CD73-Deficient Mice Are Resistant to Carcinogenesis
John Stagg, Paul A. Beavis, Uppuluri Divisekera, Mira C.P. Liu, Andreas Möller, Philip K. Darcy, and Mark J. Smyth

Précis: This important study offers a preclinical genetic and pharmacologic validation of CD73, a cell-surface enzyme that generates the immune-suppressive nucleoside adenosine, as a critical contributor to immune escape during tumorogenesis and a tractable therapeutic target.

T-Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis
Andrea Facciabene, Gregory T. Motz, and George Coukos

Bone Marrow Stromal Cells Create a Permissive Microenvironment for Myeloma Development: A New Stromal Role for Wnt Inhibitor Dkk1
Jessica A. Fowler, Gregory R. Mundy, Seint T. Lwin, and Claire M. Edwards

Précis: Findings define a pivotal role for the Wnt inhibitor Dkk1 in the stromal cells of the bone marrow microenvironment, which supports development of deadly myeloma blood tumors.

Reconsidering the Paradigm of Cancer Immunotherapy by Computationally Aided Real-time Personalization
Yuri Kogan, Karin Halevi–Tobias, Moran Elshmereni, Stanimir Vuk-Pavlović, and Zvia Agur

Précis: It may be possible to personalize cancer immunotherapy and immunochemotherapy based on mathematical models that are validated early in the treatment process, thereby enabling an adaptive personalized regimen during the treatment period.
MICROENVIRONMENT AND IMMUNOLOGY

A Galectin-3–Dependent Pathway Upregulates Interleukin-6 in the Microenvironment of Human Neuroblastoma
Ayaka M. Silverman, Rie Nakata, Hiroyuki Shimada, Richard Sposto, and Yves A. DeClerck

Precis: This study reveals that a regulator of immune escape in the tumor microenvironment regulates the proinflammatory cytokine IL-6, a pivotal modifier of cancer progression.

Tumor Angiogenesis Mediated by Myeloid Cells Is Negatively Regulated by CEACAM1
Rongze Lu, Maciej Kujawski, Hao Pan, and John E. Shively

Precis: A cell-surface receptor on myeloid cells that inhibits tumor growth is found to restrict production of a proangiogenic growth factor that promotes the growth of the tumor vasculature.

Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts That Supports Cancer Progression
Ermira Pazolli, Elise Alspach, Agnieszka Milczarek, Julie Prior, David Piwnica-Worms, and Sheila A. Stewart

Precis: A significant part of the risk provided by aging in cancer may be derived from the contributions of senescing stromal fibroblasts that fuel malignant progression through at least 2 independent signaling cascades activated in response to chromatin changes.

MOLECULAR AND CELLULAR PATHOBIOLOGY

Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration
Franco Capozza, Casey Trimmer, Remedios Castello-Cros, Sanjay Katiyar, Diana Whitaker-Menezes, Antonia Follenzi, Marco Crosario, Gemma Llaverias, Federica Sotgia, Richard G. Pestell, and Michael P. Lisanti

Precis: Reinforcing the need to study cancer in an organ-based context to gain deeper understanding, a core scaffolding protein in lipid rafts is found to regulate the growth of primary tumors and metastases quite differently.

PREVENTION AND EPIDEMIOLOGY

Intragenic ATM Methylation in Peripheral Blood DNA as a Biomarker of Breast Cancer Risk
Kevin Brennan, Montserrat Garcia-Closas, Nick Orr, Olivia Fletcher, Michael Jones, Alan Ashworth, Anthony Swerdlow, Heather Thorne on behalf of KConFab Investigators, Elio Riboli, Paolo Vineis, Miren Dorronsoro, Françoise Clavel-Chapelon, Salvatore Panico, N. Charlotte Onland-Moret, Dimitrios Trichopoulos, Rudolf Kaaks, Kay-Tee Khaw, Robert Brown, and James M. Flanagan

Precis: As cancer risk studies move from genome to epigenome associations, the use of DNA isolated from peripheral blood cells offers an easily accessible sample type for epigenome-wide association studies.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2314</td>
<td>Effects of a Caloric Restriction Weight Loss Diet and Exercise on Inflammatory Biomarkers in Overweight/Obese Postmenopausal Women: A Randomized Controlled Trial</td>
<td>Ikuyo Imayama, Cornelia M. Ulrich, Catherine M. Alfano, Chiachi Wang, Liren Xiao, Mark H. Wener, Kristin L. Campbell, Catherine Duggan, Karen E. Foster-Schubert, Angela Kong, Caitlin E. Mason, Ching-Yun Wang, George L. Blackburn, Carolyn E. Bain, Henry J. Thompson, and Anne McTiernan</td>
<td>Précis: Findings suggest that weight loss with or without exercise may reduce risk of breast cancer, possibly due to a reduction in systemic inflammation that may support tumor development or progression.</td>
</tr>
<tr>
<td>2327</td>
<td>Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus</td>
<td>Iulia Diaconu, Vincenzo Cerullo, Mari L.M. Hirvinen, Sophie Escutenaire, Matteo Ugolini, Salla K. Pesonen, Simona Bramante, Sari Parviainen, Anna Kanerva, Angelica S.I. Loskog, Aristides G. Eliopoulos, Sari Pesonen, and Aksei Hemminki</td>
<td>Précis: Findings detail the development of a new generation of oncolytic adenovirus that is armed with CD40L, which results in the induction of a TH1-type immune response that causes accumulation of cytotoxic T cells at the tumor site and increased antitumor efficacy.</td>
</tr>
<tr>
<td>2339</td>
<td>Novel MT1-MMP Small-Molecule Inhibitors Based on Insights into Hemopexin Domain Function in Tumor Growth</td>
<td>Albert G. Remacle, Vladislav S. Golubkov, Sergey A. Shiraev, Russell Dahb, John L. Stebbins, Andrei V. Chernov, Anton V. Cheltsov, Maurizio Pellecchia, and Alex Y. Strongin</td>
<td>Précis: Findings reveal that targeting a regulatory domain of increasing pharmacologic interest in matrix metalloproteases and other proteins can exert potent antitumor properties.</td>
</tr>
<tr>
<td>2362</td>
<td>Expression of the p53 Target CDIP Correlates with Sensitivity to TNFα-Induced Apoptosis in Cancer Cells</td>
<td>Lauren Brown-Endres, David Schoenfeld, Fang Tian, Hyung-Gu Kim, Takushi Namba, César Muñoz-Fontela, Anna Mandinova, Stuart A. Aaronson, and Sam W. Lee</td>
<td>Précis: This study suggests that the product of a p53 target gene may serve as a predictive biomarker for TNF-based cancer therapeutics.</td>
</tr>
</tbody>
</table>
Dithiolethiones Inhibit NF-κB Activity via Covalent Modification in Human Estrogen Receptor–Negative Breast Cancer
Christopher H. Switzer, Robert Y.-S. Cheng, Lisa A. Ridnour, Margaret C. Murray, Valerio Tazzari, Anna Sparatore, Piero Del Soldato, Harry B. Hines, Sharon A. Glynn, Stefan Ambs, and David A. Wink

Précis: A novel chemical mechanism to inhibit NF-κB activation in aggressive estrogen receptor-negative breast cancers may blunt their invasive capabilities.

TUMOR AND STEM CELL BIOLOGY

p120RasGAP-Mediated Activation of c-Src Is Critical for Oncogenic Ras to Induce Tumor Invasion
Po-Chao Chan and Hong-Chen Chen

Précis: The requirement for c-Src in tumor invasion evoked by oncogenic Ras has implications for the development of therapies to target the Ras pathway, long a goal of the field.

Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting with Progesterone Receptors at the Cyclin D1/MYC Promoters
Sebastián Giulianelli, José P. Vaqué, Rocío Soldati, Victoria Wargon, Silvia I. Vanzulli, Rubén Martins, Eduardo Zeitlin, Alfredo A. Molinolo, Luisa A. Helguero, Caroline A. Lamb, J. Silvio Gutkind, and Claudia Lanari

Précis: Antiestrogens block progesterone-induced tumor growth because they disrupt estrogen receptor–progesterone receptor interactions that are essential for target gene transcription.

ABOUT THE COVER

Galectin-3 binding protein, a glycoprotein produced by neuroblastoma cells, upregulates the expression of interleukin-6 in bone marrow mesenchymal cells by interacting with galectin-3. Using immunofluorescence, it was found that the galectin-3 binding protein colocalizes with galectin-3 at the surface and in the cytosol of mesenchymal cells. This interaction generates a Ras/MEK/ERK-dependent signal that transcriptionally upregulates the production of interleukin-6 in the bone marrow microenvironment. Activation of this pathway contributes to neuroblastoma bone metastasis. For details, see article by Silverman and colleagues on page 2228 of this issue.