells when these cells were subcutaneously inoculated into nude mice and RAG-1-deficient mice (Fig. 2E and Supplementary Fig. S1). However, in immunocompetent BALB/c mice, the tumor growth was significantly impaired in CCL5low CT26 cells (Fig. 2F). These results suggest that CCL5 contributes to tumor development in immunocompetent mice possibly via affecting the adaptive immune system.

Knockdown of CCL5 secretion from tumors reduces expression of TGF-β by tumor-infiltrating Treg cells

Because of chemotactracting nature of CCL5 toward T lymphocytes (19), it was worthy of further investigation of T cells in the tumor microenvironment between mice inoculated with CCL5low CT26 cells and with control CT26 cells. As shown in Fig. 3A, there was no difference in the percentage and absolute number of CD4$^+$ T cells between CCL5low CT26 tumors and control CT26 tumors. However, the percentage of Treg cells in CCL5low CT26 tumors was significant lower than that in control CT26 tumors (Fig. 3B). We also examined the phenotypes of Treg cells in these mice. Treg cells in both CCL5low CT26 tumors and control CT26 tumors expressed similar levels of effector molecules, like FasL, perforin, and Granzyme B (Fig. 3C). However, Treg cells in CCL5low CT26 tumors showed a marked reduction in the expression of latency-associated peptide (LAP) and TGF-β (Fig. 3C). These results suggest that CCL5 expression could not only promote the recruitment of Treg cells but also impair their anti-tumor activity.

![Figure 2: Knockdown of CCL5 secretion from tumors results in delayed tumor growth in mice.](https://www.aacrjournals.org/cancerres/article-pdf/72/5/1095/3322068/1095.pdf)
Treg cells but also enhance the production of TGF-β by Treg cells in tumor microenvironment.

Knockdown of CCL5 secretion from tumors reduces the apoptosis of tumor-infiltrating CD8+ T cells

We also compared the phenotypes of CD8+ T cells in both CCL5low CT26 tumors and control CT26 tumors. The percentage and absolute number of CD8+ T cells were increased in CCL5low CT26 tumors when compared with control CT26 tumors (Fig. 4A). In addition, CD8+ T cells in CCL5low CT26 tumors were highly activated, which expressed increased levels of CD25, CD44, perforin, and Granzyme B when compared with control CT26 tumors (Fig. 4B). Numerical reduction in CD8+ T cells in control CT26 tumors might be from their enhanced mortality. The apoptosis of CD8+ T cells in tumor was significantly higher than that in spleen (Fig. 4C). As well as, the knockdown of CCL5 secretion by tumors led to reduced apoptosis of tumor-infiltrating CD8+ T cell (Fig. 4C). Taken together, these results suggest that CCL5 expression in tumor affects the phenotypes of Treg cells and CD8+ T cells in tumor microenvironment.

CCL5 enhances Treg cell–mediated CD8+ T-cell apoptosis in a TGF-β–dependent manner

Considering the correlation between CCL5 and apoptosis of CD8+ T cells, we first showed CCL5 could only lead to a marginal increase in the apoptosis of CD8+ T cells in vitro (Fig. 5A). We then examined whether Treg cells could induce the apoptosis of CD8+ T cells or not. Treg cells were isolated from spleen or DLN of mice bearing control CT26 tumors and incubated with CCL5 in vitro. CCL5-pretreated Treg cells could enhance the apoptosis of CD8+ T cells in vitro when compared
with T_{reg} cells without CCL5 pretreatment or with CD8⁺ T cells alone (Fig. 5B and Supplementary Fig. S2). In addition, we found that this enhanced apoptosis of CD8⁺ T cells was blocked by anti-TGF-β-neutralizing antibody but not Granzyme B inhibitor and anti-FasL-neutralizing antibody (Fig. 5B and Supplementary Fig. S2). Peptide P17 has been shown to inhibit TGF-β production of Treg cells in vitro and in vivo (25).

We further confirmed the role of TGF-β on the apoptosis of CD8⁺ T cells by incubating these cells with peptide P17. Peptide P17 also blocked CCL5-pretreated T_{reg} cell-mediated CD8⁺ T-cell apoptosis in vitro (Fig. 5B and Supplementary Fig. S2). Furthermore, mice treated with peptide P17 had a delay in tumor growth and a reduction in the expression of TGF-β and LAP on tumor-infiltrating T_{reg} cells (Fig. 5C and D). Administration of peptide P17 also increased the absolute number of CD8⁺ T cells and reduced the apoptosis of CD8⁺ T cells in tumors (Fig. 5E and F). In addition, the expression of IFN-γ in tumor-infiltrating CD8⁺ T cells was increased in mice treated with peptide P17 (Supplementary Fig. S3). Taken together, these results indicate that CCL5 enhances T_{reg} cell-mediated CD8⁺ T cell apoptosis through TGF-β signaling.

CCR5-deficient mice exhibit slower tumor growth by restricting the killing ability of T_{reg} cells on CD8⁺ T cells

We next examined the expression of CCL5-associated receptors CCR3 and CCR5 on both T_{reg} cells and CD8⁺ T cells in tumor. Only a minor proportion of CD8⁺ T cells (<5%) expressed CCR3 or CCR5 (Supplementary Fig. S4). However, CCR5 but not CCR3 was highly expressed on CD4⁺Foxp3⁺ T cells compared with CD4⁺Foxp3[−] T cells (Supplementary Fig. S4). Furthermore, the tumor growth was significantly delayed in CCR5-deficient mice than in BALB/c mice or CCR3-deficient mice (Fig. 6A). Furthermore, the frequencies of both T_{reg} cells and apoptotic CD8⁺ T cells in TILs were significantly reduced in CCR5-deficient mice than in BALB/c mice or CCR3-deficient mice (Fig. 6B and C). In addition, tumor-infiltrating T_{reg} cells

Figure 4. Knockdown of CCL5 secretion from tumors results in a reduced apoptosis of tumor-infiltrating CD8⁺ T cells. A, three weeks after tumor inoculation, the percentage and absolute number of CD8⁺ T cells in TILs from control CT26 tumors or CCL5^{low} CT26 tumors were determined by flow cytometry. B, different expression of activated/effector molecules on CD8⁺ T cells in TILs from control CT26 tumors or CCL5^{low} CT26 tumors. C, the percentage of Annexin V⁺CD8⁺ T cells in spleen or TILs from control CT26 tumors or CCL5^{low} CT26 tumors. Data show mean ± SEM of n = 6 mice. Results are representative of 3 independent experiments. *, P < 0.05.
expressed lower levels of TGF-β and LAP in CCR5-deficient mice than in control mice or CCR3-deficient mice (Fig. 6D). We further examined the in vitro effect of CCL5 on the expression of TGF-β and LAP by Treg cells. CCL5 pretreatment significantly enhanced the expression of TGF-β and LAP on Treg cells from BALB/c mice and CCR3-deficient mice but not from CCR5-deficient mice (Fig. 6E).

We then examined whether the CCL5/CCR5 signaling was important for Treg cell–mediated CD8+ T-cell apoptosis. CCL5 pretreatment significantly enhanced Treg cell–mediated CD8+ T-cell apoptosis in vitro when Treg cells were from BALB/c mice and CCR3-deficient mice but not when Treg cells were from CCR5-deficient mice (Fig. 6F).

We also examined whether the CCL5/CCR5 signaling was required for suppression ability of Treg cells in vivo. We sorted wild-type Treg cells and CD8+ T cells from spleen of BALB/c mice bearing control CT26 tumors and cotransferred them into CCR5-deficient mice bearing control CT26 tumors or CCL5low CT26 tumors. The cotransfer of Treg cells could suppress antitumor responses of CD8+ T cells in mice bearing control CT26 tumors but not in mice bearing CCL5low CT26 tumors (Fig. 7A). On the other hand, we also cotransferred CCR5-deficient Treg cells with CD8+ T cells into CCR5-deficient mice bearing control CT26 tumors. However, CCR5-deficient Treg cells failed to suppress antitumor response of CD8+ T cells when compared with wild-type Treg cells (Fig. 7B). These results indicate the CCL5/CCR5 signaling contributes to the colorectal tumor progression through enhancing suppressive capacity of Treg cells.

Discussion

CCL5 is known to be highly expressed in tumor microenvironment and contributes to tumor development in diverse human and murine tumors (20–23). Herein, we showed that in human CRC, apoptosis of CD8+ T cells and infiltration of Treg cells was increased along with higher expression of CCL5. In addition, we explored the role of CCL5 in tumor growth using CT26 mouse colon tumor model. We found that the secretion of CCL5 from tumors was helpful for tumor growth through
modulating adaptive immune system because this advantage was lost in nude mice and RAG-1–deficient mice. In addition, knockdown of CCL5 secretion from tumors reduced Treg cell infiltration into tumor microenvironment and, interestingly, also reduced the TGF-β expression in Treg cells. Furthermore, CCL5 could enhance the killing ability of Treg cells on CD8⁺ T cells through TGF-β signaling. Similar observations were displayed by CCR5-deficient mice. These results indicate the tumor could secrete CCL5 to enhance the Treg cell suppressive function in tumor microenvironment through CCL5/CCR5 signaling and contribute to the immune-evasion behavior of tumor.
The induction of apoptosis on effector CD8$^+$ T cells is one of the mechanisms used by tumors to engineer an immune evasion (28). It has been reported that melanoma tumor cells could stimulate TILs to secrete CCL5, which participates in activating apoptosis pathways in TILs through CCR5 (29). On the contrary, gastric tumors could also stimulate CD4$^+$ T cells to secrete CCL5, which participates in evasion (28). It has been reported that melanoma tumor cells induced tumor-supporting function in T cells by increasing secretion from tumor could significantly reduce the apoptosis of CD8$^+$ T cells (21). However, all these evidence were only shown in vitro and no in vivo corresponding phenomenon had been shown. In addition, the influence of tumor-derived CCL5 on the tumor microenvironment had not been investigated before. In our study, exogenous CCL5 alone could only marginally increased the apoptosis of CD8$^+$ T cells from tumor-bearing mice in vitro. On the contrary, knockdown of CCL5 secretion from tumor could significantly reduce the apoptosis of CD8$^+$ T cells in TILs. Therefore, the direct effect of tumor-derived CCL5 on the apoptosis of CD8$^+$ T cells could not explain the high apoptosis of CD8$^+$ T cells in the tumor microenvironment in our tumor model.

It has been reported that breast tumor cell-derived CCL5 induced tumor-supporting function in T cells by increasing their ability to highly express matrix metalloproteinases (22). In our study, we showed that an indirect effect of CCL5 on the apoptosis of CD8$^+$ T cells was through enhancing the killing ability of Treg cells on CD8$^+$ T cells. Treg cells have been shown to induce apoptosis of effector T cells as a mechanism of suppression through killing molecules like perforin, FasL, and Granzyme B (30, 31). We previously reported that tumor-infiltrating Treg cells expressed higher levels of killing-associated molecules, such as perforin, FasL, and Granzyme B (17). However, the expression of these killing molecules in tumor-infiltrating Treg cells from CCL5low CT26 tumor was unaltered when compared with Treg cells from control CT26 tumor. The inhibition of Granzyme B and FasL did not diminish the killing ability of Treg cells in vitro. Recent studies have shown that TGF-β is a key factor in controlling the apoptosis of effector CD8$^+$ T cells in distinct viral and bacterial infection models (32–34). Consistent with this, we observed that the inhibition of TGF-β production by Treg cells, using a peptide P17, diminished the apoptosis of CD8$^+$ T cells in vitro and in vivo. This observation emphasizes the critical role of TGF-β in the induction of CD8$^+$ T cell apoptosis in forging the immunosuppressive tumor microenvironment.

The importance of CCR5 for the chemotaxis of Treg cells had been shown in several disease models (23, 35–37). In this study, we found CCR5-deficient mice had delayed tumor growth and a decrease in Treg cell infiltration in tumor microenvironment. In addition, CCL5 failed to enhance not only the expression of TGF-β by CCR5-deficient Treg cells but also their killing ability on CD8$^+$ T cells. Therefore, these findings indicate that.
CCL5/CCR5 signaling could not only induce the migration of Treg cells into the tumor microenvironment but also increase the synthesis of TGF-β in these Treg cells that in turn enhance the killing on CD8⁺ T cells. In addition, the tumor-derived CCL5 plays a major role in forging the immunosuppressive tumor microenvironment through this mechanism. On the other hand, several CCR5 antagonists have been used for treatment of HIV infection in clinical trials (38). Thus, this observation suggests that a therapeutic targeting on CCR5 signaling by these CCR5 antagonists may be useful for the future clinical application in colorectal cancer immunotherapy.

In conclusion, we show a new mechanism that tumors adapt to manipulate antitumor immune responses by secreting CCL5 that in turn attract the Treg cells into tumor microenvironment and enhance their killing ability on CD8⁺ T cells. This phenomenon promotes an immunosuppressive tumor microenvironment that helps in tumor progression.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Grant Support
This work was supported by NMRP. 97-2314-B-182A-027-MY3 and 100-3112-B-182A-001 from the National Science Council, Taiwan (NSC Grant) and CMRPG 380323, 380742 from Chang Gung Memorial Hospital (BGH). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 27, 2011; revised November 30, 2011; accepted January 2, 2012; published OnlineFirst January 26, 2012.

References

33. Strauss L, Bergmann C, Whiteside TL. Human circulating CD4⁺CD25(high)Foxp3⁺ regulatory T cells kill autologous CD8⁺ but...

Tumor-Derived Chemokine CCL5 Enhances TGF-β–Mediated Killing of CD8+ T Cells in Colon Cancer by T-Regulatory Cells

Li-Yuan Chang, Yung-Chang Lin, Jayashri Mahalingam, et al.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-2493

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/01/26/0008-5472.CAN-11-2493.DC1

Cited articles This article cites 38 articles, 15 of which you can access for free at: http://cancerres.aacrjournals.org/content/72/5/1092.full#ref-list-1

Citing articles This article has been cited by 6 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/72/5/1092.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.