Tumor Vascular Microenvironment Determines Responsiveness to Photodynamic Therapy

Amanda L. Maas1, Shirron L. Carter1, E. Paul Wileyto2, Joann Miller1, Min Yuan1, Guoqiang Yu3,5, Amy C. Durham4, and Theresa M. Busch1

Abstract
The efficacy of photodynamic therapy (PDT) depends upon the delivery of both photosensitizing drug and oxygen. In this study, we hypothesized that local vascular microenvironment is a determinant of tumor response to PDT. Tumor vascularization and its basement membrane (collagen) were studied as a function of supplementation with basement membrane matrix (Matrigel) at the time of tumor cell inoculation. Effects on vascular morphology with consequences to tumor hypoxia, photosensitizer uptake, and PDT response were measured. Matrigel-supplemented tumors developed more normalized vasculature, composed of smaller and more uniformly spaced blood vessels than their unsupplemented counterparts, but these changes did not affect tumor oxygenation or PDT-mediated direct cytotoxicity. However, PDT-induced vascular damage increased in Matrigel-supplemented tumors, following an affinity of the photosensitizer Photofrin for collagen-containing vascular basement membrane coupled with increased collagen content in these tumors. The more highly collagenated tumors showed more vascular congestion and ischemia after PDT, along with a higher probability of curative outcome that was collagen dependent. In the presence of photosensitizer-collagen localization, PDT effects on collagen were evidenced by a decrease in its association with vessels. Together, our findings show that photosensitizer localization to collagen increases vascular damage and improves treatment efficacy in tumors with greater collagen content. The vascular basement membrane is thus identified to be a determinant of therapeutic outcome in PDT of tumors. Cancer Res; 72(8); 2079-88. ©2012 AACR.

Introduction
Tumor microenvironment is a variable to be contended within the delivery of chemotherapy, radiation, and photodynamic therapy (PDT), among other therapeutic modalities (1, 2). Tumor vascularization is especially important in PDT, which relies on blood vessels to deliver the molecular oxygen and photosensitizing drugs that are required for a successful outcome to typically applied protocols. Yet, a chaotic vascular network in many tumors limits drug and oxygen delivery (3–5). Heterogeneities in both photosensitizer levels and oxygen concentrations have been documented within and between tumors in preclinical and clinical studies (6–10). Moreover, use of approaches to adjust for these heterogeneities has met with success in improving treatment outcome (11–13).

Several investigations show effects of tumor microenvironment on PDT. Chen and colleagues (14) studied rat prostate tumors grown in orthotopic versus subcutaneous sites, showing that tumors grown in the prostate exhibited a higher vascular density and lower hypoxic fractions than those in subcutaneous tissue. This improvement in oxygenation was accompanied by greater PDT-mediated cytotoxicity in the prostate-localized tumors. Others showed the rate of photosensitizer diffusion through tumors of the same cell line to differ as a function of the anatomic site of their propagation, suggesting a role for tumor microenvironment in photosensitizer uptake and distribution (15). The significance of the tumor stroma in PDT was considered in a review by Peng and Nesland (16), who noted an affinity of photosensitizers for collagen, which could lead to differences in photosensitizer uptake among tumors as a function of their stromal composition.

In this report, we sought to identify specific features of the tumor vasculature responsible for mediating a PDT effect, hypothesizing that the local vascular microenvironment is a determinant of PDT response. Toward this goal, tumor cells were coimplanted in mouse hosts with Matrigel basement membrane matrix (17) to create an altered tumor microenvironment that included changes to the vasculature. The effects of vascular microenvironment on tumor oxygenation, photosensitizer concentrations and localization, and PDT-created vascular damage were measured. From these studies, we have
identified an in vivo role for collagen IV, a component of the tumor basement membrane, in determining the response of tumor vasculature to PDT.

Materials and Methods

Tumor models

H460 cells were purchased from American Type Culture Collection, whereas RIF and SCCVII cells originated from the lines produced by Twentymann and colleagues (18) and O’Malley and colleagues (19), respectively. All cells were authenticated by RADIL in January, 2012 by PCR. RIF, SCCVII, or H460 tumors were propagated by intradermal injection of 3 × 10⁵ (RIF) or 1 × 10⁶ (SCCVII and H460) cells in C3H (RIF and SCCVII) or nude (H460) mice (National Cancer Institute-Frederick, Frederick, MD). Matrigel-supplemented tumors had Matrigel basement membrane matrix (4.5 mg/mL; BD Biosciences) added to the tumor cell suspension. Animals were studied approximately 7 to 10 days later, when tumors were 5 to 7 mm in diameter. Fur in C3H mice was clipped and the treatment area depilated at least 24 hours before illumination.

Immunohistochemistry

Tumor blood vessels and basement membrane were identified by staining of frozen sections (14 μm) with antibodies to CD31 (BD Pharmingen) and collagen (Millipore Corporation), respectively. After ethanol fixation, sections were stained for collagen (1:40 for 1 hour) and CD31 (1:100 for 1 hour) as previously described (20), with the exception that rabbit serum was replaced milk and bovine serum albumin in collagen staining. Respective to the collagen and CD31 antibodies, secondary antibodies of fluorescein isothiocyanate (FITC)-conjugated rabbit anti-goat (1:200 for 1 hour; Jackson ImmunoResearch) and Cy5-conjugated mouse anti-rat (1:50 for 45 minutes; Jackson ImmunoResearch) were used. Hoechst 33342 (20 μmol/L) was used to label tissue. Images (×10) were collected by a Nikon Eclipse 800 fluorescence microscope and Photometrics Quantix CCD digital camera controlled by IPLab software (see Supplementary Material). Then, to label stained areas and analyzed for percentage of Hoechst-identified tumor positive for CD31 or collagen. In addition, CD31-stained vessels were identified as unique objects on the basis of contiguous staining, from which intervascular spacing, vascular density, and vessel size were measured. Analyses used routines in the MATLAB Image toolbox (MathWorks), except for collagen and Hoechst masking (created in Adobe Photoshop; Adobe Systems Inc.). Controls included slides stained with only secondary antibody and showed no staining.

Hypoxia labeling

Tumor hypoxia was identified via flow cytometry (FACS caliber) after EF3 ([2-(2-nitroimidazol-1-yl)]-N-(3,3,3-trifluoropropyl)acetamide) labeling. EF3 (52 mg/kg) was administered to in ovo to increase tumor concentrations [i.e. followed 1 hour later by intraperitoneal injection (i.p.)]. At 2 hours after i.p. EF3 delivery, tumors were excised, enzymatically digested, and stained (Cy5-conjugated ELK5-A8 antibody; ref. 21). Mean Cy5 fluorescence was read in the FL4 channel (λem = 661 nm). Nonspecific antibody binding was measured after incubation of antibody in the presence of 1.0 mmol/L EF3.

PDT

Animals received Photofrin (available from Pinnacle Biologies) intravenously, and microsized fibers (Pioneer) were used to deliver 632 ± 3 nm light from a Ceralas diode laser (Biolitec AG). Laser output was measured with a LabMaster power meter (Coherent) and adjusted to deliver 75 mW/cm² at the tumor surface. Mice were anesthetized by inhalation of isoflurane in medical air (VetEquip anesthesia machine, VetEquip). Animal studies were approved by the University of Pennsylvania (Philadelphia, PA) Institutional Animal Use and Care Committee; animal facilities are AAA-LAC-accredited.

In vivo/in vitro clonogenic assay

Excised tumors were weighed, minced, and enzymatically digested over 30 minutes (at 37°C) as previously described (22). The number of clonogenic cells per gram was calculated as the number of cells per gram times the ratio of the number of colonies counted to the number plated.

Photosensitizer distribution and concentration

Fluorescence microscopy (see Supplementary Material) for Photofrin was carried out immediately after sectioning. Sections were then stained (see Immunohistochemistry) and rephotographed at the same coordinates. From masks of CD31, collagen, and Photofrin, vascular objects with Photofrin colocalization were analyzed for their percentage coverage by Photofrin (MATLAB). The extent of Photofrin colocalization was compared between objects consisting of CD31-stained vasculature and those consisting of collagen-stained vasculature identified by both CD31 and collagen staining. Tumor concentrations of Photofrin were quantified by spectrofluorometric assay (23), as we have previously described (8).

Diffuse correlation spectroscopy

Tumor relative blood flow during PDT was measured by diffuse correlation spectroscopy (DCS; ref. 24). This technology measures rapid temporal fluctuations of transmitted light (785 nm) through tissues and uses the autocorrelation functions associated with these fluctuations to extract information about the motion of tissue scatterers, in this case, red blood cells. Data were collected as a function of the separation distance between the source and detector pairs in the optical probe, averaged, and then normalized to flow values (in the same tumor) in 2 minutes before PDT began.

Histopathology

Tumors were excised at 3 hours after PDT, fixed, embedded, sectioned, and stained with Masson’s trichrome (Pathology Core Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA) or hematoxylin and eosin (H&E; Ryan Veterinary Hospital, University of Pennsylvania). The extent of vascular congestion was quantified as the pixel count of congestion, relative to the tumor-containing area on the section.
Tumor response

Mice were followed after PDT until tumor volumes greater than 400 mm³ (RIF and SCCVII) or pretreatment volume (H460). Volume was measured in 2 orthogonal directions (volume = diameter × width² × 3.14/6). A cure was defined as an absence of tumor regrowth at 90 days after PDT.

Confocal microscopy

Frozen sections (20 μm) collected immediately after PDT were stained for CD31 and collagen (see Immunohistochemistry) and imaged (×10) on a Zeiss LSM 510 Confocal Microscope controlled by AIM confocal software (see Supplementary Material). Colocalization analysis (in Volocity 5; Perkin Elmer) used the overlap coefficient, k, which reported on the contribution of collagen signal intensity to objects identified as blood vessels based on collagen/CD31 colocalization.

Statistical analysis

Differences in immunohistochemical or histologic staining between naive and Matrigel-supplemented tumors were compared using t tests assuming unequal variance, as were differences in photosensitizer content and tumor blood flow. Paired t tests were used to compare the extent of Photofrin colocalization with CD31-labeled blood vessels versus the collagen-containing areas on these vessels. Analyses were conducted in JMP (SAS Institute, Inc.) with P < 0.05 considered significant.

Results

Matrigel-altered tumor microenvironment does not change PDT-mediated direct tumor cytotoxicity

Tumors with an altered vascular microenvironment were grown without changing the malignant cell type or anatomic location of propagation by supplementing the cell inoculum with Matrigel. Compared with unsupplemented (naive) RIF tumors, Matrigel-supplemented tumors were more consistently vascularized (note the avascular strip in the RIF tumor of Fig. 1A). Overall, RIF-Matrigel tumors contained significantly less vascular area (Fig. 1B), which could be attributed to a small decrease in vessel size (not shown) and a significant reduction in the vascular density (Fig. 1C). These changes are consistent with vascular normalization (25).

Following observations of more consistent vascularization in RIF-Matrigel tumors, intervascular distance (median) was

![Figure 1](https://example.com/figure1.png)

Figure 1. Vascularization of RIF versus RIF-Matrigel tumors. Representative masked images of CD31-identified vasculature (A; insets of Hoechst staining). Mean (±SE) vascular area (B) and vascular density (C) for 21 to 22 sections (3 depths from 4–5 tumors). On individual sections, mean intervascular distance was calculated (D; horizontal line indicates median), and the coefficient of variation (CV; E) measured to assess intratumor heterogeneity in vascular spacing (n = 4–5 animals). *P < 0.05 for differences between RIF and RIF-Matrigel tumors.
measured in RIF (42 μm) and RIF-Matrigel tumors (44 μm) but found to be indistinguishable between the tumor types (Fig. 1D). In contrast, variability in intervascular spacing was much larger in RIF tumors, and, accordingly, the coefficient of variation was significantly (P = 0.016) higher in these tumors (28% ± 3% vs. 10% ± 3% in RIF-Matrigel tumors; Fig. 1E). To determine how these changes in vascularization may affect oxygenation, hypoxia was labeled by EF3. Both models exhibited more EF3 binding (mean ± SE) than nonspecific background (3.57 ± 0.34), but no differences were found between RIF-Matrigel (29 ± 8) and RIF tumors (32 ± 6). Any improvement in tumor oxygenation could increase direct PDT cytotoxicity (11), so the in vivo/in vitro clonogenic assay was used to measure cell death immediately after treatment (5 mg/kg Photofrin, 24 h, 75 mW/cm², 135 J/cm²). Mean (±SE) clonogenic survivals were 2.12 ± 0.9e7 and 1.47 ± 0.5e7 clonogenic cells/g in RIF and RIF-Matrigel tumors, respectively. Thus, in addition to the EF3 data, the absence of a differential in direct PDT-mediated cytotoxicity suggests that changes in the vascular status of RIF-Matrigel tumors did not improve their oxygenation.

Photosensitizer localization is affected by microenvironment

Vascular normalization can affect uptake or retention of therapeutic drugs (26), leading us to next assess Photofrin distributions at the gross and microscopic levels. Gross accumulation of Photofrin was visible in both RIF and RIF-Matrigel tumors, but drug pooling among heterogeneously distributed vasculature was evident in RIF tumors (composites in Fig. 2, greyscale original in Supplementary Fig. S1). Given this substantial pooling, it was not surprising that RIF tumors had a significantly higher (P = 0.003) bulk photosensitizer uptake (median ± SE) of 4.5 ± 0.6 ng/mg, compared with 1.4 ± 0.2 ng/mg in RIF-Matrigel tumors (Fig. 2; inset).

At the microscopic level, Photofrin associated with vasculature, localizing to approximately 15% to 30% of the area occupied by a blood vessel when averaged across the vessels in each tumor section. Moreover, the vascular localization of Photofrin increased when analysis was restricted to vessel areas that contained collagen IV, a component of vascular basement membrane (Fig. 3A). By paired analysis, Photofrin associated significantly (P < 0.001) better with collagen-containing areas of blood vessels than with the entire vessel. Because collagen is a major component of the Matrigel, the collagen composition of RIF and RIF-Matrigel tumors was compared. Collagen was more prominent in RIF-Matrigel tumors (Fig. 3B) with an average (±SE) content of 9.3% ± 1.2% in RIF-Matrigel tumors versus 4.9% ± 0.5% in RIF tumors (P = 0.007; Fig. 3C).

Vascular response to PDT is enhanced in a more highly collagenated tumor microenvironment

The preferred association of photosensitizer with collagenated areas on blood vessels (in Fig. 3A), together with the increased collagen content of Matrigel-supplemented RIF tumors (in Fig. 3C), led us to suspect that the Matrigel-altered microenvironment would have increased susceptibility to PDT-mediated vascular damage. To test whether vascular response differed as a function of microenvironment, DCS was used to follow tumor hemodynamics during PDT. After an acute increase, blood flow decreased during PDT (Fig. 4A), in agreement with our previous report (24). No difference in the pattern or magnitude of change in blood flow during PDT was noted between the groups, for example, mean (±SE) relative blood flow in the last 2 minutes of PDT was 0.72 (±0.10) in RIF versus 0.63 (±0.08) in RIF-Matrigel tumors (P = 0.48). However, greater intratumor variability in vascular response was detectable in RIF tumors, which is plotted as error bars in the representative examples. The average (±SE) coefficient of
variation in blood flow during PDT was 14.0% ± 2.6% versus 6.9% ± 0.9% in RIF versus RIF-Matrigel tumors, respectively, which documents a significant decrease (P = 0.02) in the intratumoral heterogeneity of vascular response in RIF-Matrigel tumors.

A more homogeneous vascular response in the more highly collagenated RIF-Matrigel tumors could be mediated through the role of collagen as a substrate in the coagulation cascade (27). PDT can activate this cascade, causing vascular congestion and fibrin accumulation in vivo (28, 29). In both naive and Matrigel-supplemented tumors, PDT-created vascular congestion with accompanying fibrin accumulation was detectable by H&E (Supplementary Fig. S2). RIF-Matrigel tumors had a significantly larger (P = 0.029) congested area (mean ± SE) of 10.5% ± 1.0% (vs. 6.2% ± 0.9% in RIF tumors; Fig. 4B and C) and significantly (P = 0.03) greater ischemia after treatment (Fig. 4D).

Tumor response studies confirmed the therapeutic significance of the stronger vascular response in RIF-Matrigel tumors (Fig. 4E). Whereas all RIF tumors regrew within 24 days, 25% of RIF-Matrigel tumors did not recur (tumor cures). It is noteworthy that PDT was less effective in RIF tumors, despite their higher photosensitizer levels. This is consistent with the observed ineffective distribution of photosensitizer to avascular areas (see Fig. 2). Conversely, lower gross levels of photosensitizer in RIF-Matrigel tumors were not prohibitive of a robust vascular and curative tumor response, pointing to the significance of photosensitizer localization to these results.

Better outcome in more highly collagenated tumors requires extravascular photosensitizer localization

Augmentation of vascular and tumor damage in more highly collagenated tumors occurred in the context of Photofrin association with vascular collagen. To evaluate whether collagen content affected response when photosensitizer localization to collagen did not occur, Photofrin-PDT (2.5 mg/kg) was carried out with a short drug–light interval. No tumor or stromal localization of Photofrin was detectable after 30 minutes (Fig. 5A), in contrast to results with standard (24 hours) incubation (Fig. 5A; inset). PDT of RIF tumors to 75 J/cm² with a short drug–light interval produced a regrowth delay of up to 21 days, similar to that reported above for standard PDT. However, unlike that found with standard PDT, RIF-Matrigel tumors were not more responsive than RIF tumors when drug–light interval was short. A curative light dose (135 J/cm²) at short drug–light interval also failed to differentially affect response in RIF versus RIF-Matrigel tumors (Fig. 5B). Thus, the extravascular distribution of Photofrin, including to basement membrane, is necessary for tumors to differentially benefit from PDT when they are more highly collagenated. It points to a role for PDT effect on collagen in mediating increases in vascular damage in Matrigel-supplemented tumors.
The absence of a differential response between RIF and RIF-Matrigel tumors to PDT with short drug–light interval also provides evidence that Matrigel does not impart therapeutic advantage to PDT, independent of vascular response. To independently confirm this finding, we studied H460 tumors, which unlike RIF, show high collagen content in their naive form (12.8% ± 1.7%). The strength and distribution of collagen staining in H460 tumors (Supplementary Fig. S3A) reflects that seen in RIF-Matrigel tumors (see Fig. 1A) and no measurable increase in collagen accompanied the addition of Matrigel to H460 tumors (13.7% ± 0.7%). H460 tumors had an 18% cure rate to Photofrin-PDT and the addition of Matrigel did not improve response, further confirming that Matrigel itself did not inherently benefit PDT (Supplementary Fig. S3B).

PDT alters collagen expression

Having defined a role for Photofrin localization to collagen as a determinant of tumor response in RIF tumors, SCCVII tumors were evaluated in confirmatory studies that investigated PDT effect on collagen. SCCVII-Matrigel tumors showed collagen levels similar to RIF-Matrigel tumors, that is, 9.0% ± 1.5% versus 9.3% ± 1.2%, respectively, which was, on average, more collagen than the 6.7% ± 0.7% found in naive SCCVII tumors (Fig. 6A). As expected, Photofrin was significantly (P = 0.003) better associated with collagenated areas of blood vessels than with the entire structure (Fig. 6B). Moreover, as found in the RIF models, SCCVII-Matrigel tumors were more responsive to PDT than their naive counterparts (Fig. 6C), with a cure rate of 57% in the Matrigel-supplemented versus 0% in naive tumors, respectively.

Given the high response rate of SCCVII-Matrigel tumors, this model was used for further investigation of PDT effect on vessel structure. Using confocal microscopy, vessels were identified as areas of collagen and CD31 colocalization. A representative micrograph (Fig. 6D) illustrates a control tumor with CD31-labeled blood vessels (red) that were well covered by collagen (green). In contrast, in tumors that received PDT, areas of vasculature that lack collagen coverage were more prominent.

Figure 4. Vascular response to PDT. A, representative traces of relative tumor blood flow during PDT, with error bars indicating intratumor heterogeneity. Vascular congestion (3 hours post-PDT) in representative images of Masson trichrome-stained sections (B; inset of untreated tumor) and mean (±SE) tumor area of vascular congestion (C; n = 3 tumors). Post-PDT decreases in blood flow (mean ± SE) for RIF (open circles, n = 3) and RIF-Matrigel (closed circles, n = 4) tumors (D) and Kaplan–Meier plots (E) of long-term tumor response (n = 15–16 in treated groups). Controls include untreated RIF (dashed line, n = 5), untreated RIF-Matrigel (dotted line, n = 6), light-only (solid line, n = 12), and Photofrin-only (crosshatch, n = 16). PDT with Photofrin (5 mg/kg, 24 hours), 135 J/cm², 75 mW/cm². *P < 0.05 for differences between RIF and RIF-Matrigel tumors.
Photofrin (2.5 mg/kg) administration. Alterations in vascular collagen. Collagen to the vessel signal, indicating that PDT leads to PDT could be attributed to a decrease in the contribution of collagen and CD31. The change in collagen visualization upon quan- tintations (37) or binding site or its masking by PDT-induced structural alteration (28). An answer to this question initiates from our observation that collagen is a target of photosensitizer localization within a blood vessel. This finding is in agreement with in vivo observation of Photofrin fluorescence in collagen-containing areas (34) and in vitro demonstration of photosensitizer binding to collagen (35, 36). Furthermore, our in vivo data show an effect of PDT on collagen. Confocal imaging documented a decrease in collagen association with blood vessels in PDT-treated tumors. This decrease is detected by reductions in antibody staining of collagen, which could result from damage to the binding site or its masking by PDT-induced structural alterations (37) or fibrin accumulation (28). Yet, irrespective of which mechanism dominated, this change in collagen staining establishes an effect of PDT on collagen that is consistent with the bleaching of collagen expression found in thrombotic veins (38) and thus connects our observations of collagen photosensitization with those of vascular congestion and fibrin accumulation. In vitro studies by Fungaloi and colleagues (39) further support a role for collagen photosensitization in augmenting vascular damage. They report that PDT of a collagen matrix promotes the adhesion of platelets to this matrix. When occurring in vivo, such platelet adhesions would be part of the coagulation cascade that leads to vascular congestion and ischemia, both of which increased in more highly collagenated tumors and accordingly bore out the implications of Fungaloi’s report.

In addition to differences in collagen composition, other microenvironmental distinctions were apparent between naïve and Matrigel-supplemented tumors. Matrigel supple- mentation served to support vascular development (17), facilitating the growth of tumors with a lower density of smaller, more uniformly spaced blood vessels. Thus, these data also serve to describe the mechanisms by which Matrigel can stimulate tumor development in xenograft hosts. That said, by, these results have important implications in the clinical setting wherein significant heterogeneity in tumor microen- vironment, including its blood vessels, can exist (31, 32).

In the anatomy of a blood vessel, basement membrane provides structural support abluminal to endothelial cells and separates these cells from underlying stroma (33). Damage to endothelial cells can expose basement membrane, triggering the coagulation cascade through complexes of platelets and vonWillebrand factor that bind to exposed collagen (27). Tumors are commonly characterized by inconsistencies in the endothelial cell layer, which can make them more prone to such damage (26). The chain of vascular events during PDT has been proposed to include endothelial cell rounding, basement membrane exposure, and subsequent occlusive platelet aggregation (28). Our results are consistent with these mechanisms, as shown by the development of vascular congestion and reductions in tumor perfusion. However, we additionally doc- ument that (i) these effects are significantly stronger (more vascular congestion and greater reductions in perfusion) in tumors with greater collagen content and (ii) photosensitizer localization to collagen is necessary for more highly collagenated tumors to exhibit a differential tumor response. This begets the obvious question of how collagen may play a role in vascular response to PDT.

In this manuscript, we establish a role for tumor collagen composition as a determinant of PDT therapeutic effect. These data show that photosensitizer localization to collagen-containing vascular basement membrane augments PDT response of tumors with greater collagen content. Increases in vascular congestion, decreases in tumor perfusion, and evidence of collagen disruption after PDT—all suggest that vascular damage leads to improvements in curative outcome in more highly collagenated tumors. This conclusion is further supported by findings that photosensitizer localization to collagen is neces- sary for more highly collagenated tumors to experience a therapeutic advantage. Collagen is a major structural compo- nent of vascular basement membrane, and is prominent, but variable, in its association with tumor vasculature (30). There-
in the present study, tumor take was already 100% without supplementation, so any vascular change introduced by Matrigel provided no advantage in this regard. A normalized vasculature structure could potentially improve drug or oxygen concentrations, but we found no benefit to either. In agreement, others have also reported that vascular normalization failed to improve tumor oxygenation. Tailor and colleagues (40) published that pazopanib produced vascular changes consistent with normalization in human tumor xenografts, such as decreased vascular density, yet this was accompanied by increased hypoxia. Similarly, Riesterer and colleagues (41) reported that antiangiogenic treatment directed toward vascular normalization reduced vascular densities but increased hypoxia in mammary carcinoma tumors. The broad range of tumor volumes, from 175 to 425 mm³, included in this study suggests that a failure of vascular normalization to improve tumor oxygenation can occur independent of tumor size.

We used Matrigel for altering microenvironment because it offers the advantages that it did not involve a change in tumor histologic type, alter the anatomic location of tumor propagation (e.g., in subcutaneous vs. orthotopic tumors), or require identification of a time frame of vascular restructuring (e.g., when antiangiogenics are used). Even more importantly, increases in collagen content in Matrigel-supplemented tumors were biologically relevant. Collagen accounted for 9.0% ± 1.5% and 9.3% ± 1.2% of the tumor in SCCVII-Matrigel and RIF-Matrigel tumors, respectively. In contrast, H460 tumors (without Matrigel) were composed of 12.8% ± 1.7% collagen. Accordingly, the extent of collagen staining in the Matrigel-supplemented tumors is similar to that occurring in another unaltered tumor model, and we can conclude that Matrigel supplementation, under the conditions used, did not lead to unrealistically high collagen expression.

Abnormal collagen deposition in vascular basement membrane is common in tumors (26, 42) and inconsistencies in its...
association with endothelial cells lead to clinical observations that range from losses in (43) to thickening of (44) basement membrane. Studies of vascular basement membrane in human tumors illustrate that the limited extent of collagen positivity in our preclinical models are relevant to that seen clinically. For example, tumors from 27 of 32 patients with rectal cancer showed little to no staining for collagen expression (45). Similarly, in glioblastomas and pilocytic astrocytomas, collagen content was approximately 3% (range, ~1%–8%) of the tumor area (46). Encouragingly, data from the present study suggest that just small increases in collagen composition (e.g., to ~10%) can serve to augment PDT response. It therefore may be possible to use pharmaceutical approaches to increase tumor collagen content before PDT. For example, an antibody to VEGF receptor increased vascular basement membrane in a murine mammary carcinoma at 3 days after its administration, in concert with decreases in vascular density and vascular diameter (4). Other approaches to increase collagen could include local injection of collagen-based tissue fillers, as used in plastic surgery (47), or subcutaneous ionizing radiation (48).

Modulation of tumor microenvironment before delivery of radiation or chemotherapeutics has a shown benefit in preclinical (49, 50) and potential in clinical studies (26). The present study has investigated that how PDT may be affected by tumor vascular microenvironment. Our findings provide the first evidence that tumor collagen composition is an important microenvironmental variable in vascular and therapeutic response of tumors to PDT. They serve to identify vascular basement membrane as a therapeutically relevant target for pretreatment alteration in tumors to receive PDT.

Disclosure of Potential Conflicts of Interest
E.P. Wileyto is a consultant/advisory board member for MeYouHealth. No potential conflicts of interests were disclosed by the other authors.

Acknowledgments
The authors thank Elizabeth Rickter, Andrea Stout, and Kevin Jenkins for assistance with animals, confocal, and MATLAB, respectively, as well as Prof. Arjun Yodh for advice on DCS.

Grant Support
This work was supported by NIH grants CA-087971, CA-085831, and CA-129554.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 15, 2011; revised January 27, 2012; accepted February 14, 2012; published OnlineFirst February 28, 2012.

References

Tumor Vascular Microenvironment Determines Responsiveness to Photodynamic Therapy

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-11-3744

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2012/02/28/0008-5472.CAN-11-3744.DC1

Cited articles This article cites 50 articles, 16 of which you can access for free at: http://cancerres.aacrjournals.org/content/72/8/2079.full.html#ref-list-1

Citing articles This article has been cited by 2 HighWire-hosted articles. Access the articles at: /content/72/8/2079.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.