CD73-Deficient Mice Are Resistant to Carcinogenesis
John Stagg, Paul A. Beavis, Upulie Divisekera, Mira C.P. Liu, Andreas Möller, Phillip K. Darcy, and Mark J. Smyth

Précis: This important study offers a preclinical genetic and pharmacologic validation of CD73, a cell-surface enzyme that generates the immune-suppressive nucleoside adenosine, as a critical contributor to immune escape during tumorigenesis and a tractable therapeutic target.

Bone Marrow Stromal Cells Create a Permissive Microenvironment for Myeloma Development: A New Stromal Role for Wnt Inhibitor Dkk1
Jessica A. Fowler, Gregory R. Mundy, Seint T. Lwin, and Claire M. Edwards

Précis: Findings define a pivotal role for the Wnt inhibitor Dkk1 in the stromal cells of the bone marrow microenvironment, which supports development of deadly myeloma blood tumors.

Reconsidering the Paradigm of Cancer Immunotherapy by Computationally Aided Real-time Personalization
Yuri Kogan, Karin Halevi-Tobias, Moran Elishmereni, Stanimir Vuk-Pavlović, and Zvia Agur

Précis: It may be possible to personalize cancer immunotherapy and immunochemotherapy based on mathematical models that are validated early in the treatment process, thereby enabling an adaptive personalized regimen during the treatment period.

CD73-Deficient Mice Are Resistant to Carcinogenesis
John Stagg, Paul A. Beavis, Upulie Divisekera, Mira C.P. Liu, Andreas Möller, Phillip K. Darcy, and Mark J. Smyth

Précis: This important study offers a preclinical genetic and pharmacologic validation of CD73, a cell-surface enzyme that generates the immune-suppressive nucleoside adenosine, as a critical contributor to immune escape during tumorigenesis and a tractable therapeutic target.
MICROENVIRONMENT AND IMMUNOLOGY

2228
A Galactin-3–Dependent Pathway Upregulates Interleukin-6 in the Microenvironment of Human Neuroblastoma
Ayaka M. Silverman, Rie Nakata, Hiroyuki Shimada, Richard Sposto, and Yves A. DeClerck

Précis: This study reveals that a regulator of immune escape in the tumor microenvironment regulates the proinflammatory cytokine IL-6, a pivotal modifier of cancer progression.

2239
Tumor Angiogenesis Mediated by Myeloid Cells Is Negatively Regulated by CEACAM1
Rongze Lu, Maciej Kujawski, Hao Pan, and John E. Shively

Précis: A cell-surface receptor on myeloid cells that inhibits tumor growth is found to restrict production of a proangiogenic growth factor that promotes the growth of the tumor vasculature.

2251
Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts That Supports Cancer Progression
Ermira Pazolli, Elise Alspach, Agnieszka Milczarek, Julie Prior, David Piwnica-Worms, and Sheila A. Stewart

Précis: A significant part of the risk provided by aging in cancer may be derived from the contributions of senescesing stromal fibroblasts that fuel malignant progression through at least 2 independent signaling cascades activated in response to chromatin changes.

MOLECULAR AND CELLULAR PATHOBIOLOGY

2262
Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration
Franco Capozza, Casey Trimmer, Remedios Castello-Cros, Sanjay Katiyar, Diana Whitaker-Menezes, Antonia Follenzi, Marco Crosariol, Gemma Llaverias, Federica Sotgia, Richard G. Pestell, and Michael P. Lisanti

Précis: Reinforcing the need to study cancer in an organissmal context to gain deeper understanding, a core scaffolding protein in lipid rafts is found to regulate the growth of primary tumors and metastases quite differently.

2275
The SUMO E3-ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA
Andrea Rabellini, Brandon Carter, Georgia Konstantinidou, Shwu-Yuan Wu, Alessandro Rimessi, Lauren A. Byers, John V. Heymach, Luc Girard, Cheng-Ming Chiang, Julie Teruya-Feldstein, and Pier Paolo Scaglioni

Précis: Findings offer mechanistic insights into how the sumoylation machinery modifies oncogenic signals regulated by the tumor suppressor PML, and also the therapeutic response to leukemias involving PML mutations.

2285
Hypoxia-Inducible Factor-2α Activation Promotes Colorectal Cancer Progression by Dysregulating Iron Homeostasis
Xiang Xue, Matthew Taylor, Erik Anderson, Cathy Hao, Aijuan Qu, Joel K. Greenson, Ellen M. Zimmermann, Frank J. Gonzalez, and Yatrik M. Shah

Précis: This study points to an intestinal iron transporter as a tractable candidate target for colon cancer therapy.

2294
Defining NOTCH3 Target Genes in Ovarian Cancer
Xu Chen, Michelle M. Thiaville, Li Chen, Alexander Stoeck, Jianhua Xuan, Min Gao, Le-Ming Shih, and Tian-Li Wang

Précis: Target genes regulated by Notch3 are of interest given emerging evidence of a role for this receptor in programming cancer stem-like cell behavior in lung and ovarian cancers.

PREVENTION AND EPIDEMIOLOGY

2304
Intragenic ATM Methylation in Peripheral Blood DNA as a Biomarker of Breast Cancer Risk
Kevin Brennan, Montserrat Garcia-Closas, Nick Orr, Olivia Fletcher, Michael Jones, Alan Ashworth, Anthony Swerdlow, Heather Thorne on behalf of KConFab Investigators, Elio Riboli, Paolo Vineis, Miren Dorronsoro, Francoise Clavel-Chapelon, Salvatore Panico, N. Charlotte Onland-Moret, Dimitrios Trichopoulos, Rudolf Kaaks, Kay-Tee Khaw, Robert Brown, and James M. Flanagan

Précis: As cancer risk studies move from genome to epigenome associations, the use of DNA isolated from peripheral blood cells offers an easily accessible sample type for epigenome-wide association studies.
Effects of a Caloric Restriction Weight Loss Diet and Exercise on Inflammatory Biomarkers in Overweight/Obese Postmenopausal Women: A Randomized Controlled Trial
Ikuyo Imayama, Cornelia M. Ulrich, Catherine M. Alfano, Chiachi Wang, Liren Xiao, Mark H. Wener, Kristin L. Campbell, Catherine Duggan, Karen E. Foster-Schubert, Angela Kong, Caitlin E. Mason, Ching-Yun Wang, George L. Blackburn, Carolyn E. Bain, Henry J. Thompson, and Anne McTiernan

Précis: Findings suggest that weight loss with or without exercise may reduce risk of breast cancer, possibly due to a reduction in systemic inflammation that may support tumor development or progression.

Impact of Intertumoral Heterogeneity on Predicting Chemotherapy Response of BRCA1-Deficient Mammary Tumors

Précis: Studies of BRCA1-deficient mammary cancers suggest that tumor heterogeneity makes it difficult to define gene expression signatures that could predict chemotherapy responses.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus
Iulia Diaconu, Vincenzo Cerullo, Mari L.M. Hirvinen, Sophie Escutenaire, Matteo Ugolini, Salla K. Pesonen, Simona Bramante, Savi Parviainen, Anna Kanerva, Angelica S.I. Loskog, Aristides G. Eliopoulos, Sari Pesonen, and Akseli Hemminki

Précis: Findings detail the development of a new generation of oncolytic adenovirus that is armed with CD40L, which results in the induction of a TH1-type immune response that causes accumulation of cytotoxic T cells at the tumor site and increased antitumor efficacy.

Novel MT1-MMP Small-Molecule Inhibitors Based on Insights into Hemopexin Domain Function in Tumor Growth
Albert G. Remacle, Vladislav S. Golubkov, Sergey A. Shiryaev, Russell Dabl, John L. Stebbins, Andrei V. Chernov, Anton V. Chelstov, Maurizio Pellecchia, and Alex Y. Strongin

Précis: Findings reveal that targeting a regulatory domain of increasing pharmacologic interest in matrix metalloproteases and other proteins can exert potent antitumor properties.

Expression of the p53 Target CDIP Correlates with Sensitivity to TNFα-Induced Apoptosis in Cancer Cells
Lauren Brown-Endres, David Schoenfeld, Fang Tian, Hyung-Gu Kim, Takushi Namba, César Muñoz-Fontela, Anna Mandinova, Stuart A. Aaronson, and Sam W. Lee

Précis: This study suggests that the product of a p53 target gene may serve as a predictive biomarker for TNF-based cancer therapeutics.

S-Glutathionylated Serine Proteinase Inhibitors as Plasma Biomarkers in Assessing Response to Redox-Modulating Drugs

Précis: Novel blood-based biomarkers will assist in pharmacogenetic design of protocols that test new drugs.
Dithiolethones Inhibit NF-κB Activity via Covalent Modification in Human Estrogen Receptor–Negative Breast Cancer
Christopher H. Switzer, Robert Y.-S. Cheng, Lisa A. Ridnour, Margaret C. Murray, Valerio Tazzari, Anna Sparatore, Piero Del Soldato, Harry B. Hines, Sharon A. Glynn, Stefan Ambs, and David A. Wink

Précis: A novel chemical mechanism to inhibit NF-κB activation in aggressive estrogen receptor-negative breast cancers may blunt their invasive capabilities.

TUMOR AND STEM CELL BIOLOGY

p120RasGAP-Mediated Activation of c-Src Is Critical for Oncogenic Ras to Induce Tumor Invasion
Po-Chao Chan and Hong-Chen Chen

Précis: The requirement for c-Src in tumor invasion evoked by oncogenic Ras has implications for the development of therapies to target the Ras pathway, long a goal of the field.

Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting with Progesterone Receptors at the Cyclin D1/MYC Promoters
Sebastián Giulianielli, José P. Vaqué, Rocío Soldati, Victoria Wargon, Silvia I. Vanzulli, Rubén Martins, Eduardo Zeitlin, Alfredo A. Molinolo, Luisa A. Helguero, Caroline A. Lamb, J. Silvio Gutkind, and Claudia Lanari

Précis: Antiestrogens block progesterone-induced tumor growth because they disrupt estrogen receptor–progesterone receptor interactions that are essential for target gene transcription.

Proteomic Portrait of Human Breast Cancer Progression Identifies Novel Prognostic Markers
Tamar Geiger, Stephen F. Madden, William M. Gallagher, Juergen Cox, and Matthias Mann

Précis: In performing the deepest proteomic analysis of breast cancer progression to date, this study identifies novel prognostic markers for overall survival that function in metabolic and secretory processes.

Suppression of the Epithelial–Mesenchymal Transition by Grainyhead-like-2
Benjamin Cieply, Philip Riley IV, Phillip M. Pifer, Joseph Widmeyer, Joseph B. Addison, Alexey V. Ivanov, James Denvir, and Steven M. Frisch

Précis: A gene involved in wound healing and neural tube closure is found to be a suppressor of oncogenic epithelial–mesenchymal transition, a pivotal process in cancer cells that is tightly associated with the capacity for metastatic progression.

ABOUT THE COVER

Galectin-3 binding protein, a glycoprotein produced by neuroblastoma cells, upregulates the expression of interleukin-6 in bone marrow mesenchymal cells by interacting with galectin-3. Using immunofluorescence, it was found that the galectin-3 binding protein colocalizes with galectin-3 at the surface and in the cytosol of mesenchymal cells. This interaction generates a Ras/MEK/ERK-dependent signal that transcriptionally upregulates the production of interleukin-6 in the bone marrow microenvironment. Activation of this pathway contributes to neuroblastoma bone metastasis. For details, see article by Silverman and colleagues on page 2228 of this issue.