




mathematical models can predict patient response to immu-
notherapy rather early and suggest concomitantly the patient-
specific modification of treatment expected to provide a more
acceptable clinical outcome. Our method can derive and
validate predictive personalized models early in treatment so
that the need for therapy modification can be detected as soon
as warranted and as often as needed.

Materials and Methods
A general method for in-treatment immunotherapy
personalization

The method was implemented as an algorithm encom-
passing 4 stages: preparation, personalization, prediction of
an improved treatment, and monitoring. It iteratively
"trains" and validates personalized mathematical models
using patient data collected before treatment and those
accruing early in treatment as the training sets (Fig. 1;
Supplementary Materials, Section 2). The algorithm uses a

customized Success-Of-Validation (SOV) criterion to deter-
mine when the personalized model can reliably predict
individual outcomes under various treatment regimens. The
validated model can be used to predict the outcome of the
currently applied treatment for the patient and, if needed,
suggest treatment modifications expected to result in more
acceptable outcome.

Patient data
We studied the levels of circulating prostate-specific antigen

(PSA) measured in a clinical study of an allogeneic prostate
cancer whole-cell vaccine administered to patients with pros-
tate cancer on 14 occasions for more than a year (33). In this
study, PSA levels were recorded before, during, and after
treatment. The endpoint for therapeutic response was the
decrease in the PSA velocity, that is, in the linear rate of change
in the logarithm of PSA levels (33). For the present study, we
selected the 9 patients who completed the full course of

Figure 1. Schematic representation
of the method for in-treatment
therapy personalization. The
preparatory stage designs the
mathematical model and SOV
criterion based on preliminary data
and biologic and clinical
understanding of the system. At
the personalization stage,
collection of new individual data,
model personalization, and
validation assessment are
repeated until the SOV criterion is
satisfied. The prediction stage
uses the validated model to
forecast therapeutic outcomes and
suggest treatment modification
and alters the treatment regimen
accordingly. The monitoring stage
compares model predictions with
clinical data resulting from
modified treatment. If modified
treatment fails, the procedure is
repeated from the stage of model
personalization.
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treatment and whose PSA velocity decreased in the first 2
months of treatment (1).

The mathematical model
To prove the concept, we used our recently developed

prostate cancer vaccination model describing the interactions
of the tumor, antigen-presenting cells, immune effector cells,
vaccine-induced immune stimulation, and consequent
immune suppression (1). Briefly, the model describes the
vaccine-stimulated maturation of naive sentinel dendritic cell
(DC) precursors in the dermis. These cells migrate to lymph
nodes where, as functional antigen-presenting DCs, they
induce T-helper-1 (TH-1)–type immunity that includes
tumor-specific CTLs that can kill the tumor. Subsequently,
DCs yield regulatory DCs, which recruit T regulatory (Treg) cells
that attenuate CTL function. The model is formally described
by ordinary differential equations (see Quick Guide and Sup-
plementary Materials, Section 1), and used to simulate the
dynamics of the system in response to different doses and
administration schedules of the vaccine (cf. ref. 33).
All but 4 model parameters were common to all patients

("population model parameters"); their values were estimated
from published in vitro and in vivo studies. Patient-specific
parameters included the tumor growth rate, CTL killing effi-
cacy, and 2 parameters linearly correlating tumor load and PSA
levels. The 4 parameters were evaluated using individual
training sets of PSA values singled out for calibration of
patient-specific parameters as prescribed by the algorithm.
This model was retrospectively personalized and validated
using clinical data recorded for patients initially responsive
to therapy (1).

Selecting the best-performing SOV criterion
The SOV criterion evaluates the difference between predic-

tions of the model adjusted to the accumulated personal data
at the current time and predictions by earlier models adjusted
to previous, smaller data sets. We designed numerous SOV
criteria differing in the choice and number of previous per-
sonalized models to be compared and in the "stop" rule
according to which comparison is halted and the model
considered validated (see Supplementary Materials, Sections
3 and 4). For each patient X, the algorithm was applied with
each tested criterion (v. infra) providing (i) the personalized
model validated by the tested criterion, (ii) the corresponding
validation time point tX, and (iii) the corresponding personal
training set size CX. We selected the best-performing criterion
by comparing its output to the results of previous retrospective
analysis (1; see Supplementary Materials, Section 5).

Application of the algorithm with the tested criterion
For each tested criterion, we applied the personalization

stage of the algorithm to PSA valuesmeasured for each patient:
the initial time point for algorithmapplication, t0, was set to the
time of the second vaccine injection; the first personal training
data set, T0, included all individual PSA data collected before
and including this point. The first personal parameter set, P0,
was evaluated by fitting themodel to T0. At each iteration i� 1,
the preceding personal training set, Ti–1, was extended to the

next individual PSA measurement to obtain the set Ti. The
model was then fitted toTi to produce the new parameter set Pi
defining the current personalized model for this patient. For
each i � i0, the PSA course was predicted using personalized
models defined by parameter sets Pi, Pi–1, ..., Pi–i0; then we
applied the tested SOV criterion. We repeated iterations until
the criterion indicated that the personal model for the given
patient was validated, or the end of treatment was reached. If
the algorithm validated the model at iteration i, for the tested
criterion we recorded the patient-specific parameter set Pi, the
validation time point ti and the size of the personal training
set Ti. These results, over all patients, were used as the values
for (i) the personalized model, (ii) tX, and (iii) CX for the
selection of the best-performing SOV criterion and for the
modification of treatment.

Model-guided modification of treatment regimens
We used the validated personalized models to search for

treatment regimens predicted to enhance clinical outcomes
for each individual patient. Starting from the empirically
determined initial vaccine dose [empirical dose (ED); 24 mil-
lion cells] and administration frequency (every 28 days),
denoted 1EDq28d (1, 33), we simulated the effects of more
frequent administration and larger vaccine doses. To emulate
the application of the method to patient X, we used his model
validated by the selected SOV criterion at time tX. Correspond-
ingly, we simulated the application of the experimental regi-
men until validation time point tX, and of the modified treat-
ment from tX until completion of 1 year of treatment. First, we
simulated application of regimens with increased vaccination
frequency (every 21, 14, and 7 days). Next, we tested the effects
of vaccine dose escalation (1.5, 2, 2.5, 3, 4, 5, ..., 10 times the ED,
conceivably a plausible dose range) administered at 7-day
intervals. The first regimen in this scheme that stabilized the
PSA value within 10 percent above the value measured at the
validation time point tX (i.e., that turned the disease into
chronic state) was recommended for treatment modification.
If this effect was not achieved by any tested schedule, we
recommended the potentially most effective protocol tested
(i.e., high intensity treatment 10EDq7d).

Results
A general method for real-time in-treatment
immunotherapy personalization

Figure 1 summarizes the suggested method (see also Sup-
plementary Materials, Section 2). At the preparatory stage the
general mathematical model of the disease and immunother-
apy is developed and its parameters are estimated on the basis
of available pertinent information. Selection of the general
mathematical model, its population and patient-specific para-
meters, and adjustment of algorithm parameters (e.g., the size
of initial personal training set), together with the exact for-
mulation of the SOV criterion, depend on the nature of the
disease, its underlying mechanisms, dynamics and treatment,
as well as on the extent of available pertinent data.

For personalization, the values of parameters expected to be
patient specific are adjusted by fittingmodel predictions to the
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patient's data. Following entry of new information, these
parameters are readjusted to all hitherto available data for
that patient. The newly parameterized personalized model is
used to predict the response to treatment, when the agreement

between predictions and current clinical data is verified.
Subsequently, current predictions are compared with predic-
tions generated at previous iterations using the SOV criterion.
The criterion, defined uniformly for all treated patients, is a

Figure 2. Application of the iterative
algorithm; a detailed example. At
each iteration (i ), the model was
constructed using all data for
patient 20 (A), and patient 12 (B),
available at that time; for each
patient, model prediction (thick
line) was compared with
predictions by 3 preceding models
(thin gray lines). Symbol Ï marks
the last available data point for the
particular iteration, whereas open
circles mark the 3 data points
immediately preceding it; full
circles represent all earlier data
points. Treatment started on day
zero.
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quantitative evaluation procedure testing whether predictions
of consecutive personalized models are sufficiently close.
When the criterion is satisfied for a given patient, we conclude
that further clinical measurements are unlikely to add new
information to the model, that is, the individual model has
attained its maximal predictive power. Otherwise, the person-
alization stage for the patient is reiterated (Fig. 1).
Once validated, the personal model is used to predict the

future response of that patient under the original regimen or
alternative immunotherapy regimens. If an alternative regi-
men is predicted to achieve better clinical results, the corre-
sponding treatment modification is recommended for imme-
diate application. Model accuracy is continuously monitored
for possible cumulative or delayed effects, which may be
apparent only later on. Personal model parameters are
updated if necessary (Fig. 1).

Proof of concept for the personalization method in a
clinical prostate cancer vaccination study
We tested the feasibility of the method for in-treatment

personalization of prostate cancer vaccination therapy. For
convenience, we used the algorithm in conjunction with our
recent mathematical model of prostate cancer vaccination (1)
applied to data obtained in a clinical study (33). We tested
many alternative SOV criteria differing in parameterization
(e.g., acceptance threshold). Among several thousand possible
SOV criterion parameterizations, we chose the one with the
best performance (see Supplementary Materials, Section 5).
The selected SOV criterion compares the prediction of the

personalized model at a given time to predictions of 3 pre-

ceding personalized models. Figure 2 presents 2 examples of
algorithm application using this criterion to patient 20 and
patient 12 (patient numbers as in ref. 33). For patient 20,
predictions of the most updated model and the 3 preceding
models get closer at each subsequent iteration, until—at
iteration 8—all 4 models agree and the personalized model
is declared validated.

The case of patient 12 is more complicated. Comparison of
predictions obtained at iteration 5 to those of iteration 4 and 3
shows the increasing agreement between consecutive predic-
tions. However, the data point added at iteration 6 causes a
notable change in parameters of the personalized model, so
that now the prediction disagrees with the previous one. At this
iteration it is difficult to estimate which model is more
accurate. The criterion we chose addresses this question: we
determine the current model valid only when the 3 preceding
models agree with it. Indeed, by iterations 7 to 9 the models
converge confirming that the personal model found at itera-
tion 6 was accurate. Therefore, the personalized model was
validated at iteration 9. Furthermore, we checked the accuracy
of the validated personalizedmodel by probing whethermodel
predictions varied after adding the data subsequently collected
until the end of treatment (iterations 9–11, Fig. 2A and
iterations 10–12, Fig. 2B). They did not.

For all patients in the study, differences between conse-
cutive model predictions tended to decrease (Fig. 3), show-
ing the increasing agreement between personalized models.
Moreover, different patients required a different size of data
set, from 4 to 11 months, to validate the personalized model
(for details, see Supplementary Materials, Section 5). We

Figure 3. Time course of algorithm
application for all patients. For each
patient shown are the values of
model comparison grade D(i)
generated by the selected best-
performing SOV criterion. This grade
evaluates the agreement between
the current model and 3 previous
consecutive models over a
prediction period of 1 year. When the
value of the grade becomes less than
the acceptance threshold of the SOV
criterion, the model is declared
validated (for details, see
Supplementary Materials). Full dots
show model comparison grade
values at successive algorithm
iterations; open circles mark
validation points when the grade is
less than the acceptance threshold
(D0 ¼ 0.05, thin horizontal line). For
convenience, y-axis is set to
logarithmic scale.
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conclude that the selected criterion could yield accurate
personalized models based on comparatively few data
points.

Suggesting more effective personalized regimens
When model-predicted outcomes of therapy are not

clinically satisfactory, the validated personalized model can
be used to suggest more efficacious therapeutic regimens.
To illustrate this point, we used personalized models to
predict patients' response to subsequent cycles of the tested
standard regimen; the method accurately predicted the
observed continuous increase in circulating PSA levels in
all patients (Fig. 4). Because the observed therapeutic effect
was generally transient and insufficient, we searched for
individual regimen modifications that could improve
responses before the patients completed the initially
planned treatment cycle.

Hence, using personalized models, we simulated the
effects of increased vaccine doses and/or administration
frequency (the change applied from the time of model
validation) and compared them to the predicted effects of
the hitherto applied regimen. We found that different
patients required different therapy regimens to stabilize
PSA levels and turn the disease into chronic state (Fig. 4).
Overall, for 7 of 9 patients we identified individual treat-
ments predicted to stabilize PSA levels if applied immedi-
ately after individual model validation. Collectively, required
treatment modifications ranged from just doubling the
administration frequency to the weekly injections of 10-fold

increased ED (EDq14d, for patients 7, 14; 10EDq7d, for
patient 20; Fig. 4). Conceivably, application of the proposed
algorithm could considerably improve treatment outcome
for a significant fraction of patients.

Discussion
Theoretical foundation and sporadic empirical evidence for

efficacy of cancer immunotherapy abound, but numerous
biologic and other obstacles impede the development of
predictably effective immune treatment of malignancy
(4, 11, 13–14). Development of treatments, particularly those
using live or inactivated cells, is in addition hampered by
inadequacy of standard preclinical in vitro and animal testing
methods (as inadequate models of human immunity) and by
regulatory requirements of a priori proofs of potency (cf.
discussion in ref. 34). These factors require clinical testing as
early as safe and possible, but it encounters the investigational
paradigm traditionally based onminimizing patient variability
and determining the average response in large patient popula-
tions (35).

"Training" immunity to reject malignant cells must take into
account, at theminimum, the basic feed-forward and feedback
interactions among the components of immunity, the disease,
and immune therapy. As cancer is predominantly a disease of
advanced age, it is countered by immunity shaped by individ-
ual genetic makeup, but also by personal history of morbidity
and trauma as well as age-related attenuation. In other words,
both qualitative (involvement of particular mechanisms) and

Figure 4. Model-suggested
treatment enhancement. Gray full
circles, measuredPSA levels; open
circles, validation points; thin gray
line, simulated PSA evolution
during standard treatment (ED ¼
2.4 � 107 vaccine cells every 28
days); thick line, simulation of PSA
evolution under protocols
intensified just enough to stabilize
PSA levels: 10EDq7 (patients 3, 12,
and 20), 1EDq7 (patients 5, 18, and
21), 1EDq14 (patients 7 and 14),
and 5EDq7 (patient 22); q, interval
between vaccine administration
(days). Dashed lines indicate the
beginning and the end of the
12-month treatment.Cx, number of
training data points at
individualized model validation;
duration of treatment in days at
validation is indicated in
parentheses. For details, see
Materials and Methods.
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quantitative (the extent of) interactions between the tumor
and immunity will be particular to each patient. On the basis of
this notion, development of cancer immunotherapy can be
significantly enhanced by a paradigm shift in clinical studies,
that is, by clinical studies of cancer immunotherapy based on
personalized treatment (P-trials; ref. 36). Current strategies to
personalize immunotherapy attempt to use biomarkers for
patient stratification, but the lack of practical methods to
establish clinical significance of a given biomarker has severely
hindered these attempts (37, 38). Another approach to the
enhancement of treatment efficacy, adopted here, includes
accommodation of personalized treatment schedules into
clinical trials.
The power ofmathematicalmodels to predict clinical effects

of immunotherapy in individual patients has been documen-
ted before (26), as has been the validation of personalized
models by clinical information (1, 28). Specifically, it was
shown that response to a given treatment could be predicted
with reasonable accuracy, based on partial data collected
before and during early phases of treatment (1). Accuracy of
a personalized model usually increases with the number of
data points used for its personalization, that is, with the time
elapsed from the onset of treatment. Hence, there is an
inherent trade-off between the time-dependent accuracy of
the personalized model and the commencement of clinical
benefit from treatment modified by this model. The subject
matter of the current work was to develop a method for
achieving an optimal balance between (i) sufficiently reliable
in-treatment validation and (ii) use of the insight from the
model to the treating physician. The new paradigm suggested
here takes into account that this balance is personal and can be
determined by our method.
To prove the concept, we have applied the method to a

particular clinical data set (33) and shown that fair model
validation for individual patients enables not only predicting
the observed individual PSA changes rather early in treatment,
but also suggesting valuable treatment modifications. For
most studied patients, these altered regimens would have
stabilized PSA levels until the end of planned treatment. This
outcome is consistent with the clinical definition of stable
disease, and therefore, themajority of responding patientswith
prostate cancer (33) could have benefited from our strategy,
particularly as increased vaccine doses likely would have been
well tolerated (39). These results prove the feasibility of the
method, that is, that early acquisition of a reliable personalized
mathematical model of immunotherapy is possible and can be
valuable for improving design and implementation of treat-
ment. The next stage of the work will constitute prospective
studies, aimed at statistically examining the contribution of the
suggested method to the improvement of efficacy of immu-
notherapy in a patient population.
Early validation of the personalizedmodel permits its use for

prediction ofmore effective personalized treatment and allows
early screening for the subpopulation of responsive patients.
Concomitantly, patients identified as unlikely to benefit from
the treatment can be redirected to alternative therapeutic
options, a valuable objective in itself. It has not eluded our
notice that unforeseeable effects occurring later in treatment

could render the previously validated personalized models
incorrect. Therefore, the last stage of the proposed algorithm
requires ongoing monitoring for ensuring model accuracy by
the accruing patient data. This guarantees model's validity
throughout treatment.

In this study, we used the example of changes in the
measured PSA levels as correlates of tumor activity. How-
ever, as other pertinent measures of tumor characteristics
become available, mechanistic models of interactions of
disease and other physiologic systems will be refined. In
addition, establishment of mechanistically relevant mea-
sures of disease-specific immune function (14) will allow
the development of more precise mathematical models to
facilitate the resolution of a fundamental question of immu-
notherapy: what immune endpoints must immunotherapy
attain to eradicate the particular tumor in the particular
patient?

We determined a specific SOV criterion and found it appro-
priate for algorithm application in the particular clinical study.
A similar criterion can be used in other prostate cancer
immunotherapy studies that use similar treatments. In gen-
eral, every new treatment modality will require an adjustment
of the formulation of the SOV criterion. This can be achieved by
retrospective analysis of data fromprevious studies of the same
or related indications and treatments, similarly to what we
have shown here. Alternatively, small pilot studies could be
used to calibrate the criterion formulation for larger planned
studies of the same type.

The proposed paradigm shift for clinical studies poses
the important question of the limits wherein patient-spe-
cific treatment modifications can be sought. In common
clinical trials, usually a single drug regimen is uniformly
applied to large patient subpopulations. We suggest that
the individual treatments be selected ad hoc, within an
approved range of schedules. Definition of the range is a
cardinal issue when seeking regulatory approval for the
clinical trial. In the present study of 9 patients, we could
define the range of recommended schedules within rather
narrow limits of dose size and administration intervals. For
larger populations, the range of could be wider, but still
restricted by dose limiting toxicity. As cellular immuno-
therapy is generally safe (8, 12), our personalization para-
digm appears feasible. Likewise, specific regulatory guide-
lines should be adopted for application of mathematically
aided nonintuitive decision making in life-and-death situa-
tions (40).

Here, we have focused on immunotherapy as its successmay
be hampered by the shortage of personalizationmethodsmore
than some other therapies. Nevertheless, our approach is
general and should be examined in other modalities of cancer
treatment. Recently, similar approaches have been implicated
in otherfields of cancer therapy (41). If clinically supported, our
approach could increase the response rates to cancer immu-
notherapy and pave the way for practical application of
personalized immunotherapy. The approach is new in its
intent to embed mathematical modeling into clinical practice
for real-time tailoring of patient-specific treatment. Novel
methods, such as the one proposed and tested here, can add
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a rational element to the process and provide new tools in
disease management.
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