RORα Suppresses Breast Tumor Invasion by Inducing SEMA3F Expression

Gaofeng Xiong¹, Chi Wang¹, B. Mark Evers¹,³, Binhua P. Zhou¹,⁴, and Ren Xu¹,²

Abstract

Inactivation of tumor suppressors and inhibitory microenvironmental factors is necessary for breast cancer invasion; therefore, identifying those suppressors and factors is crucial not only to advancing our knowledge of breast cancer, but also to discovering potential therapeutic targets. By analyzing gene expression profiles of polarized and disorganized human mammary epithelial cells in a physiologically relevant three-dimensional (3D) culture system, we identified retinoid orphan nuclear receptor alpha (RORα) as a transcriptional regulatory element of the tumor suppressor and inhibitory microenvironmental factor, semaphorin 3F (SEMA3F). We showed that expression of RORα was downregulated in human breast cancer tissue and cell lines, and that reduced mRNA levels of RORα and SEMA3F correlated with poor prognosis. Restoring RORα expression reprogrammed breast cancer cells to form non-invasive structures in 3D culture and inhibited tumor growth in nude mice, accompanied by enhanced SEMA3F expression. Inactivation of RORα in nonmalignant human mammary epithelial cells inhibited SEMA3F transcription and impaired polarized acinar morphogenesis. Using chromatin immunoprecipitation and luciferase reporter assays, we showed that transcription of SEMA3F is directly regulated by RORα. Knockdown of SEMA3F in RORα-expressing cancer cells rescued the aggressive 3D phenotypes and tumor invasion. These findings indicate that RORα is a potential tumor suppressor and inhibits tumor invasion by inducing suppressive cell microenvironment. Cancer Res; 72(7); 1728–39. ©2012 AACR.

Introduction

The nuclear receptor superfamily contains a number of orphan receptors for which no ligand has been well characterized. Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear receptor family and regulates gene expression by binding to ROR response elements (RORE; refs. 1, 2). Expression of RORα has been detected in multiple tissues and cells including brain, heart, skin, muscle, colon, lung, spleen, leukocytes, and mammary epithelial cells (1, 3–7). This factor regulates various cell functions including differentiation, metabolism, inflammation, transformation, and circadian clock function (6, 8–10). The RORα gene maps to 15q22.2, a region that is often deleted in cancer, thus RORα has been proposed to be inactivated during cancer development (11). One recent study showed that phosphorylated RORα attenuates transcriptional activity of β-catenin and inhibits anchorage-independent growth of colon cancer cells, suggesting that RORα is a potential tumor suppressor in colon cancer (6).

However, the function of RORα in breast cancer development and progression largely is unknown. Mammary tissue morphogenesis and differentiation is controlled by various microenvironmental cues, including secretory factors, cell–extracellular matrix (ECM) and cell–cell contact, as well as their downstream signals (12, 13). These microenvironmental signals are often dysregulated during breast cancer development and progression, leading to disruption of tissue polarity, enhanced cell invasion, and metastasis (14–16). To investigate how the microenvironmental cues contribute to breast cancer progression, Dr. Bissell’s laboratory developed a three-dimensional (3D) culture model with HMT-3522 human breast cancer progression cell lines (S1, T4-2; ref. 17). It has been shown that nonmalignant mammary epithelial cells maintain acinar structures and tissue-specific function in 3D culture (18–20), while malignant cells form proliferative and invasive structures, which mimics the in vivo phenotypes of normal and tumor cells. These results indicate that 3D culture model is more physiologically relevant to study function and structure of malignant and nonmalignant mammary epithelial cells. In 3D culture model, the nonmalignant S1 cells form polarized spheroids, while their malignant counterpart T4-2 cells form disorganized structures. Furthermore, blocking β1-integrin, EGF receptor (EGFR), or matrix metalloproteinases (MMP) pathways reprograms T4-2 cells to form polarized and noninvasive acini-like structures [reverted T4-2 (T4R); refs. 20–22]. By analyzing the gene expression profiles of S1, T4-2 and T4R cells in 3D culture, we have identified many microenvironment-related genes that are differentially expressed in polarized and disorganized cells, including SEMA3F.
SEMA3F is one of the microenvironmental factors with tumor suppressor function. This protein was first identified as a repulsive factor of axon guidance in neuron development by modulating cell polarization and migration (23, 24). Expression of SEMA3F in cancer cells inhibits tumor growth, invasion, and metastasis through binding to its receptor, neuropilin (NRP) 1 and NRP2 (25, 26). SEMA3F can also inhibit tumor angiogenesis by acting directly on vascular endothelial cells via NRP2 (27). Thus, SEMA3F has been considered a potential therapeutic target that has the advantage of inhibiting both tumor cells and endothelial cells. Inactivation of SEMA3F during cancer development has been attributed to genomic instability because the SEMA3F gene locates at chromosome 3p21.3, which is commonly deleted in lung cancer (28). In addition, a number of transcription factors (such as ZEB-1, p53, and ID-2) have been reported to regulate SEMA3F expression in lung, melanoma, and prostate cancer (29–31). Nevertheless, how SEMA3F is suppressed in breast cancer remains to be determined.

We have identified RORα as a transcriptional regulator of the SEMA3F gene. We show that breast cancer development and progression is associated with inactivation of the RORα-SEMA3F pathway. Restoring RORα expression in breast cancer cells suppresses their malignant and invasive phenotypes in 3D culture and in the xenograft model. Reducing SEMA3F expression in RORα-expressing cells partially rescued the malignant phenotypes. These findings reveal that the RORα suppresses breast tumor invasiveness by modulating cell microenvironment.

Materials and Methods

Antibodies and reagents

Edu staining kit and Alexa Fluor 594 phalloidin were from Invitrogen. Matrigel (laminin-rich extracellular matrix, IrECM) and type I collagen were from BD Bioscience. RORA and SEMA3F cDNA clones were purchased from Open Biosystems. shRORA plasmids were purchased from Sigma. SMARTpool shRORA plasmids were purchased from Sigma. SEMA3F cDNA clones were purchased from Open Biosystem. Antibodies and reagents were from Cell Signaling, Santa Cruz, Thermo Fisher Scientific, or Roar. The following antibodies were obtained as gifts: Lamin A/C (Santa Cruz); tubulin, actin, and a-2F intergrin (Millipore), Flag (Sigma); Ki-67 (Vector Laboratories). Phosphorylated Akt and Akt (Cell signaling); phosphorylated mitogen-activated protein/extracellular signal-regulated kinase (MEK) and MEK (Cell Signaling).

Cell culture and virus preparation

HMT-3522 S1 and T4-2 cells (a kind gift from Dr. Mina J. Bissell, Lawrence Berkeley National Laboratory, Berkeley, CA) were maintained on tissue culture plastic as previously described (17). MDA-MB 231 cells (American Type Culture Collection) were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 medium containing 1% FBS and 10% FBS (Invitrogen). HEK 293 cells were transiently transfected with pCDH1-RORA-Flag, pSEMA3F-Flag, and pCDH1-SEMA3F-Flag. 293 FT cells were transfected with pCDH1 or shRNA vector (Sigma) plus packaging vector lentivector with lipofectamine (Invitrogen). Malignant and nonmalignant human mammary epithelial cell (HMEC) were infected with lentivirus and selected by puromycin 48 hours after infection.

Invasion and migration assay

The Transwells (Corning) were coated with 60 μl 1 mg/ml Matrigel and incubated for 30 minutes at 37°C. HEMCs were plated in 200 μl on top of the Transwell filter and incubated in 37°C 5% CO2 for 24 hours. The invaded cells on the bottom face of the filter were fixed by methanol and stained with 8% crystal violet.

Luciferase report assay

A DNA fragment containing SEMA3F promoter region (from −1,513 to −1,240) was amplified from human genomic DNA with primers 5'-GCCGCTGGACGATAGTGATAGAAGTTGTCG-GCCG-3' and 5'-GCGAAGCTTAGGTGAGCAAACACCATCCT-3' then cloned into luciferase report vector pGL3. A deletion (RORA response region from −1,372 to −1,360) mutant was constructed by primers 5'-CATTACCTCCTCCAGGATTAGAGAGAG-AAGAAG-3' and 5'-ACCTCCAGAGGATGATGGGGAGGGAGGAGAGAG-GAGAGAC-3'. HEK 293 cells were transiently transfected with pCDH1-RORA-Flag, pGL4-SEMA3F promoter, and Renilla luciferase vector. Cells lysate was collected for the luciferase assay 24 hours after transfection.

Immunofluorescence and immunohistochemistry

Cells in IrECM gel were smeared on slides, dried briefly, and fixed with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100. Immunostaining was carried out as previous described (18). Stained samples were imaged with a Nikon upright epifluorescence microscope or a confocal system comprised of an Olympus IX81 microscope.

Tissue array (Biomax: Pantomics) and xenograft tumor sections were deparaffined and hydrated from xylene, 100% ethanol, 95% ethanol, 85% ethanol, and 70% ethanol to PBS solution. Endogeneous peroxidase was blocked by incubation with 3% H2O2 for 20 minutes. Antigen retrieval was done by steaming in citrate sodium buffer for 30 minutes. Slides were incubated with antibodies at 4°C overnight, then the sections were incubated with goat anti-rabbit immunoglobulin G conjugated with horseradish peroxidase at room temperature for 60 minutes. The conjugated antibody was detected by diaminobenzidine, and images were taken by Nikon and scored blindly.
Western blot analysis and reverse transcriptase PCR

Cells grown on plastic and filters were lysed in situ in RIPA buffer [1% Nonidet P-40, 0.5% deoxycholate, 0.2% SDS, 150 mmol/L sodium chloride, 50 mmol/L Tris HCl (pH 7.4) containing phosphatase and protease inhibitor cocktails (Calbiochem)]. Cells in 3D lECM were isolated as colonies by ice-cold PBS plus 5 mmol/L EDTA and thereafter lysed in RIPA buffer as described previously (21). Equal amounts of protein lysates were subjected to SDS gel electrophoresis, immunoblotted, and detected with an ECL system (Pierce).

Total RNA was extracted from cells with Trizol reagent (Invitrogen). cDNA was synthesized with SuperScript First Strand Synthesis kit (Invitrogen) from 0.5 to 1 μg RNA samples. cDNA synthesis was carried out with SuperScript III First-Strand Synthesis System according to the manufacturer’s instructions. Quantitative reverse transcriptase PCR (RT-PCR) reactions were carried out using SYBR Green PCR master mix reagents on an ABI 7500 Fast Real-Time PCR System (Applied Biosystems). Thermal cycling was conducted at 95°C for 30 seconds, followed by 40 cycles of amplification at 95°C for 5 seconds, 55°C for 10 seconds, and 72°C for 15 seconds. The relative quantification of gene expression for each sample was analyzed by the ΔΔCt method. The following primers were used to amplify SEMA3F: 5'-CCCTGCACCTACCTCCCTCCGTGAGCGG-3' and 5'-GACAGCGGTAAATGACAGGGTT-3' and 5'-ACCTGGTGATCCTGCCAGT-3' and 5'-CTGACCCGGTTGCTTCTTGT-3'.

Chromatin immunoprecipitation assay

The chromatin immunoprecipitation (ChIP) assay was conducted based on the Upstate Biotechnology ChIP protocol with a few modifications (18, 33). After formaldehyde cross-linking, nuclei were isolated with a nuclei isolation kit (Sigma) and resuspended in ChIP lysis buffer (1% SDS, 10 mmol/L EDTA, 50 mmol/L Tris-HCl, pH 8.0) containing protease inhibitor cocktail. Protein–DNA complexes were immunoprecipitated as per the Upstate protocol. Isolated DNA was then analyzed by quantitative PCR with the following primers: 5'-TTGAAAGG-GATGGTTGTTGAGAGG-3' and 5'-ACAGGGCGGGCGGATTTGAG-GT-3'.

Xenograft experiment

Six-week-old female BalB/C null/null mice were randomly grouped and subcutaneously injected with 2 × 106 control or RORα expression T4-2 cells (in PBS buffer, with 50% Matrigel). The control or RORα expression MDA-MB-231/Luc cells were injected into mammary fat pad at 2 × 106 cells per gland of severe combined immunodeficient mice (SCID) mouse, and the tumor volume was measured with an in vivo imaging system (IVIS). All of the procedures during our study were carried out within the guidelines of the Division of Laboratory Animal Resources at the University of Kentucky. Tumors were measured with a caliper every 3 days for 3 weeks. After sacrificing all mice, the tumor samples were weighed, imaged, and fixed with 4% paraformaldehyde for section.

Kaplan–Meier survival analysis and other statistical analysis

We examined RORα expression in 404 breast tumor expression arrays taken from studies by Wang and colleagues (34; n = 286) and Chin and colleagues (35; n = 118). In each data set, the tumor samples were classified into RORα low [|si| ≤ (mean [S] − 1/2 × SD [S])], RORα high [|si| > (mean [S] + 1/2 × SD [S])], and RORα medium on the basis of RORα mRNA level. This method allowed us to compare relative RORα expression levels across both data sets fused as a single group of patients (36). The association between RORα expression and clinical pathologic parameters was evaluated by the Fisher exact test. Significant differences in survival time were assessed with the Cox proportional hazard (log-rank) test. All reported P values were 2-tailed. Association between RORα and SEMA3F was evaluated by the Fisher exact test. Statistical analysis was conducted with SigmaPlot (Systat Software, Inc.) and SAS (version 9.2; SAS Institute Inc.).

Results

Reduced RORα expression is associated with disruption of polarized acinar structure and breast cancer development

To determine which genes are associated with cell polarization and acinar morphogenesis in 3D culture, we analyzed expression profiles of nonmalignant S1, malignant T4-2, and a variety of phenotypically reverted T4 cells (the cells are treated with a number of inhibitors targeted to EGFR, β1-integrin, or MMPs). Using Gene Set Enrichment Analyses (GSEA), we identified RORα as one of the transcription factors that induces gene expression in polarized S1 and T4R cells (Fig. 1A). To determine whether RORα is differentially activated in polarized and disorganized HEMCs, we assessed RORα protein levels in S1, T4-2, and T4R cells in 3D culture. We found that both total and nuclear RORα levels were upregulated in polarized S1 and T4R cells compared with disorganized T4-2 cells (Fig. 1B). This upregulation correlates with activation of the potential RORα-targeted genes. In addition, we carried out RT-PCR with isoform-specific primers to determine which RORα isoforms are expressed in HMECs. Only RORα1 and RORα4 transcripts were amplified from S1 and T4-2 cells (data not shown).

Breast cancer development is accompanied by disruption of tissue polarity; therefore, we next determined whether RORα expression is repressed in breast cancer cell lines and tissues. We assessed the protein levels of RORα in 12 malignant and nonmalignant HMECs cultured in 3D Matrigel. Results showed that protein expression of RORα was significantly reduced in breast cancer cells compared with nonmalignant cells (Fig. 1C). Immunohistochemistry (IHC) analysis of a panel of normal and malignant breast tissues also showed that RORα protein expression was relatively downregulated in human breast cancer (Fig. 1D and E). By analyzing mRNA levels of RORα in published microarray data sets generated from more than 1,000 human malignant and nonmalignant breast tissues (37), we found that RORα transcription was significantly downregulated in cancer tissues (Supplementary Table S1).
Together these results indicate that breast cancer development is accompanied by reduced RORα expression.

RORα inhibits cell invasion and suppresses aggressive phenotypes of breast cancer cells

To explore the functional relevance of downregulation of RORα to malignant phenotypes of breast cancer cells, we restored RORα expression in T4-2 cells and examined their morphologies in 3D culture. T4-2 cells were infected with lentivirus-containing control or RORα-expressing vectors, and then expression of RORα was confirmed by Western blot (Fig. 2A). RORα-expressing T4-2 cells formed round spheroid structures in 3D culture, and colony size was significantly reduced compared with the control cells (Fig. 2B and Supplementary Fig. S1). Staining with α6-integrin (basal marker) and Ki-67 antibodies revealed that RORα expression reprogrammed the cells to form polarized and growth-arrested structures (Fig. 2B, C, D). It has been shown that activation of phosphoinositide 3-kinase (PI3K) and MEK pathways disrupts the polarized acinar structures and cell invasion (38–40). Thus, we assessed the activity of these 2 pathways by measuring the phosphorylation of Akt and MEK. We found that restoring RORα expression in T4-2 cells reduced the levels of phosphorylated Akt and MEK (Fig. 2E), suggesting that PI3K-Akt and MEK pathways are involved in RORα-regulated cell polarization. Because cell polarization is often associated with reduced invasiveness, we examined the invasiveness of RORα-expressing cells in the Transwell assay. Results showed that expression of RORα1 or RORα4 significantly inhibited invasion of T4-2 cells (Fig. 2F).

To investigate the effect of RORα on tumor growth in vivo, the control and RORα1-expressing T4-2 cells were subcutaneously injected into the flanks of female athymic nude mice. We found that tumor growth was delayed in the RORα1 group compared with the control group (Fig. 2G), and that the tumors formed by RORα1-expressing cells were significantly smaller.
than the tumors formed by control cells (Fig. 2H). Ki-67 staining showed that the tumor cells in RORα1-expressing tumors were less proliferative than the cells in the control group (Fig. 2I), which may cause the decrease of tumor volume in RORα-expressing tumors.

Restoring RORα expression in another breast cancer cell line, MDA-MB 231, also suppressed the aggressive phenotypes in 3D culture. For instance, the invasive branching structures and colony size were significantly reduced in RORα-expressing cells (Fig. 3A, B); cell proliferation and invasion were also significantly inhibited by RORα (Fig. 3C, D). By tracking single-cell movement with live cell imaging, we also found that expression of RORα significantly inhibited cell migration in MDA-MB 231 cells (Fig. 3E, F). Thus, reduction of invasive branching structures in RORα-expressing cells is most likely due to inhibition of cell migration and invasion. In addition, we have transplanted the control and RORα1-expressing MDA-MB 231 cells into the mammary gland fat pads of female SCID mice. We found that RORα1-expressing MDA-MB 231 cells formed much smaller tumor than control cells (Fig. 3G, H).

Because disruption of acinar structure is accompanied by reduced RORα expression in 3D culture, we asked whether silencing RORα disturbs acinar morphogenesis in nonmalignant HMECs. S1 cells were infected with lentivirus-containing shRORα or control shRNA, and knockdown efficiency was assessed by Western blot (Fig. 4A). The cells with reduced RORα expression formed disorganized structures with a slight increase in colony size compared with the control S1 cells in 3D culture (Fig. 4B, C). Staining of α6-integrin showed that the number of polarized colonies is significantly decreased in the RORα knockdown cells (Fig. 4D). These results indicate that RORα modulates polarization of HMECs, which is required for acinar morphogenesis.

SEMA3F is a RORα target gene and mediates its inhibitory activity on cell invasion

To understand how inactivation of RORα promotes breast tumor progression, we set out to identify RORα target genes mediating its suppressive activity in HMECs. SEMA3F, a secretory protein with tumor suppressor function (28), is one of...
the potential RORα target genes identified by GSEA analysis. It has been shown that SEMA3F produced by cancer cell acts in a paracrine and autocrine manner inhibiting cell migration and invasion (25–27). By analyzing protein in the conditional medium, we found that the secretion of SEMA3F is significantly upregulated in S1 and T4R compared with malignant T4-2 cells (Fig. 5A), and restoring RORα expression in T4-2 cells enhanced the SEMA3F production (Fig. 5B). The reduction of SEMA3F expression was also observed in breast cancer cell lines MDA-MB 231 and BT549 compared with nonmalignant MCF10A cells (Supplementary Fig. S2). To further verify whether RORα directly binds to these 2 regions, we carried out ChIP analysis. We found that binding of RORα to the −1,372 to −1,360 region was significantly enhanced in RORα-expressing T4-2 cells (Fig. 5E), but little interaction was detected between RORα and the −663 to −652 region (data not shown). To assess whether RORα induces transcription of SEMA3F through this region, we amplified and cloned the SEMA3F promoter into pGL4 luciferase vector. The luciferase reporter construct was cotransfected with RORα expression vector into HEK293 cells. The activity of firefly/Renilla luciferase showed that expression of RORα drastically induced transcription driven by SEMA3F promoter (Fig. 5F). To further verify whether the binding of RORα to this site is functionally important, the sequence from −1,372 to −1,360 was deleted in the SEMA3F promoter and cloned into the luciferase reporter construct. We found that deletion of the RORα binding site in the SEMA3F promoter significantly reduced the transcription activity (Fig. 5G), indicating that binding of RORα to this region is critical for the transcriptional activation of SEMA3F.

To determine whether RORα-induced SEMA3F is functionally relevant to the suppressive activity of RORα in cancer cells,
we silenced SEMA3F expression in RORα-expressing cancer cells with siRNA (Fig. 6A). We found that knockdown of SEMA3F in RORα-expressing MDA-MB 231 cells rescued the invasive branch structure in 3D culture (Fig. 6B, C). Moreover, silencing SEMA3F expression significantly enhanced cell invasion in RORα-expressing MDA-MB 231 and T4-2 cells (Fig. 6D). Next, we examined the activation of P38-Akt and MEK pathway in those cells. We found that downregulation of SEMA3F enhanced phosphorylation of MEK, but had little effects on Akt phosphorylation (Fig. 6E). Because activation of MEK pathway has been shown to promote cancer invasion in culture and in vivo (40, 41), these results suggest that the RORα-SEMA3F axis suppresses invasion of cancer cells through inhibiting MEK pathway. Moreover, RORα-expressing MDA-MB 231 cells tended to invade in surrounding tissue in SCID mice after SEMA3F was silenced, but knockdown of SEMA3F had little effect on tumor growth (Fig. 6F, G). We also expressed SEMA3F in T4-2 and MDA-MB 231 cells. We found that the majority of SEMA3F-expressing cancer cells formed noninvasive structures in 3D culture (Supplementary Fig. S3). These results suggest that the tumor suppressor function of RORα is at least partially conferred by SEMA3F.

Reduced expression of RORα and SEMA3F is associated with poor prognosis

To address the clinical relevance of a functional link between RORα and SEMA3F, we examined protein and mRNA expression of RORα and SEMA3F in cohorts of human breast cancers. IHC analysis of a panel of 259 breast cancer tissues revealed that the nuclear levels of RORα significantly correlated to protein expression of SEMA3F (Fig. 7A and Table 1). Moreover, high grading tumors contain more RORα and SEMA3F double negative samples compared with low grading tumors (Fig. 7B and Supplementary Table S2), suggesting that inactivation of RORα and SEMA3F is associated with breast cancer progression. To further determine whether reduced RORα or SEMA3F expression is associated with prognosis of patients, we assessed the association between mRNA levels of these 2 genes and patient survival using the published microarray data generated from more than 400 breast cancer tissue samples (34, 35). Breast cancer patients were divided into 3 groups based on RORα or SEMA3F mRNA levels (low, moderate, and high). Kaplan–Meier log-rank analysis showed that patients whose tumor had low RORα or SEMA3F expression levels had a significantly shorter survival period (Fig. 7C, D), suggesting that inactivation of the RORα-SEMA3F pathway correlates with poor clinical outcome.

Discussion

Disruption of acinar structures during breast cancer development is accompanied by the following 2 types of microenvironmental changes (42): (i) inhibiting suppressive microenvironmental signals, such as proper cell–cell and cell–basement membrane adhesion, MMP inhibitors, and suppressive microenvironmental factors (43); (ii) enhancing the promotional microenvironmental cues, including various growth factors and cytokines, ECM degradation enzymes, and activation of angiogenesis, which has been extensively studied and used as therapeutic target in clinical trials. By analyzing the global expression profiles of polarized and disorganized HMECs in 3D culture and tumor growth in vivo, we have identified a number of microenvironment-related genes downregulated in disorganized cells, including tumor suppressor SEMA3F. We show that RORα is a transcriptional regulator of SEMA3F and is repressed during breast cancer development and progression. Restoring RORα or SEMA3F expression in breast cancer cells inhibits aggressive phenotypes in 3D culture and tumor growth in vivo. We conclude that the RORα-SEMA3F axis provides a suppressive microenvironment in normal tissue, inactivation of which promotes breast cancer development and progression.

Loss of polarity is an important morphologic event in breast cancer development, which is accompanied by extensive

Figure 4. Silencing RORα expression in nonmalignant S1 cells disrupts polarized acinar structures. A, immunoblotting analysis of knockdown efficiency of shRNA in S1 cells. B, phase and immunofluorescence images of S1 cells in 3D culture. Staining with α6-integrin antibody showed that RORα knockdown S1 cells formed disorganized structures in 3D culture. C, quantification of colony size of control and RORα knockdown S1 cells in 3D culture by measuring the diameter of 50 colonies. Knockdown RORα in S1 cells slightly increased the colony size. D, bar graph quantifying the ratio of polarized colonies of control cells and RORα knockdown S1 cells in 3D culture; n = 3. Bar, 40 μm. *P < 0.05.
changes in global gene expression profiles (37, 44). By searching for overrepresented motifs in the promoter regions of the differentially expressed genes between polarized and disorganized cells, we showed that RORα induces gene expression in polarized HMEC cells. We also show that expression of RORα protein is significantly reduced in breast cancer cell lines and cancer tissues, and this reduction is associated with disruption of the acinar structure in 3D culture and cancer progression in vivo. Silencing RORα expression in nonmalignant S1 cells disrupts the polarized acinar morphogenesis, suggesting that RORα is involved in normal mammary gland development. We also showed that restoring RORα expression in breast cancer cells significantly inhibits tumor growth in nude mice and suppressed malignant phenotypes in 3D culture. Furthermore, patients with reduced expression of RORα in cancer tissue have significantly shorter survival. Together these results indicate that inactivation of RORα promotes breast cancer development and progression by enhancing cell invasion and disturbing normal tissue architecture.

Microarray analysis has shown that RORα mRNA levels are downregulated in many types of cancer, including breast, lung, and colon (45). Because the RORα gene locates at a common fragile site that is often deleted in cancer, it was proposed that inactivation or downregulation of RORα in cancer cells is caused by genomic instability. However, in the HMT-3522 breast cancer progression series, we showed that downregulation of RORα in cancer cells was reversible, suggesting that RORα is not regulated at the genomic level in those cell lines. We also analyzed the published microarray and CGH data generated from a panel of breast cancer cell lines (35) and did not find a correlation between RORα mRNA levels and gene copy numbers (data not shown). We showed that blocking the EGFR pathway with tryphostin significantly increased protein levels of RORα and mRNA levels of RORα target gene in T4-2 cells, whereas RORα mRNA level has little change upon inhibition of those pathways (data not shown). Therefore, it is most likely that RORα is regulated at the protein level in HMT-3,522 cell lines.

Figure 5. SEMA3F is an RORα target gene mediating its tumor suppressor function. A and B, SEMA3F secretion was assessed by Western blot in the conditional medium of S1, T4-2, T4R, and RORα-expressing T4-2 cells. Conditional medium isolated from same amount of cells was loaded, and SEMA3F levels were elevated in the medium of S1, T4R, and RORα-expressing T4-2 cells. C, quantitative RT-PCR measuring SEMA3F mRNA level in T4-2 and RORα-expressing T4-2 cells (n = 4). D, quantitative RT-PCR measuring SEMA3F mRNA level in S1 and RORα knockdown S1 cells (n = 6). E, ChIP analyzing protein enrichment in the SEMA3F promoter region in control and RORα-expressing T4-2 cells. Binding of RORα protein but not histone H3 to SEMA3F promoter was significantly enhanced in RORα-expressing T4-2 cells; n = 3. F, luciferase assay measuring the transcriptional activity of SEMA3F promoter (from residues −1,513 to −1,240) in response to RORα expression. RORα enhanced promoter activity of SEMA3F in a dose-dependent manner; n = 4. G, a deletion of RORE in SEMA3F promoter (from residues −1,372 to −1,360) was made and cloned into pGL4 vector. Promoter activity of SEMA3F in response to RORα was reduced by deletion of the RORE, n = 4. * P < 0.05; ** P < 0.01.
RORα has been considered a constitutively activated nuclear receptor, but a number of pathways are involved in post-translational regulation of its activity. For instance, RORα can be phosphorylated by extracellular signal-regulated kinase (ERK) and PKC in neuron and HeLa cells. Both ERK- and PKC-dependent phosphorylation suppresses the transcription activity of RORα (46, 47). In addition, the RORα protein is rapidly turned over in Cos-1 cells, and the protein level increases upon inhibition of the 26S proteasome complexes (48), indicating that the Ub-proteasome pathway is involved in degradation of RORα protein. A recent study sheds light on the roles of posttranslational modification of RORα in colon cancer development (6). Lee and colleagues showed that Wnt5a/PKCa induces phosphorylation on serine residue 35 of RORα. The phosphorylated RORα attenuates the Wnt signaling pathway through binding to β-catenin at Wnt3a-activatable promoters to suppress the transcription of Wnt/β-catenin target genes (6). Our results showed that deletion of the ligand-binding or DNA-binding domains in RORα drastically reduced the inhibitory activity of RORα (data not shown), thus we proposed that transcription activity of RORα is required for the tumor suppressor function in breast cancer.

SEMA3F is one of the suppressive microenvironmental factors often inactivated in metastatic cancer, and the inactivation has been attributed to gene deletion in lung cancer (28). Reduced mRNA levels of SEMA3F are associated with poor clinical outcome in breast cancer patients (Fig. 7D), thus loss of SEMA3F function may contribute to breast cancer progression. We found that expression and secretion of SEMA3F are downregulated in disorganized HMECs compared with polarized cell in 3D culture, parallel to RORα inactivation. Using ChIP and luciferase reporter assays, we proved that SEMA3F is an RORα target gene. Although the tumor suppressor function of SEMA3F has been largely attributed to its antiangiogenesis activity, we showed that introducing SEMA3F in breast cancer cells suppressed the aggressive phenotypes in 3D culture, and knockdown of SEMA3F in RORα-expression cancer cells rescued cell invasiveness, suggesting that SEMA3F also targets breast cancer cells. In fact, SEMA3F receptor NRPs have been detected in breast cancer cells (49), and it has been shown that expression of SEMA3F in breast cancer cells inhibits cell migration and invasion (50). Mammary specific knockout of NRP2 impairs branch morphogenesis and ductal outgrowth in mouse mammary gland, suggesting that NRP2 is crucial for cell migration and invasion (51). We show that SEMA3F receptor

Figure 6. Silencing SEMA3F partially rescues the malignant phenotypes suppressed by RORα. A, Western blot results showed that SEMA3F protein level was reduced in si-SEMA3F–transfected RORα-expressing breast cancer cells. B, phase images of control and SEMA3F-silenced RORα-expressing MDA-MB 231 cells in 3D culture. Silencing SEMA3F in RORα-expressing MDA-MB 231 cells rescued invasive phenotype of MDA-MB 231 cells in 3D culture. C, quantifying the invasive branches in siRNA control and SEMA3F-silenced RORα-expressing MDA-MB 231 cells. More than 40 colonies were counted, and the experiments were repeated 3 times. D, Transwell assay showed that reducing SEMA3F expression in RORα-expressing T4-2 and MDA-MB 231 cells rescued the cell invasion; n = 4. E, activation of Akt and MEK were assessed in the control and SEMA3F-silenced RORα-expressing MDA-MB 231 cells. Knockdown of SEMA3F enhanced phosphorylation of MEK. F, bar graph showing that silencing SEMA3F had little effect on tumor growth in RORα1-expressing MDA-MB 231/Luc cells. G, hematoxylin and eosin staining of tumors formed by SEMA3F knockdown and control RORα1-expressing MDA-MB 231/Luc cells. Bar, 20 μm; *, P < 0.05; **, P < 0.01.
nerophilin 2 (NR2P2) are expressed in a number of breast cell lines, including T4-2 and MDA-MB 231 cells (Supplementary Fig. S4). Moreover, NRPs have been identified as coreceptors of integrin and VEGFR. Thus, SEMA3F may suppress breast cancer invasion and MEK phosphorylation by disturbing the interaction between NRPs and other receptors.

However, silencing SEMA3F in RORα-expressing cancer cells has little effect on tumor growth, suggesting that the tumor suppressor function of RORα involves other target genes and pathways. We have identified multiple potential RORα target genes from the GSEA analysis, such as FBXW7 and ANGPT1, which have been shown to inhibit cell proliferation and cancer progression (52–54). In myoblast cell line C2C12, RORα induces activation of the cdk-inhibitor p21waF1/cipl, a marker for cell-cycle exit (55). Wnt/β-catenin pathway has been linked to various types of cancers, including breast. Because RORα has been identified as an inhibitor of the Wnt signal, RORα may suppress breast tumor growth by inhibiting Wnt target genes. In addition, RORα negatively interferes with the NF-κB signaling pathway and suppresses inflammatory response by inducing IkBα (56). These RORα target genes and pathways may also mediate inhibitory activities of RORα in breast cancer cells. Moreover, RORα has been identified as a transcriptional regulator of aromatase in MCF7 and T47D (57) and as a potential estrogen receptor (ER) partner (58), suggesting that RORα may have different target genes and functions in ER-positive cells. Therefore, it is important to address functional linkage between RORα

| Table 1. Correlated expression of RORα and SEMA3F in human breast cancer tissues |
|---------------------------------|--|--|--|
| RORα x SEMA3F | High (++) | Low (+) | Negative (-) |
| High (++) | 5 | 3 | 2 |
| Low (+) | 8 | 72 | 32 |
| Negative (-) | 2 | 14 | 105 |
| Fisher exact test, $P = 2.20e-16$ |

A table summarizing the IHC staining of RORα and SEMA3F in human breast cancer tissues. The staining intensity of SEMA3F and RORα was graded to 3 different levels. The Fisher exact test showed that nuclear levels of RORα significantly correlate with SEMA3F expression.
and its target genes in different subtypes of breast cancer in the future.

In summary, our findings reveal that RORα is crucial for maintenance of a suppressive microenvironment in normal mammary tissue, and inactivation of RORα in breast cancer cells promotes cancer invasion by reducing SEMA3F expression. Thus, understanding how RORα is inactivated in breast cancer and identifying its ligands or agonists may lead to the discovery of a novel therapeutic strategy for the treatment of breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

Acknowledgments

The authors thank Dr. Rouzan Karabakhchian for her advice on IHC and hematoxylin and eosin staining and analysis, Nathan L. Vanderford for scientific editing, and Piotr Rybchahou for the assistance in the animal experiments. R. Xu thanks Dr. Mina J. Bissell (Lawrence Berkeley National Laboratory) for her training and support.

Grant Support

This study was supported by grants from P01 (P30 CA147866 to B.M. Evers), ACS (IRG 85-001-22 to R. Xu), and AHA (12SDG8600000 to R. Xu).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 19, 2011; revised December 13, 2011; accepted January 12, 2012. Published OnlineFirst February 20, 2012.
37. www.oncomine.org
RORα Suppresses Breast Tumor Invasion by Inducing SEMA3F Expression

Gaofeng Xiong, Chi Wang, B. Mark Evers, et al.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-2762

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/02/20/0008-5472.CAN-11-2762.DC1

Cited articles
This article cites 57 articles, 31 of which you can access for free at: http://cancerres.aacrjournals.org/content/72/7/1728.full.html#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at: /content/72/7/1728.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.