1589 Highlights from Recent Cancer Literature

1591 Shedding Light on Melanocyte Pathobiology In Vivo
M. Raza Zaidi, Edward C. De Fabo, Frances P. Noonan, and Glenn Merlino

1596 Mechanisms of Ploidy Increase in Human Cancers: A New Role for Cell Cannibalism
Matej Krajcovic and Michael Overholtzer

1602 Ribosome Biogenesis and Control of Cell Proliferation: p53 Is Not Alone
Giulio Donati, Lorenzo Montanaro, and Massimo Derenzini

1608 PARP-1 Inhibition as a Targeted Strategy to Treat Ewing's Sarcoma
J. Chad Brenner, Felix Y. Feng, Sumin Han, Sonam Patel, Siddharth V. Goyal, Laura M. Bou-Maroun, Meilan Liu, Robert Lonigro, John R. Prensner, Scott A. Tomlins, and Arul M. Chinnaiyan

Precis: This study prompts immediate attention to reposition small-molecule inhibitors of the DNA damage response protein PARP-1, a new class of experimental agents currently in trials in the adult oncology clinic, for treatment of a particularly aggressive and deadly class of pediatric sarcomas.

1614 Receptor Tyrosine Kinase Genes Amplified in Glioblastoma Exhibit a Mutual Exclusivity in Variable Proportions Reflective of Individual Tumor Heterogeneity
Suzanne E. Little, Sergey Popov, Alexia Jury, Dorine A. Bax, Lawrence Doey, Safa Al-Sarraj, Juliane A. Jurgensmeier, and Arul M. Chinnaiyan

Precis: By defining the antigens recognized by tumor-infiltrating lymphocytes, one might improve their efficacy and, in turn, improve adoptive cell therapy in cancer.

1616 Receptor Tyrosine Kinase Genes Amplified in Glioblastoma Exhibit a Mutual Exclusivity in Variable Proportions Reflective of Individual Tumor Heterogeneity

1621 Oncolytic Immunotherapy of Advanced Solid Tumors with a CD40L-Expressing Replicating Adenovirus: Assessment of Safety and Immunologic Responses in Patients

Precis: Clinical translation of oncolytic virotherapy has been mainly disappointing, but this study describes a modification that may improve the ability to trigger tumor clearance by defeating immune escape.

1632 Combinatorial Chemotherapeutic Efficacy in Non-Hodgkin Lymphoma Can Be Predicted by a Signaling Model of CD20 Pharmacodynamics
John M. Harrold, Robert M. Straussinger, and Donald E. Mager

Precis: This study offers a mathematical model that can predict the efficacy of combinatorial chemotherapy regimens, which include the CD20 agonist rituximab, a drug that is being used to treat an increasing number of human cancers.

1642 Dissection of T-cell Antigen Specificity in Human Melanoma
Rikke Sick Andersen, Charlotte Albekh Thue, Niels Junker, Rikke Lyngaa, Marco Donia, Eva Ellebæk, Inge Marie Svane, Ton N. Schumacher, Per Thor Straten, and Sine Reker Hadrup

Precis: By defining the antigens recognized by tumor-infiltrating lymphocytes, one might improve their efficacy and, in turn, improve adoptive cell therapy in cancer.
Oncolytic Virus and Anti-4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer

Précis: The preclinical proof-of-concept offered by this study suggests a strategy to improve the clinical efficacy of oncolytic viruses for cancer immunotherapy by combining them with an immune agonist antibody that may help overcome tumor-mediated immune suppression.

Preclinical Evaluation of TriMix and Antigen mRNA-Based Antitumor Therapy
Sandra Van Lint, Cleo Goyvaerts, Sarah Maenhout, Lode Goethals, Aurélie Disy, Daphné Bentley, Joeri Pen, Aude Bonehill, Carlo Heirman, Karine Breckpot, and Kris Thielemans

Précis: This study presents important progress in the rapid development of simpler kinds of dendritic cell vaccines, the first ever of which was approved for patient treatment in the United States last year.

Intracellular Tumor-Associated Antigens Represent Effective Targets for Passive Immunotherapy

Précis: Contrary to a widely held but incorrect belief in the field, intracellular tumor antigens can offer highly effective targets for monoclonal antibody–directed therapy, as shown by this preclinical study.

Reprogramming Tumor-Associated Dendritic Cells In Vivo Using miRNA Mimetics Triggers Protective Immunity against Ovarian Cancer

Précis: Findings suggest it may be feasible to modulate microRNA activities in leukocytes in the tumor microenvironment without need of viral vectors or difficult clinical implementations.

Vascular Normalization by Loss of Siah2 Results in Increased Chemotherapeutic Efficacy
Christina S.F. Wong, Jaclyn Sceney, Colin M. House, Heloise M. Halse, Mira C.P. Liu, Joshy George, Titaina C.U. Potdevin Hunnam, Belinda S. Parker, Izhak Haviv, Z‘ev Ronai, Carleen Cullinan, David D. Bowtell, and Andreas Möller

Précis: Findings offer preclinical proof-of-concept that targeting the Siah2 ubiquitin ligase that regulates the hypoxia response factor HIF-1α can relieve hypoxia, normalize tumor vasculature, and improve responses to chemotherapy.

Vanilloid Receptor-1 Regulates Neurogenic Inflammation in Colon and Protects Mice from Colon Cancer
Amaya G. Vinuesa, Rocío Sancho, Carmen García-Limones, Axel Behrens, Peter ten Dijke, Marco A. Calzado, and Eduardo Muñoz

Précis: This important study offers compelling genetic support for the intriguing concept that neuronally controlled processes of inflammation may underlie the root inflammatory microenvironment that drives the development and progression of colon cancer, with implications for targeting neuroinflammatory receptors that control these processes as a wholly novel strategy to prevent or treat this major disease.

Cancer Vaccination Drives Nanog-Dependent Evolution of Tumor Cells toward an Immune-Resistant and Stem-like Phenotype
Kyung Hee Noh, Young-Ho Lee, Ju-Hong Jeon, Tae Heung Kang, Chih-Ping Mao, T.-C. Wu, and Tae Woo Kim

Précis: An important stem cell transcription factor is found to drive development of tumoral immune resistance after therapeutic vaccinations, suggesting possible strategies to enhance cancer immunotherapy.

RORα Suppresses Breast Tumor Invasion by Inducing SEMA3F Expression
Gaofeng Xiong, Chi Wang, B. Mark Evers, Binhua P. Zhou, and Ren Xu

Précis: Findings point to an important role for the Th17 immune transcription factor RORα in preventing the establishment of an immune-suppressive tumor microenvironment in mammary tissue.
Hypoxia-Induced Autophagy Promotes Tumor Cell Survival and Adaptation to Antiangiogenic Treatment in Glioblastoma

Précis: This important study has immediate clinical implications because it suggests ways that autophagy inhibitors such as chloroquine might be combined with antiangiogenic therapies to limit a mechanism of resistance and thereby extend efficacy.

MiR-155 Is a Liposarcoma Oncogene That Targets Casein Kinase-1α and Enhances β-Catenin Signaling
Pingyu Zhang, Katellyn Bilb, Juehui Liu, Eric Young, Tingsheng Peng, Svetlana Bolskav, Avidel Hoffman, Yechun Song, Elizabeth G. Demicco, Dolores Lopez Terrada, Chad J. Creighton, Matthew L. Anderson, Alexander J. Lazar, George G. Calin, Raphael E. Pollock, and Dina Lev

Précis: Findings reveal key functions for miR-155 and β-catenin signaling in progression of liposarcoma, with implications for prognosis and therapy of dedifferentiated dead forms of this disease.

miRNA-130a Targets ATG2B and DICER1 to Inhibit Autophagy andTrigger Killing of Chronic Lymphocytic Leukemia Cells
Valentina Kovaleva, Rodrigo Mora, Yoon Jung Park, Christopher Plass, Abhilash I. Chiramel, Ralf Bartenschlager, Hartmut D. Opper, Stefan Lichter, Armin Pscherer, Peter Lichter, and Hartmut D. Abhilash I. Chiramel, Ralf Bartenschlager, Yoon Jung Park, Christoph Plass, Dina Lev

Précis: Findings suggest a feedback loop involving a microRNA that controls expression of a master microRNA regulatory gene with an impact on the autophagic susceptibility of cancer cells, thereby affecting treatment efficacy and posttreatment relapse.

Dmp1 Physically Interacts with p53 and Positively Regulates p53’s Stability, Nuclear Localization, and Function
Donna P. Frazier, Robert D. Kendig, Fumitake Kai, Dejan Maglic, Takayuki Sugiyama, Rachel L. Morgan, Elizabeth A. Fry, Sarah J. Lagedrost, Guangchao Sui, and Kazushi Inoue

Précis: The results of this study show a novel mechanism for p53 activation through direct physical interaction between Dmp1 and p53, which plays critical roles in antagonizing Mdm2-p53 interaction.

19p13.1 Is a Triple-Negative—Specific Breast Cancer Susceptibility Locus

Précis: Findings have implications for a broad-based antibody-mediated strategy to blunt metastasis in various human cancers where an angiogenesis-related factor is implicated in this process.

Tumor Cell–Derived Angiopoietin-like Protein ANGPTL2 Is a Critical Driver of Metastasis

Précis: Findings have implications for a broad-based antibody-mediated strategy to blunt metastasis in various human cancers where an angiogenesis-related factor is implicated in this process.
Paclitaxel Enhances Therapeutic Efficacy of the F8-IL2 Immunocytokine to EDA-Fibronectin–Positive Metastatic Human Melanoma Xenografts

Michele Moschetta, Francesca Pretto, Alexander Berndt, Kerstin Galler, Petra Richter, Andrea Bassi, Paolo Oliva, Edosardo Micotti, Giovanni Valbusa, Kathrin Schwager, Manuela Kaspar, Eveline Trachsel, Hartwig Kosmehl, Maria Rosa Bani, Dario Neri, and Raffaella Giavazzi

Precise: Findings offer a preclinical proof-of-concept for an effective application of IL-2-based immunocytokine therapy for melanoma that is targeted to fibronectin, an extracellular matrix protein expressed by many melanomas.

Retinoic Acid/Alpha-Interferon Combination Inhibits Growth and Promotes Apoptosis in Mantle Cell Lymphoma through Akt-Dependent Modulation of Critical Targets

Jessica Dal Col, Katy Mastorci, Damiana Antonia Fàè, Elena Muraro, Debora Martorelli, Giorgio Inghirami, and Riccardo Dolcetti

Precise: A clinical drug combination explored for treatment of numerous types of cancer may be especially suited to treatment of a deadly type of non-Hodgkin lymphoma that remains particularly difficult to treat.

Rapamycin Resistance Is Linked to Defective Regulation of Skp2

Hana Totary-Jain, Despina Sanoudou, Cula N. Dautriche, Hillary Schneller, Lester Zambrana, and Andrew R. Marks

Precise: This study defines a candidate drug response marker for mTOR inhibitors, an important class of experimental therapeutics of growing interest for the generalized treatment of human cancer, with immediate implications for clinical evaluation in mTOR inhibitor trials.

Cancer Stem Cell Vaccination Confers Significant Antitumor Immunity

Ning Ning, Qin Pan, Fang Zheng, Seagal Teits-Tennhausen, Martin Egenti, Ji Yet, Mu Li, Christophe Ginestier, Max S. Wicha, Jeffrey S. Moyer, Mark E.P. Prince, Yingxin Xu, Xiao-Lian Zhang, Shiang Huang, Alfred E. Chang, and Qiao Li

Precise: Vaccines that use purified cancer stem cells are highly immunogenic and trigger antitumor immunity with greater potency than that triggered by vaccines composed of unselected tumor cells.
miRNA Signatures Associate with Pathogenesis and Progression of Osteosarcoma

Kevin B. Jones, Zaidoun Salah, Sara Del Mare, Marco Galasso, Eugenio Gaudio, Gerard J. Nuovo, Francesca Lovat, Kimberly LeBlanc, Jeff Palatini, R. Lor Randall, Stefano Volinia, Gary S. Stein, Carlo M. Croce, Jane B. Lian, and Rami I. Aqeilan

Précis: Osteosarcoma is a leading cause of death in adolescents yet remains mainly devoid of development of sounder tools to improve prognosis or therapy.

Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells

David J. Mulholland, Naoko Kobayashi, Marcus Ruscetti, Allen Zhi, Linh M. Tran, Jiaoti Huang, Martin Gleave, and Hong Wu

Précis: Development of a prostate cancer model that addresses the major metastatic burden accompanying late-stage human disease addresses a gap in the field that may permit the development of more effective targeted treatment strategies.

Jab1/CSN5 Negatively Regulates p27 and Plays a Role in the Pathogenesis of Nasopharyngeal Carcinoma

Yunbao Pan, Qingshu Zhang, Ling Tian, Xin Wang, Xiaohang Fan, Huizhong Zhang, Francois X. Claret, and Huling Yang

Précis: Definition of a cell-cycle regulatory role for a component of the signalosome, a protein turnover complex analogous to the proteosome but less understood, suggests new strategies to treat an aggressive cancer endemic in East Asia.

LETTERS TO THE EDITOR

1901 Lactate-Induced IL-8 Pathway in Endothelial Cells—Letter
Céline Pinheiro, Adriemar Longatto-Filho, Rosete Nogueira, Fernando Schmitt, and Fátima Baltazar

1903 Lactate-Induced IL-8 Pathway in Endothelial Cells—Response
Frédérique Végran, Emmanuel Seront, Pierre Sonveaux, and Olivier Feron

CORRECTION

1905 Correction: Significance of MAD2 Expression to Mitotic Checkpoint Control in Ovarian Cancer Cells

ABOUT THE COVER

Tumor metastasis represents a major cause of cancer mortality. Despite intense effort, strategies designed to inhibit metastasis have been unsuccessful, in part due to lack of understanding of mechanisms underlying the process. In this study, a shortened period of disease-free survival was observed after surgery in lung cancer patients showing high angiopoietin-like protein 2 (ANGPTL2) expression in tumor cells within primary tumor sites. Furthermore, tumor cell–derived ANGPTL2 increased tumor cell motility and invasive capacity in an autocrine/paracrine manner, resulting in acquisition of metastatic tumor phenotypes. In tumor cell–implanted mouse models, tumor cell–derived ANGPTL2 accelerated metastasis and shortened survival periods; conversely, decreasing ANGPTL2 expression in tumor cells significantly attenuated metastasis and extended survival periods. This image represents CD44-stained human breast tumor cells expressing ANGPTL2 in lung metastasis in mice. For details, see the article by Endo and colleagues on page 1784 of this issue.

Downloaded from cancerres.aacrjournals.org on April 14, 2017. © 2012 American Association for Cancer Research.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/72/7

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.