CD73-Deficient Mice Are Resistant to Carcinogenesis
John Stagg, Paul A. Beavis, Upulie Divisekera, Mira C.P. Liu, Andreas Möller, Phillip K. Darcy, and Mark J. Smyth

Précis: This important study offers a preclinical genetic and pharmacologic validation of CD73, a cell-surface enzyme that generates the immune-suppressive nucleoside adenosine, as a critical contributor to immune escape during tumorigenesis and a tractable therapeutic target.

Epigenetic Resensitization to Platinum in Ovarian Cancer
Daniela Matei, Fang Fang, Changyu Shen, Jeanne Schilder, Alesha Arnold, Yan Zeng, William A. Berry, Tim Huang, and Kenneth P. Nephew

Précis: Findings of this phase II clinical trial support the use of DNA methylation-based epigenetic therapies to resensitize drug-resistant tumors to cytotoxic chemotherapy, addressing one of the most important challenges in the oncology clinic.

A RASSF1A Polymorphism Restricts p53/p73 Activation and Associates with Poor Survival and Accelerated Age of Onset of Soft Tissue Sarcoma
Karen S. Yee, Lukasz Grochola, Garth Hamilton, Anna Grawenda, Elisabeth E. Bond, Helge Taubert, Peter Wurl, Gareth L. Bond, and Eric O’Neill

Précis: This study provides a mechanistic description of a coding SNP in the Ras family member RASSF1A that correlates with survival and onset of disease in soft-tissue sarcoma patients, offering a simple host prognostic marker in this setting.

Reconsidering the Paradigm of Cancer Immunotherapy by Computationally Aided Real-time Personalization
Yuri Kogan, Karin Halevi-Tobias, Moran Elshemerani, Stanimir Vuk-Pavlović, and Zvia Agur

Précis: It may be possible to personalize cancer immunotherapy and immunochemotherapy based on mathematical models that are validated early in the treatment process, thereby enabling an adaptive personalized regimen during the treatment period.
A Galectin-3–Dependent Pathway Upregulates Interleukin-6 in the Microenvironment of Human Neuroblastoma
Ayaka M. Silverman, Rie Nakata, Hiroyuki Shimada, Richard Sposto, and Yves A. DeClerck

Précis: This study reveals that a regulator of immune escape in the tumor microenvironment regulates the proinflammatory cytokine IL-6, a pivotal modifier of cancer progression.

Tumor Angiogenesis Mediated by Myeloid Cells Is Negatively Regulated by CEACAM1
Rongze Lu, Maciej Kujawski, Hao Pan, and John E. Shively

Précis: A cell-surface receptor on myeloid cells that inhibits tumor growth is found to restrict production of a proangiogenic growth factor that promotes the growth of the tumor vasculature.

Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts That Supports Cancer Progression
Ermira Pazolli, Elise Alspach, Agnieszka Milczarek, Julie Prior, David Piwnica-Worms, and Sheila A. Stewart

Précis: A significant part of the risk provided by aging in cancer may be derived from the contributions of senescing stromal fibroblasts that fuel malignant progression through at least 2 independent signaling cascades activated in response to chromatin changes.

The SUMO E3-ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA
Andrea Rabellin, Brandon Carter, Georgia Konstantinidou, Shwu-Yuan Wu, Alessandro Rimessi, Lauren A. Byers, John V. Heymach, Luc Girard, Cheng-Ming Chiang, Julie Teruya-Feldstein, and Pier Paolo Scaglioni

Précis: Findings offer mechanistic insights into how the sumoylation machinery modifies oncogenic signals regulated by the tumor suppressor PML, and also the therapeutic response to leukemias involving PML mutations.

Hypoxia-Inducible Factor-2α Activation Promotes Colorectal Cancer Progression by Dysregulating Iron Homeostasis
Xiang Xue, Matthew Taylor, Erik Anderson, Cathy Hao, Aijuan Qu, Joel K. Greenson, Ellen M. Zimmermann, Frank J. Gonzalez, and Yatirik M. Shah

Précis: This study points to an intestinal iron transporter as a tractable candidate target for colon cancer therapy.

Defining NOTCH3 Target Genes in Ovarian Cancer
Xu Chen, Michelle M. Thiaville, Li Chen, Alexander Stocek, Jianhua Xuan, Min Gao, Le-Ming Shih, and Tian-Li Wang

Précis: Target genes regulated by Notch3 are of interest given emerging evidence of a role for this receptor in programming cancer stem-like cell behavior in lung and ovarian cancers.

Intragenic ATM Methylation in Peripheral Blood DNA as a Biomarker of Breast Cancer Risk
Kevin Brennan, Montserrat Garcia-Closas, Nick Orr, Olivia Fletcher, Michael Jones, Alan Ashworth, Anthony Swedlow, Heather Thorne on behalf of KConFab Investigators, Elio Riboli, Paolo Vineis, Miren Dorronsoro, Françoise Clavel-Chapelon, Salvatore Panico, N. Charlotte Onland-Moret, Dimitrios Trichopoulos, Rudolf Kaaks, Kay-Tee Khaw, Robert Brown, and James M. Flanagan

Précis: As cancer risk studies move from genome to epigenome associations, the use of DNA isolated from peripheral blood cells offers an easily accessible sample type for epigenome-wide association studies.
Effects of a Caloric Restriction Weight Loss Diet and Exercise on Inflammatory Biomarkers in Overweight/Obese Postmenopausal Women: A Randomized Controlled Trial

Ikuyo Imayama, Cornelia M. Ulrich, Catherine M. Alfano, Chiachi Wang, Liren Xiao, Mark H. Wener, Kristin L. Campbell, Catherine Duggan, Karen E. Foster-Schubert, Angela Kong, Caitlin E. Mason, Ching-Yun Wang, George L. Blackburn, Carolyn E. Bain, Henry J. Thompson, and Anne McTiernan

Précis: Findings suggest that weight loss with or without exercise may reduce risk of breast cancer, possibly due to a reduction in systemic inflammation that may support tumor development or progression.

Impact of Intertumoral Heterogeneity on Predicting Chemotherapy Response of BRCA1-Deficient Mammary Tumors


Précis: Studies of BRCA1-deficient mammary cancers suggest that tumor heterogeneity makes it difficult to define gene expression signatures that could predict chemotherapy responses.

THERAPEUTICS, TARGETS, AND CHEMICAL BIOLOGY

Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus

Iulia Diaconu, Vincenzo Cerullo, Mari L.M. Hirvinen, Sophie Escutenaire, Matteo Ugolini, Saša K. Pesonen, Simona Bramante, Sari Parviainen, Anna Kanerva, Angelica S.J. Loskog, Aristides G. Elionopoulos, Sari Pesonen, and Akseli Hemminki

Précis: Findings detail the development of a new generation of oncolytic adenovirus that is armed with CD40L, which results in the induction of a T helper 1-type immune response that causes accumulation of cytotoxic T cells at the tumor site and increased antitumor efficacy.

Novel MT1-MMP Small-Molecule Inhibitors Based on Insights into Hemopexin Domain Function in Tumor Growth

Albert G. Remacle, Vladislav S. Golubkov, Sergey A. Shiryayev, Russell Dahb, John L. Stebbins, Andrei V. Chernov, Anton V. Chelsov, Maurizio Pellecchia, and Alex Y. Strongin

Précis: Findings reveal that targeting a regulatory domain of increasing pharmacologic interest in matrix metalloproteases and other proteins can exert potent antitumor properties.

Expression of the p53 Target CDIP Correlates with Sensitivity to TNFα-Induced Apoptosis in Cancer Cells

Lauren Brown-Endres, David Schoenfeld, Fang Tian, Hyung-Gu Kim, Takushi Namba, César Muñoz-Fontela, Anna Mandinova, Stuart A. Aaronson, and Sam W. Lee

Précis: This study suggests that the product of a p53 target gene may serve as a predictive biomarker for TNF-based cancer therapeutics.

Translation Initiation Factor eIF4E Is a Target for Tumor Cell Radiosensitization

Thomas J. Hayman, Eli S. Williams, Muhammad Jamal, Uma T. Shunkavaram, Kevin Camphausen, and Philip J. Tofilon

Précis: Findings suggest that an existing agent that targets a critical component of the translation machinery might be repositioned as a general neoadjuvant strategy to heighten radiotherapeutic responses in cancer, with the potential to exert a broad impact in radiation oncology.

Expression of the p53 Target CDIP Correlates with Sensitivity to TNFα-Induced Apoptosis in Cancer Cells

Lauren Brown-Endres, David Schoenfeld, Fang Tian, Hyung-Gu Kim, Takushi Namba, César Muñoz-Fontela, Anna Mandinova, Stuart A. Aaronson, and Sam W. Lee

Précis: This study suggests that the product of a p53 target gene may serve as a predictive biomarker for TNF-based cancer therapeutics.

S-Glutathionylated Serine Proteinase Inhibitors as Plasma Biomarkers in Assessing Response to Redox-Modulating Drugs


Précis: Novel blood-based biomarkers will assist in pharmacogenetic design of protocols that test new drugs.
Dithiolethiones Inhibit NF-κB Activity via Covalent Modification in Human Estrogen Receptor–Negative Breast Cancer
Christopher H. Switzer, Robert Y.-S. Cheng, Lisa A. Ridnour, Margaret C. Murray, Valerio Tazzari, Anna Sparatore, Piero Del Soldato, Harry B. Hines, Sharon A. Glynn, Stefan Ambs, and David A. Wink

Précis: A novel chemical mechanism to inhibit NF-κB activation in aggressive estrogen receptor-negative breast cancers may blunt their invasive capabilities.

TUMOR AND STEM CELL BIOLOGY

p120RasGAP-Mediated Activation of c-Src Is Critical for Oncogenic Ras to Induce Tumor Invasion
Po-Chao Chan and Hong-Chen Chen

Précis: The requirement for c-Src in tumor invasion evoked by oncogenic Ras has implications for the development of therapies to target the Ras pathway, long a goal of the field.

Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting with Progesterone Receptors at the Cyclin D1/MYC Promoters
Sebastián Giulianelli, José P. Vaqué, Rocío Soldati, Victoria Wargon, Silvia I. Vanzulli, Rubén Martins, Eduardo Zeitlin, Alfredo A. Molinolo, Luisa A. Helguero, Caroline A. Lamb, J. Silvio Gutkind, and Claudia Lanari

Précis: Antiestrogens block progesterone-induced tumor growth because they disrupt estrogen receptor-progesterone receptor interactions that are essential for target gene transcription.

Proteomic Portrait of Human Breast Cancer Progression Identifies Novel Prognostic Markers
Tamar Geiger, Stephen F. Madden, William M. Gallagher, Juergen Cox, and Matthias Mann

Précis: In performing the deepest proteomic analysis of breast cancer progression to date, this study identifies novel prognostic markers for overall survival that function in metabolic and secretory processes.

Suppression of the Epithelial–Mesenchymal Transition by Grainyhead-like-2
Benjamin Cieply, Philip Riley IV, Phillip M. Pifer, Joseph Widmeyer, Joseph B. Addison, Alexey V. Ivanov, James Denvir, and Steven M. Frisch

Précis: A gene involved in wound healing and neural tube closure is found to be a suppressor of oncogenic epithelial-mesenchymal transition, a pivotal process in cancer cells that is tightly associated with the capacity for metastatic progression.

ABOUT THE COVER
Galectin-3 binding protein, a glycoprotein produced by neuroblastoma cells, upregulates the expression of interleukin-6 in bone marrow mesenchymal cells by interacting with galectin-3. Using immunofluorescence, it was found that the galectin-3 binding protein colocalizes with galectin-3 at the surface and in the cytosol of mesenchymal cells. This interaction generates a Ras/MEK/ERK-dependent signal that transcriptionally upregulates the production of interleukin-6 in the bone marrow microenvironment. Activation of this pathway contributes to neuroblastoma bone metastasis. For details, see article by Silverman and colleagues on page 2228 of this issue.