Contents

Breaking Advances

1319
Highlights from Recent Cancer Literature

Reviews

1321
Endoplasmic Reticulum Stress, the Unfolded Protein Response, Autophagy, and the Integrated Regulation of Breast Cancer Cell Fate
Robert Clarke, Katherine L. Cook, Rong Hu, Caroline O.B. Facey, Iman Tavassoly, Jessica L. Tyson, Jianhua Xuan, Yue Wang, Anni Warr, and Ayeshah N. Shajahan

1332
Acetylation: A Novel Link between Double-Strand Break Repair and Autophagy
Ghadeer Shubassi, Thomas Robert, Fabio Vanoli, Saverio Minucci, and Marco Foiani

Priority Report

1336
Direct Therapeutic Applications of Calcium Electroporation to Effectively Induce Tumor Necrosis
Stine Krog Frandsen, Hamme Gissel, Pernille Hojman, Trine Tramm, Jens Erikson, and Julie Gehl

Précis: This provocative report offers a preclinical proof-of-concept that calcium overloading of tumor cells by electroporation, which is already used clinically to deliver chemotherapy in some settings, can be used as a therapeutic strategy to induce extensive tumor necrosis through cellular energy depletion.

1363
Macrophage-Induced Tumor Angiogenesis Is Regulated by the TSC2–mTOR Pathway
Wei Chen, Tao Ma, Xu-ning Shen, Xue-feng Xia, Guo-dong Xu, Xue-li Bai, and Ting-bo Liang

Précis: By defining the mTOR pathway as a key determinant in the generation of tumor-associated macrophages that drive angiogenesis, this study suggests that mTOR inhibitors may not only block tumor growth directly, acting at the level of tumor cell growth, but that they also act indirectly to block macrophage-driven angiogenesis in the tumor microenvironment.

1373
Aptamer-Mediated Blockade of IL4Rα Triggers Apoptosis of MDSCs and Limits Tumor Progression
Felix Roth, Adriana C, De La Fuente, Jennifer L. Vella, Alessia Zoso, Luca Inverardi, and Paolo Serafini

Précis: This important study offers a targeted tool to better elucidate the functional contributions of myeloid cells to cancer progression, and it offers an incisive mechanistic perspective on how to defeat the contributions of myeloid cells to immune escape for therapeutic purposes.

Microenvironment and Immunology

1342
Proinflammatory Characteristics of SMAC/DIABLO-Induced Cell Death in Antitumor Therapy
Perpetua U. Emeagi, Sandra Van Lint, Cees Goyvaerts, Sarah Maenhout, Anje Cauwels, Iain A. McNeish, Tomas Bos, Carlo Heirman, Kris Thielemans, Joeri L. Aerts, and Karine Breckpot

Précis: Mimetics of the proapoptotic molecule SMAC that are being tested for anticaner properties appear to be able to trigger pro-inflammatory cell deaths that are sufficient to activate adaptive antitumor immune responses, with implications for understanding how to reprogram an inflammatory microenvironment for therapeutic ends.

1353
Extracellular Matrix Protein CCN1 Limits Oncolytic Efficacy in Glioma
Amy Haseley, Sean Boone, Jeffrey Wójcjon, Lianbo Yu, Ji Young Yoo, Jianhua Yu, Kazuhiko Kurozumi, Joseph C. Glorioso, Michael A. Caligiuri, and Balveen Kaur

Précis: Mimetics of the proapoptotic molecule SMAC that are being tested for anticancer properties appear to be able to trigger pro-inflammatory cell deaths that are sufficient to activate adaptive antitumor immune responses, with implications for understanding how to reprogram an inflammatory microenvironment for therapeutic ends.

1363
Macrophage-Induced Tumor Angiogenesis Is Regulated by the TSC2–mTOR Pathway
Wei Chen, Tao Ma, Xu-ning Shen, Xue-feng Xia, Guo-dong Xu, Xue-li Bai, and Ting-bo Liang

Précis: By defining the mTOR pathway as a key determinant in the generation of tumor-associated macrophages that drive angiogenesis, this study suggests that mTOR inhibitors may not only block tumor growth directly, acting at the level of tumor cell growth, but that they also act indirectly to block macrophage-driven angiogenesis in the tumor microenvironment.

1373
Aptamer-Mediated Blockade of IL4Rα Triggers Apoptosis of MDSCs and Limits Tumor Progression
Felix Roth, Adriana C, De La Fuente, Jennifer L. Vella, Alessia Zoso, Luca Inverardi, and Paolo Serafini

Précis: This important study offers a targeted tool to better elucidate the functional contributions of myeloid cells to cancer progression, and it offers an incisive mechanistic perspective on how to defeat the contributions of myeloid cells to immune escape for therapeutic purposes.
Myeloid Progenitor Cells in the Premetastatic Lung Promote Metastases by Inducing Mesenchymal to Epithelial Transition

Dingcheng Gao, Natasha Joshi, Hyejin Choi, Seoungho Ryu, Mary Hahn, Raul Catena, Helen Sadik, Pedram Argani, Patrick Wagner, Linda T. Vahdat, Jeffrey L. Port, Brendon Stiles, Saraswati Sukumar, Nasser K. Altorki, Shahin Rafii, and Vivek Mittal

Précis: Bone marrow cells attracted to the lungs of breast cancer patients interact with metastatic tumor cells to stimulate mesenchymal to epithelial transition, thereby promoting tumor progression.

Bioactivity and Prognostic Significance of Growth Differentiation Factor GDF15 Secreted by Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma

Jill Corre, Elodie Labat, Nicolas Espagnolle, Benjamin Hebraud, Hervé Avet-Loiseau, Murielle Roussel, Anne Huynh, Mélanie Gadelorge, Pierre Cordelier, Bernard Klein, Philippe Moreau, Thierry Facon, Jean-Jacques Fournié, Michel Attal, and Philippe Bourin

Précis: A cytokine commonly oversecreted by the bone marrow microenvironment in multiple myeloma acts as a critical cell survival and chemoprotective factor in this deadly cancer, providing insight into how the microenvironment sustains the disease and how its support might be curtailed.

Melanoma Cells Inhibit Natural Killer Cell Function by Modulating the Expression of Activating Receptors and Cytolytic Activity

Gabriella Pietra, Claudia Manzini, Silvia Rivara, Massimo Vitale, Claudia Cantoni, Andrea Petretto, Mirna Balsamo, Romana Conte, Roberto Benelli, Simona Minghelli, Nicola Solari, Marina Gualco, Paola Queirolo, Lorenzo Moretta, and Maria Cristina Mingari

Précis: This study reveals that tumors erect immunosuppressive barriers against natural killer cells that are mechanistically related to the barriers used to thwart antitumor T cells, unifying the strategies used by tumors to achieve immune escape.

Leptin Mediates Tumor–Stromal Interactions That Promote the Invasive Growth of Breast Cancer Cells

Ines Barone, Stefania Catalano, Luca Gelsomino, Stefania Marsico, Cinzia Giordano, Salvatore Panza, Daniela Bonofiglio, Gianluca Bossi, Kyle R. Covingtn, Suzanne A.W. Fuqua, and Sebastiano Andò

Précis: A cytokine that drives obesity is found to promote breast cancer progression by supporting cross-talk between estrogen receptor–positive breast cancer cells and cancer-supporting stromal cells in the tumor microenvironment.

Endothelial Expression of TNF Receptor-1 Generates a Proapoptotic Signal Inhibited by Integrin α6β1 in Glioblastoma

Précis: Findings provide new insights into the dual nature of TNFα in cancer by showing how it acts in tumor-associated endothelial cells to force the tumor to evolve mechanisms of survival that rely upon a laminin-binding integrin that can attenuate the death signals induced by TNF.

Modulation of Glucose Metabolism by CD44 Contributes to Antioxidant Status and Drug Resistance in Cancer Cells

Mayumi Tamada, Osamu Nagano, Seiji Tateyama, Mitsuyo Ohmura, Toshifumi Yae, Takatsugu Ishimoto, Eiji Sugihara, Nobuyuki Onishi, Takehiro Yamamoto, Hiroshi Yanagawa, Makoto Suematsu, and Hideyuki Saya

Précis: CD44, a marker of cancer stem-like cells, is found to promote glycolytic energy production and drug resistance by regulating pyruvate kinase M2, an enzyme emerging as a key nodal point in cancer cell metabolism.

CD44 Proteolysis Increases CREB Phosphorylation and Sustains Proliferation of Thyroid Cancer Cells

Valentina De Falco, Anna Tamburrino, Simona Ventre, Maria Domenica Castellone, Mouhannad Malek, Serge N. Manié, and Massimo Santoro

Précis: Important connections are found for a suspected regulator of cancer stem-like properties and epithelial–mesenchymal transition with a master transcription factor that globally controls cell growth, division, survival, and invasion processes in cancer.
PREVENTION AND EPIDEMIOLOGY

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1459</td>
<td>Dietary Cadmium Exposure and Risk of Postmenopausal Breast Cancer: A Population-Based Prospective Cohort Study</td>
<td>Bettina Julin, Alicja Wolk, Leif Bergkvist, Matteo Bottai, and Agneta Åkesson</td>
</tr>
<tr>
<td></td>
<td>Précis: Dietary intake of the food contaminant cadmium, recently shown to exert an estrogen-like activity in vivo, is reported in this study to be associated with increased breast cancer incidence.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1467</td>
<td>3’-UTR and Functional Secretor Haplotypes in Mannose-Binding Lectin 2 Are Associated with Increased Colon Cancer Risk in African Americans</td>
<td>Krista A. Zanetti, Majda Haznadar, Judith A. Welsh, Ana I. Rohles, Brid M. Ryan, Andrew C. McClary, Elise D. Bowman, Julie E. Goodman, Toralf Bernig, Stephen J. Chanock, and Curtis C. Harris</td>
</tr>
<tr>
<td></td>
<td>Précis: Genetic variants in a lectin molecule that regulates the innate immune system appear to affect the risk of colon cancer in U.S. individuals of African but not Caucasian descent.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Précis: Genome-wide analysis confirms that breast density is in fact significantly associated with breast cancer risk, suggesting that the two traits have a shared polygenic basis.</td>
<td></td>
</tr>
</tbody>
</table>

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1485</td>
<td>Ultrasound Increases Nanoparticle Delivery by Reducing Intratumoral Pressure and Increasing Transport in Epithelial and Epithelial–Mesenchymal Transition Tumors</td>
<td>Katherine D. Watson, Chun-Yen Lai, Shengping Qin, Dustin E. Kruse, Yueh-Chen Lin, Jai Woong Seo, Robert D. Cardiff, Lisa M. Mahakian, Julie Beegle, Elizabeth S. Ingham, Fitz-Roy Curry, Rolf K. Reed, and Katherine W. Ferrara</td>
</tr>
<tr>
<td></td>
<td>Précis: This seminal study offers a preclinical demonstration of how therapeutic ultrasound-based methods currently available in the clinic can be used to enhance in vivo nanoparticle delivery to epithelial and epithelial–mesenchymal transition tumors, and how these methods can be combined with positron emission tomography for pharmacokinetic analysis of vascular permeability and nanoparticle accumulation in tumors.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1494</td>
<td>ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment</td>
<td>Nicola J. Clegg, John Wongvipat, James D. Joseph, Chris Tran, Samedy Ok, Anna Dilhas, Yu Chen, Kate Grillot, Eric D. Bischoff, Ling Cai, Anna Aparicio, Steven Dorow, Vivek Azora, Gang Shao, Jing Qian, Hong Zhao, Guangbin Yang, Chunyan Cao, John Sensinfattar, Teresa Wasielewksa, Mark R. Herbert, Celine Bonnefous, Beatrice Darimont, Howard L Scher, Peter Smith-Jones, Mark Klang, Nicholas D. Smith, Elisa De Stanchina, Nian Wu, Ouathek Ouerfelli, Peter J. Rix, Richard A. Heyman, Michael E. Jung, Charles L. Sawyers, and Jeffrey H. Hager</td>
</tr>
<tr>
<td></td>
<td>Précis: This study offers preclinical proof-of-concept for a second-generation antiandrogen, now in phase I/II clinical trials, which offers superior characteristics predicting more robust and durable clinical responses and fewer side effects compared with related competing agents.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1504</td>
<td>Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer</td>
<td>Yekaterina Y. Zaytseva, Piotr G. Rychahou, Pat Gulhati, Victoria A. Elliott, William C. Mustain, Kathleen O’Connor, Andrew J. Morris, Manjula Sunkara, Heidi L. Weiss, Eun Y. Lee, and B. Mark Evers</td>
</tr>
<tr>
<td></td>
<td>Précis: Long implicated in cancer, fatty acid synthase is reported here to contribute strongly to metastatic progression of colorectal cancer, increasing its potential attractiveness as a therapeutic target for advanced stages of this disease where effective treatments remain badly needed.</td>
<td></td>
</tr>
</tbody>
</table>
Tumor and Stem Cell Biology

Tpx2 Controls Spindle Integrity, Genome Stability, and Tumor Development
Cristina Aguirre-Porrones, Alexander W. Bird, Anthony Hyman, Marta Cañamero, Ignacio Pérez de Castro, and Marcos Malumbres

Précis: Findings establish a key functional role in human cancer for an activator of the mitotic kinase Aurora A, a target of small-molecule drugs currently being tested in clinical trials.

PTP1B Is an Androgen Receptor–Regulated Phosphatase That Promotes the Progression of Prostate Cancer
Laurent Lessard, David P. Labbé, Geneviève Deblois, Louis R. Bégin, Serge Hardy, Anne-Marie Mess-Masson, Fred Saad, Lloyd C. Trotman, Vincent Giguère, and Michel L. Tremblay

Précis: Findings offer preclinical support for a protein tyrosine phosphatase as a candidate therapeutic target in both early androgen-dependent or more advanced castration-resistant prostate cancers.

PGC-1α Promotes the Growth of ErbB2/Neu–Induced Mammary Tumors by Regulating Nutrient Supply
Eva Klimcakova, Valérie Chénard, Shawn McGuirk, David Germain, Daina Avizonis, William J. Muller, and Julie St-Pierre

Précis: Findings suggest that breast cancer patients with HER2-positive tumors might benefit the most from treatment with antiangiogenic drugs, addressing an important question of great current interest.

Differential WNT Activity in Colorectal Cancer Confers Limited Tumorigenic Potential and Is Regulated by MAPK Signaling
David Horst, Justina Chen, Teppei Morikawa, Shuji Ogino, Thomas Kirchner, and Ramesh A. Shivdasani

Précis: Findings that MAPK pathway status is a critical modifier of WNT signaling in colorectal cancers challenge the idea that WNT pathway activation on its own is sufficient for tumor-initiating potential, with potential implications for understanding how tumor heterogeneity affects molecular targeted therapeutic approaches.

KrasG12D and p53 Mutation Cause Primary Intrahepatic Cholangiocarcinoma
Michael R. O’Dell, Jing Li Huang, Christa L. Whitney-Miller, Vikram Deshpande, Paul Rothberg, Valerie Grose, Randall M. Rossi, Andrew X. Zhu, Hartmut Land, Nabeel Bardeesy, and Aram F. Hezel

Précis: This study addresses the persistent need for a histologically accurate model of cholangiocarcinoma, a relatively rare but deadly cancer of the bile duct that is rising worldwide in incidence in recent decades without a useful animal model for preclinical drug development.

Mammary Tumor Regression Elicited by Wnt Signaling Inhibitor Requires IGFBP5
Bob Y. Liu, Irina Soloviev, XiaoDong Huang, Peter Chang, James A. Ernst, Paul Polakis, and Chie Sakanaka

Précis: This study of Wnt-driven mammary tumors in mice suggests that Wnt-driven tumor growth is based on the same proliferation pathways used during normal mammary gland development, which converge on the control of IGF signaling.

BMK1 Kinase Suppresses Epithelial–Mesenchymal Transition through the Akt/GSK3β Signaling Pathway
Runqiang Chen, Qingkai Yang, and Jiing Dwan Lee

Précis: In contrast to other MAP kinase pathways that promote epithelial–mesenchymal transition (EMT) in cancer cells, activation of the MAP kinase BMK1 inhibits EMT and suppresses tumor metastasis.

Correction: Expression of the Neurotrophin Receptor TrkA Down-Regulates Expression and Function of Angiogenic Stimulators in SH-SY5Y Neuroblastoma Cells

A Journal of the American Association for Cancer Research vii www.aacrjournals.org
ABOUT THE COVER

ARN-509 is a clinical stage, nonsteroidal antiandrogen discovered in an effort to identify full androgen receptor (AR) antagonists in the setting of AR overexpression, a key determinant of acquired resistance to first generation antiandrogens. ARN-509 exhibits robust antitumor activity in the clinically validated LNCaP/AR model of castration-resistant prostate cancer (CRPC), resulting in tumor regression via a decrease in proliferation and increase in apoptosis. The cover shows a hematoxylin and eosin stained tissue section from a LNCaP/AR xenograft tumor following ARN-509 treatment. There is significantly reduced cellularity with increased deposition of extracellular matrix compared to vehicle treatment. Based on preclinical efficacy coupled with its excellent pharmacokinetic properties and high therapeutic index, ARN-509 has entered clinical development in men with CRPC. For details, see the article by Clegg and colleagues on page 1494 of this issue.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/72/6

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.