BREAKING ADVANCES

2927 Highlights from Recent Cancer Literature

REVIEWS

2929 AMPK: A Contextual Oncogene or Tumor Suppressor?
 Jiyong Liang and Gordon B. Mills

2936 KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells
 William L. Berry and Ralf Janknecht

PERSPECTIVES

2943 Vascular Normalization as an Emerging Strategy to Enhance Cancer Immunotherapy
 Yuhui Huang, Shom Goel, Dan G. Duda,
 Dai Fukumura, and Rakesh K. Jain

MEETING REPORT

2949 Center of Cancer Systems Biology Second Annual Workshop—Tumor Metronomics: Timing and Dose Level Dynamics
 Philip Hahnfeldt, Lynn Hlatky, and Giannoula Lakka Klement

CLINICAL STUDIES

2955 Elevated ALCAM Shedding in Colorectal Cancer Correlates with Poor Patient Outcome
 Amanda G. Hansen, Tanner J. Freeman,
 Shanna A. Arnold, Alina Starchenko,
 Celestial R. Jones-Paris, Michael A. Gilger,
 Mary K. Washington, Kang-Hsien Fan, Yu Shyr,
 Robert D. Beauchamp, and Andries Zijlstra

MICROENVIRONMENT AND IMMUNOLOGY

2987 Vaccination for Invasive Canine Meningioma Induces In Situ Production of Antibodies Capable of Antibody-Dependent Cell-Mediated Cytotoxicity
 Brian M. Andersen, G. Elizabeth Phuah,
 Charles E. Seiler, Michelle R. Goulart,
 Karen S. SantaCruz, Melissa M. Schutten,
 Joyce P. Meints, M. Gerard O’Sullivan,
 R. Timothy Bentley, Rebecca A. Packer,
 Stephanie A. Thomovsky, Annie V. Chen,
 Dominik Faissler, Wei Chen, Matthew A. Hunt,
 Michael R. Olin, and John R. Oliffest

Précis: This study demonstrates how monitoring the biological activity of a factor rather than its expression in cancer patients can provide a more informative metric to predict malignant progression.
Adipocytes Cause Leukemia Cell Resistance to L-Asparaginase via Release of Glutamine
Ehsan A. Ehsanipour, Xia Sheng, James W. Behan, Xingchao Wang, Anna Butturini, Vassilios I. Avramis, and Steven D. Mittelman

Precis: Studies identify mechanisms behind the poor survival of obese leukemia patients through impaired asparaginase response.

Pancreatic Cancer-Associated Stellate Cells Promote Differentiation of Myeloid-Derived Suppressor Cells in a STAT3-Dependent Manner
Thomas A. Mace, Zeenath Ameen, Amy Collins, Sylwia Wojcik, Markus Mair, Gregory S. Young, James R. Fuchs, Tim D. Eubank, Wendy L. Frankel, Tanios Bekaii-Saab, Mark Bloomston, and Gregory B. Lesinski

Precis: A well-known stromal cell population found in pancreatic tumors is found to secrete soluble factors that convert myeloid cells to an immunosuppressive phenotype that promotes tumoral immune escape and progression.

Inhibition of Histone Demethylase JMJD1A Improves Anti-Angiogenic Therapy and Reduces Tumor-Associated Macrophages
Tsuyoshi Osawa, Rika Tsuchida, Masashi Muramatsu, Terpeh Shimamura, Feng Wang, Jun-ichi Suehiro, Yasuharu Kanki, Youichiro Wada, Yauhito Yuasa, Hiroyuki Abruftani, Satoru Miyano, Takashi Minami, Tatsuhiko Kodama, and Masahumi Shibuya

Precis: Findings highlight a strategy to target cancer cells resistant to hypoxia and nutrient starvation as an approach to heighten sensitivity to antiangiogenic drugs and to reduce risks of drug resistance and tumor recurrence.

Cowden Syndrome-Related Mutations in PTEN Associate with Enhanced Proteasome Activity
Xin He, Nicholas Arrotta, Deepa Radhakrishnan, Yu Wang, Todd Romigh, and Charis Eng

Precis: The results of this study may help resolve the loose genotype-phenotype correlations that occur in a spectrum of clinical syndromes, marked by germline PTEN mutations, by tracing their common effects to alterations in proteasome activity that are affected both by PTEN protein stability and subcellular localization.

Oncogenic NRAS, Required for Pathogenesis of Embryonic Rhabdomyosarcoma, Relies upon the HMGAA2–IF2BP2 Pathway
Zhizhong Li, Yunyu Zhang, Krishnan Ramanujan, Yan Ma, David G. Kirsch, and David J. Glass

Precis: Findings identify the upstream elements controlling a core oncogenic driver in embryonic rhabdomyosarcomas, suggesting novel points to target therapeutic inventions against this aggressive pediatric tumor.

Acquired Resistance to EGFR Inhibitors Is Associated with a Manifestation of Stem Cell–like Properties in Cancer Cells

Precis: In lung cancer, malignant cells with stem cell-like properties appeared as acquired resistance emerged to EGFR inhibitors, reinforcing concerns that while such treatments may be effective initially, they may also promote progression at later times.

Novel HSP90 Inhibitor NVP-HSP990 Targets Cell-Cycle Regulators to Ablate Olig2-Positive Glioma Tumor–Initiating Cells
Jun Fu, Dimpy Koul, Jun Yao, Shuzhen Wang, Ying Yuan, Howard Colman, Erik P. Sultman, Frederick F. Lang, and W.K. Alfred Yung

Precis: Findings suggest that HSP90 inhibitors being evaluated in clinical trials may be efficacious against deadly brain tumors that express a particular type of cancer stem-like cell.

Efficacy and Mechanism-of-Action of a Novel Superagonist Interleukin-15: Interleukin-15 Receptor αSu/Fc Fusion Complex in Syngeneic Murine Models of Multiple Myeloma
Wenzin Xu, Monica Jones, Bai Liu, Xiaoyuan Zhu, Christopher B. Johnson, Ana C. Edwards, Lin Kong, Emily K. Jeng, Kaiping Han, Warren D. Marcus, Mark P. Rubinstein, Peter R. Rhode, and Hing C. Wong

Precis: Findings offer preclinical proof-of-concept for an engineered T-cell stimulant that mediates antitumor activity against multiple myeloma, rationalizing its clinical evaluation.
Cytotoxic Activity of Tivantinib (ARQ 197) Is Not Due Solely to c-MET Inhibition

Ryohei Katayama, Aki Aoyama, Takao Yamori, Jie Qi, Tomoko Oh-hara, Youngchul Song, Jeffrey A. Engelman, and Naoya Fujita

Precis: This study finds that a drug in clinical trials exerts its antitumor activity by blocking tubulin polymerization as well as c-Met activity.

RXRa Inhibits the NRF2-ARE Signaling Pathway through a Direct Interaction with the Neh7 Domain of NRF2

Hongyan Wang, Kaihua Liu, Miao Geng, Peng Gao, Xiaoyuan Wu, Yan Hai, Yangxia Li, Yulong Li, Lin Luo, John D. Hayes, Xiujun Wang, and Xiuwen Tang

Precis: This seminal report advances knowledge about how the cytoprotective transcription factor Nrf2 mediates drug resistance in many cancers and how these effects can be overcome to improve outcomes.

Hsp27 Regulates Epithelial Mesenchymal Transition, Metastasis, and Circulating Tumor Cells in Prostate Cancer

Masaki Shiota, Jennifer L. Bishop, Ka Mun Nip, Anousheh Zardan, Ario Takeuchi, Thomas Cordonnier, Eliana Beraldi, Jenny Bazov, Ladan Fazli, Kim Chi, Martin Gleave, and Amina Zoubidi

Precis: Preclinical and clinical studies demonstrate the efficacy of targeting the chaperone Hsp27 in reducing metastases in prostate cancer, with potentially broader implications in human cancers generally where this molecule may support stem-like functions.

Novel Therapeutic Strategy to Prevent Chemotherapy-Induced Persistent Sensory Neuropathy By TRPA1 Blockade

Gabriela Trevisan, Serena Materazzi, Camilla Fusi, Alessandra Altomare, Giancarlo Aldini, Maura Lodovici, Riccardo Patacchini, Pierangelo Geppetti, and Romina Nissani

Precis: With an increasing number of cancer survivors, it is important for researchers to direct more attention to preventing or ameliorating the side-effects they suffer, such as chemotherapy-induced neuropathies that are as yet little understood or studied.

A Novel Tankyrase Small-Molecule Inhibitor Suppresses APC Mutation–Driven Colorectal Tumor Growth

Ted Lau, Emily Chan, Marrenella Callow, Jo Waaler, Jason Boggs, Robert A. Blake, Steven Magnuson, Amy Sambrone, Melissa Schutten, Ron Firestein, Ondrej Machon, Vladimir Korinek, Edna Choo, Dolores Diaz, Mark Merchant, Paul Polakis, Daniel D. Holsworth, Stefan Krauss, and Mike Costa

Precis: Results establish preclinical proof-of-concept for the use of tankyrase inhibitors in APC-mutant colorectal cancer, uncovering potential diagnostic and safety concerns to be overcome as clinical evaluation proceeds.

β1 Integrin Targeting Potentiates Antiangiogenic Therapy and Inhibits the Growth of Bevacizumab-Resistant Glioblastoma

W. Shawn Carbonell, Michael DeLay, Arman Jahangiri, Catherine C. Park, and Manish K. Aghi

Precis: Enthusiasm about antiangiogenic therapy for glioblastoma has dampened due to lack of sustained responses, resulting from acquired resistance found in this study to be mediated by β1 integrin, a targetable factor mediating interaction between tumor cells and their microenvironment.

Trop-2 Promotes Prostate Cancer Metastasis By Modulating β1 Integrin Functions

Marco Trerotola, Danielle L. Jernigan, Qin Liu, Javed Siddiqui, Alessandro Fatatis, and Lucia R. Languino

Precis: Targeting the transmembrane molecule Trop-2 may provide a route to block metastatic dissemination.

NEDD9 Depletion Destabilizes Aurora A Kinase and Heightens the Efficacy of Aurora A Inhibitors: Implications for Treatment of Metastatic Solid Tumors

Ryan J. Ice, Sarah L. McLaughlin, Ryan H. Livengood, Mark V. Culp, Erik R. Eddy, Alexey V. Ivanov, and Elena N. Pugacheva

Precis: Provocative findings suggest a rationale to use inhibitors of a mitotic regulatory kinase in treatment of metastatic tumors, with predicted sensitivities correlated to tumor expression of the prometastatic regulatory factor NEDD9.
β-Catenin/POU5F1/SOX2 Transcription Factor Complex Mediates IGF-1 Receptor Signaling and Predicts Poor Prognosis in Lung Adenocarcinoma

Chuan Xu, Dan Xie, Shi-Cang Yu, Xiao-Jun Yang, Li-Ru He, Jing Yang, Yi-Fang Ping, Bin Wang, Lang Yang, Sen-Lin Xu, Wei Cui, Qing-Liang Wang, Wen-Juan Fu, Qing Liu, Cheng Qian, You-Hong Cui, Jeremy N. Rich, Hsiang-Fu Kung, Xia Zhang, and Xiu-Wu Bian

Précis: This potentially seminal study reports a novel complex that mediates self-renewal of cancer stem-like cells in lung cancers and perhaps other epithelial tumors.

ABOUT THE COVER

Rapid acquired resistance to antiangiogenic therapies such as bevacizumab limits clinical utility of this approach in highly vascular tumors including glioblastoma multiforme. β1 integrins represent a critical pathway for the promotion of malignant progression and acquired therapy resistance in cancer cells through adhesive interactions with the surrounding tumor microenvironment. Using a multimodal approach, it was found that the β1 integrin subunit was functionally upregulated in patient glioblastoma specimens with acquired resistance to bevacizumab. Knockdown or inhibition of the β1 integrin subunit with neutralizing monoclonal antibodies promoted reversion of malignant phenotype and attenuated in vivo growth of bevacizumab-resistant glioblastoma xenografts. For details, see article by Carbonell and colleagues on page 3145.