Elevated ALCAM Shedding in Colorectal Cancer Correlates with Poor Patient Outcome

Amanda G. Hansen1, Tanner J. Freeman2, Shanna A. Arnold3, Alina Starchenko2, Celestial R. Jones-Paris3, Michael A. Gilger3, Mary K. Washington3,6, Kang-Hsien Fan5, Yu Shyr3, Robert D. Beauchamp1,2,4,6, and Andries Zijlstra1,3,6

Abstract

Molecular biomarkers of cancer are needed to assist histologic staging in the selection of treatment, outcome risk stratification, and patient prognosis. This is particularly important for patients with early-stage disease. We show that shedding of the extracellular domain of activated leukocyte cell adhesion molecule (ALCAM) is prognostic for outcome in patients with colorectal cancer (CRC). Previous reports on the prognostic value of ALCAM expression in CRC have been contradictory and inconclusive. This study clarifies the prognostic value of ALCAM by visualizing ectodomain shedding using a dual stain that detects both the extracellular and the intracellular domains in formalin-fixed tissue. Using this novel assay, 105 patients with primary CRCs and 12 normal mucosa samples were evaluated. ALCAM shedding, defined as detection of the intracellular domain in the absence of the corresponding extracellular domain, was significantly elevated in patients with CRC and correlated with reduced survival. Conversely, retention of intact ALCAM was associated with improved survival, thereby confirming that ALCAM shedding is associated with poor patient outcome. Importantly, analysis of patients with stage II CRC showed that disease-specific survival is significantly reduced for patients with elevated ALCAM shedding ($P=0.01; HR, 3.0$), suggesting that ALCAM shedding can identify patients with early-stage disease at risk of rapid progression. Cancer Res; 73(10); 2955–64. ©2013 AACR.

Introduction

Colorectal cancer (CRC) is the third most frequently diagnosed cancer, and second leading cause of cancer-related deaths in the United States (1). Current prognostic tools for patients with CRC predominantly relies on pathologic Union Internationale Contra Cancrum/American Joint Committee on Cancer (UICC/AJCC) tumor–node–metastasis (TNM) staging classification (2). Although TNM staging successfully stratifies high-risk patients, there is significant variability in the rate of disease progression within each stage. Particular concern exists for early-stage disease (stage I and II) where patients can progress more rapidly than expected. It is well known that approximately 30% of patients with stage II CRC die of recurrent and metastatic disease. Identification of patients at risk of recurrence/progression could inform clinicians on adjuvant chemo-therapeutic treatment decisions. Biomarkers can assist in identifying those patients who require more aggressive intervention or patients at risk of relapse after initial treatment. Promising clinical tests including Oncotype DX and Coloprint evaluate possible disease progression by assessing gene expression. These tests are not yet widely applied possibly because their epigenetic evaluation reflects gene expression, which does not always reliably predict actual cellular behavior. Thus, existing prognostic tests would be enhanced with the addition of biomarkers that report on cancer progression.

Although clinical trials have shown less than 5% 5-year survival benefit from adjuvant therapy for unselected patients with stage II colon cancer (3), it is clear that a subset of these patients are at high risk for poor outcome and would likely benefit from adjuvant therapy (4, 5). Those high-risk stage II patients have similar outcomes to patients with stage III tumor status (6), highlighting the need for molecular stratification parameters to identify high-risk patients with apparent early-stage disease. Attempts made to stratify patients using gene expression profiles have experienced some success but have not been translated to the clinic (7, 8). Molecular indicators capable of identifying subgroups of patients with poor prognosis and benefit of therapy include microsatellite instability and 18q LOH; however, 18q LOH has not been translated to a useful prediction tool for clinical use (9).

Activated leukocyte cell adhesion molecule (ALCAM) has been highlighted as a putative biomarker for the progression of many cancers, including CRC (10–16). ALCAM is a cell-cell
adhesion protein that has been identified in a broad array of biologic processes including inflammatory responses, neuronal outgrowth, and epithelial migration (17). Unlike most candidate biomarkers, ALCAM expression is not tissue-restricted and it is commonly found in most epithelia and related carcinomas. ALCAM contributes to tumor progression by controlling migration and the molecular activity of ALCAM seems to be regulated through shedding of its extracellular domain. Consequently, advanced disease tissues continue to express ALCAM but exhibit an elevated level of ALCAM shedding.

ALCAM has been evaluated for CRC in 5 published reports. Unfortunately, the findings from these studies are contradictory (10, 11, 18,–20). In a study characterizing the expression of ALCAM in the gastrointestinal tract and CRC, ALCAM was found to be highly expressed in the colon crypts of normal tissue and heterogeneously expressed in tumor sections (20). In a study of 299 patients with CRC, membranous ALCAM expression was a positive prognostic indicator for overall survival (11). Similarly, a previous study by Lugli and colleagues also found the loss of membranous ALCAM to be indicative of worse patient prognosis (10). In contrast, Weichert and colleagues reported that membranous ALCAM expression is associated with decreased patient survival (18). A subsequent study by Horst and colleagues (19) found ALCAM not to be correlated with CRC patient outcome.

Although these studies are contradictory, ALCAM has significant potential as a biomarker for CRC because it is not only readily detected in CRC but is also functionally and clinically associated with a large number of cancers including: colorectal (10, 11, 18, 19), prostate (21, 22), breast (13, 23), gastric (24), thyroid (14), pancreatic (25), melanoma (26), and ovarian (15). ALCAM consists of 5 extracellular immunoglobulin G (IgG)-like domains, a transmembrane domain, and a short cytoplasmic domain (27). ALCAM can be proteolytically processed by ADAM17, thereby generating a soluble ALCAM component and a truncated membrane-bound ALCAM containing the transmembrane and cytoplasmic domain (28). Functional importance of this shedding was emphasized by the laboratory of Dr. Guido Swart (Department of Biomolecular Chemistry, Radboud University, Nijmegen, the Netherlands) who showed that ALCAM shedding

Materials and Methods

Cell lines and mice

The continuous cell lines for cancer of the breast (MDA-MB-231 and MCF-7), prostate (PC3 and DU145), and colon (RKo, DLD, LOVO, LS174t, HCT116, HCA7, Sck01, Caco2, HT29, KM12c, and KM12) were cultured in their appropriate basal media (Dulbecco’s Modified Eagle Medium or RPMI) with 10% FBS to confluence before lysis with 1% Triton-X 100 in PBS. ALCAM knockout mice (c57bl/6 ALCAM<−/−>) were purchased from Jackson Laboratories. Mouse tissues were surgically resected, snap-frozen, and subsequently extracted with 1% Triton-X 100 lysis buffer.

Western blot analysis

SDS–PAGE under nonreducing conditions and transfer of proteins to a polyvinylidene difluoride (PVDF) membrane has been described previously (31). After blocking with 5% skimmed milk in PBS/0.05% Tween-20, blots were probed with primary antibodies for extracellular ALCAM (clone 105902; R&D Systems) and selected hybridoma clones, followed by peroxidase-conjugated secondary antibody and enhanced chemiluminescence (ECL; PerkinElmer) detection.

Lentivirus-delivered RNA interference

Four individual constructs containing short hairpin RNAs (shRNA) for human ALCAM and a negative control (scrambled sequence) were purchased from Sigma (Mission shRNA). Constructs were packaged for viral production and infection and tested for target knockdown. For viral packaging, constructs were cotransfected into 293T cells using Fugene HD (Roche Applied Science). Media containing viruses were collected 48 hours after transfection. PC3 cells were infected with the viruses in the presence of Polybrene (8 μg/mL) for 24 hours and then subjected to selection by 5 μg/mL puromycin. Two constructs with 90% or more knockdown efficiency as determined by immunoblotting and flow cytometry were used for further studies.

Human material

The protocols and procedures for this study were approved by the Institutional Review Boards (IRB) at the University of Alabama-Birmingham Medical Center (UAMC; Birmingham, AL), Vanderbilt Medical Center (VMC; Nashville, TN), the Veterans Administration Hospital (Nashville, TN), and the H. Lee Moffitt Cancer Center (MCC; Tampa, FL). Tissue specimens from 250 patients with CRC enrolled at VMC (n = 55) and MCC (n = 195) were used for gene-expression microarray analyses, as described previously (8). All patients had a diagnosis of colorectal adenocarcinoma. Each cancer specimen was staged according to AJCC guidelines (stages I–IV), and 10 normal adjacent specimens were deemed to contain only normal colonic tissue by a certified gastrointestinal pathologist. VMC 55 includes 14 patients from the University of Alabama-Birmingham Medical Center (8). Microarray data for
the National Cancer Institute (NCI) cell lines was obtained through the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO dataset GDS1761).

A tissue microarray containing 75 primary colorectal carcinomas and 12 normal age- and sex-matched colorectal mucosa was constructed using 2-mm cores in triplicate. Specimens from 69 patients with CRC and 12 normal colonic mucosa were suitable to be used in the dual staining analysis. Subsequent expansion of this dataset was accomplished by selection of 36 stage II patients under IRB #120063 providing analysis for a total of 105 CRC and 12 normal mucosa with triplicate representation of each patient. Collection of serum from control (n = 6), noncancer patients (n = 48), and colorectal patients immediately before surgery (pre-op; n = 71) or after treatment (follow-up; n = 20) was accomplished at VMC under IRB# 121365.

ALCAM dual immunofluorescence stain

Immunofluorescent staining for ALCAM in tissues was conducted with hybridoma HPA010926 (Sigma Prestige Antibodies) directed against the extracellular domain and clone IG3A1 (obtained from our fusion) directed against the intracellular domain. Sections cut from patient tissue and tissue microarrays were deparaffinized in xylene and rehydrated. Sections were blocked in 20% Aqua Block after pressure cooker antigen retrieval in citrate buffer (pH 6.0). Samples were immunostained with mouse monoclonal intracellular ALCAM antibody, IG3A1 (1:500) and Alexa-647 goat anti-mouse secondary antibody (Prolong Gold Anti-fade).

Image acquisition and quantitative analysis of ALCAM shedding

Tissue microarrays were imaged using the Ariol SL-50 platform from Genetix. Image analysis and quantitation were conducted using the open-source software ImageJ (FIJI). The analysis pipeline was designed as follows: (i) the tumor area was selected using the free-hand selection tool. (ii) The color image was split into its red, green, and blue component channels. (iii) Image thresholding was used to generate the detectable region of intracellular ALCAM staining (red channel) and extracellular ALCAM staining (green channel). (iv) Intact ALCAM was determined as the area of colocalized intracellular and extracellular ALCAM, whereas ALCAM shedding was determined as the area of intracellular ALCAM that lacks extracellular ALCAM (red but no green). The sum of these 2 represents total ALCAM expression.

Statistical analysis

Descriptive statistics were applied to show patient’s basic characteristics stratified by ALCAM shedding score. Wilcoxon rank sum test and Kruskal–Wallis test were applied to examine the mRNA expression difference between normal tissues and cancer tissues or the ALCAM shedding percentage among normal patients and patients with cancer in all different stages. Kaplan–Meier curve was used to estimate the survival probability for each group, with corresponding P value and HR calculated from log-rank test. Receiver operating characteristic (ROC) curves were used to identify the optimal specificity and sensitivity for patient stratification. For survival analysis, the patient population was dichotomized across a value of ALCAM shedding or intact ALCAM as defined by the ROC curves. For ALCAM shedding, this was 0.75 and for intact ALCAM this was 0.15. For shedding, the P values of all statistical tests were two-sided and considered significant when P < 0.05 where “,” P < 0.05; “,” P < 0.01; and “,” P < 0.001. All statistics were completed using either R, SPSS, or GraphPad Prism. Multivariable analysis using logistic regression was conducted on stage II patients (n = 66; median follow-up, 70 months; median age of diagnosis, 67 years). The variables included were ALCAM shedding, age at time of diagnosis, race, and gender with an incidence of 51.5% (34 events) for overall survival and 26.9% (18 events) for disease-specific survival.

Results

Correlation of ALCAM and ADAM17 expression with survival of colorectal cancer patients

In normal colorectal tissue, immunohistochemical staining for the extracellular domain of ALCAM using HPA10926 reveals the protein at areas of cell–cell contact within the epithelial cells of the colonic crypts and in hemopoietic cell populations of the stroma (Fig. 1A, i and ii). In contrast to normal colon, the concomitant staining of CRC tissue reveals a very heterogeneous staining. Within the same tumor, some regions exhibit elevated ALCAM (Fig. 1A, iii), whereas others exhibit irregular staining (Fig. 1A, iv) or lack ALCAM staining all together (Fig. 1A, v). Similar heterogeneity of ALCAM staining is observed in a publicly available tissue microarray (proteinatlas.org; ref. 32). ALCAM protein expression is detectable in 12 of 14 CRC cell lines (Fig. 1B and Supplementary Fig. S2). Expression of the ALCAM mRNA in CRC cell lines among the NCI60 (Col) is intermediate between the low-expressing leukemia (Leu) cell lines and the high-expressing breast cancer (Br) cell lines (Fig. 1B).

To evaluate ALCAM mRNA expression in CRC, a single cohort consisting of 250 patients obtained through a multi-institutional collection [Vanderbilt University Medical Center (VUMC; Nashville, TN), UAMC, and MCC] was analyzed. ALCAM mRNA is elevated in patients with cancer (Fig. 1C; P < 0.0001) and univariate analysis revealed that high ALCAM expression was in fact associated with significantly decreased survival (Fig. 1C; P < 0.0001). Similarly, expression of ADAM17 (the sheddase of ALCAM) was also significantly elevated in CRC (Fig. 1D; P < 0.0001). The association of ADAM17 expression with patient survival was not statistically significant (P = 0.067), but its elevated expression in CRC together with its established ability to cleave ALCAM is sufficient to suggest that ADAM17 is available to cleave ALCAM and increase its shedding within the tumor microenvironment. Indeed, previous studies reported heterogeneous staining of ADAM17 in CRC (33), which might be
responsible for the variable detection of ALCAM extracellular domain within the tissue. The soluble extracellular domain can be detected in the serum of some patients with cancer (13, 14) However, ALCAM-specific ELISA of serum from patients with CRC did not reveal a correlation between disease progression and increase in circulating ALCAM when comparing serum obtained from cancer-free patients and serum obtained from patients with CRC before and after therapy (Fig. 1E). Detailed comparison of cancer-free patients and normal healthy individuals versus increasing stages of patients with CRC revealed no significant correlation with circulating levels of ALCAM (Fig. 1F).

The histologic detection of membranous ALCAM had been found to correspond negatively with patient survival (18). Using an antibody to the extracellular domain of ALCAM, a histologic evaluation of a 69-patient cohort was conducted (Supplementary Fig. S3). Although the presence or absence of membrane staining did not correspond with overall or disease-specific survival, the loss of detectable cytoplasmic ALCAM corresponded with very poor prognosis. However, only 8 of 69 patients (12%) were negative for cytoplasmic ALCAM, whereas 39 of 69 (56%) lacked membranous ALCAM. This loss of ALCAM from the membrane (with concomitant retention of cytoplasmic staining) is likely to be due to shedding of the ectodomain from the cell surface.

Production and validation of an antibody specific for the cytoplasmic domain of ALCAM

Because ALCAM shedding occurs on the surface of the tumor cells, we hypothesized that shedding might be detectable within the tumor tissue itself. To achieve this, we thought to develop an ALCAM dual stain based on independent detection of the intracellular and extracellular...
domains with domain-specific antibodies (Supplementary Fig. S4A). Using these antibodies in histologic staining of normal and tumor tissue sections should enable the detection of ALCAM shedding in situ (Supplementary Table S1). To accomplish this, a unique antibody directed to the cytoplasmic tail of ALCAM was generated using a 14 AA sequence from the cytoplasmic tail (Supplementary Fig. S1 and Supplementary Methods) conjugated to KLH to immunize 4 A/J mice. Spleens from 2 seropositive mice were fused and 125 viable hybridomas selected from more than 8,000 antigen-reactive clones were evaluated by comparing reactivity with native ALCAM and keyhole limpet hemocyanin (KLH) using direct ELISA (Fig. 2A). ALCAM-specific hybridomas were validated by immunoblotting using whole-cell lysate to confirm binding to intact ALCAM protein (Fig. 2A). Antibody specificity for ALCAM was verified by comparing reactivity with lysates from control and ALCAM knockdown cells (Fig. 2B) and mouse tissue from wild-type and ALCAM^{−/−} mice (Supplementary Fig. S4B). Antigen specificity was confirmed by competitive blocking using the immunizing peptide during immunoblotting (0.1 or 1 μg/mL; Fig. 2C) and histologic staining (1 μg/mL; Supplementary Fig. S4C). As expected, peptide competition with the immunizing peptide resulted in a loss of intracellular ALCAM. The stable hybridoma 1G3A1 was selected as the most promising antibody based on its reactivity in ELISA, immunoblot, immunofluorescence, and standard immunohistochemistry. Specificity of 1G3A1 for the cytoplasmic tail of ALCAM was defined by its ability to detect intact ALCAM in cell lysates but not shed ALCAM in conditioned medium (Fig. 2D). In contrast, the commercial antibody against the extracellular domain of ALCAM (R&D Systems) detects intact as well as shed ALCAM, which lacks the cytoplasmic domain.

Dual staining for the intracellular and extracellular domains of ALCAM in normal and tumor tissue

Using the antibody 1G3A1 to specifically detect the cytoplasmic domain of ALCAM together with the commercial antibody HPA010926 specific for the extracellular domain, we developed a dual staining procedure for ALCAM in human tissues (Figs. 3 and 4). Three-color staining (nuclei, blue; extracellular domain, green; intracellular domain, red) was conducted on tissues along the digestive tract including stomach (Fig. 3A) and colon (Fig. 3B). In normal tissues, detection of the extracellular and cytoplasmic domains of ALCAM coincided, thereby suggesting that ALCAM is expressed and present in its intact form (Fig. 3C, arrow). However, within tumor tissues the intracellular domain (red) is often seen in the absence of the extracellular domain (green) indicating that the extracellular domain of ALCAM was shed (Fig. 3C, arrow head). In gastric cancer, entire glandular structures seem to lack staining for the extracellular domain, whereas others are fully positive (Fig. 3C, i). This all-or-none staining for the extracellular domain suggests that ALCAM-shedding is activated at a macroscopic level within the tissue architecture of the stomach. In colorectal carcinoma tissue, ALCAM staining is more heterogeneous with small populations of cells within the same histologic structure exhibiting different levels of staining for the ALCAM extracellular domain (Fig. 3C, ii).
irregular staining in CRC suggests that ALCAM shedding is occurring throughout the tumor but regulated at a cellular level.

Figure 3. Detection of ALCAM shedding in cancers of the stomach and colon. The ALCAM dual stain composed of the antibody HPA010926 directed against the extracellular domain (ECD; green) and antibody 1G3A1 directed against the intracellular domain (ICD; red) was used to identify locations within the tissue that exhibited ALCAM shedding in cancers of the stomach (A) and colon (B). Scale bar, 64 μm. Images of nuclear stain (blue) were merged with images of HPA010926 (green) and 1G3A1 (red) staining. Insets (C) present magnified regions i and ii from stomach and colon carcinoma. Areas of ALCAM shedding are identified by the presence of 1G3A1 staining (red) and an absence of HPA010926 (green) staining. Arrow, intact ALCAM; arrow head, ALCAM shedding. Scale bar, 320 μm. DAPI, 4',6-diamidino-2-phenylindole.

Quantitative analysis of ALCAM shedding

Previous studies evaluating ALCAM as a biomarker for predicting CRC patient survival have published conflicting...
and inconclusive results (10–12, 18, 20). We postulate that this variability is due to ALCAM shedding, as all these studies evaluate ALCAM through detection of its extracellular domain. To visualize ALCAM shedding, we used HPA010926 (Sigma) to detect the extracellular domain and IG3AI (Fig. 2) to detect the intracellular domain. Shedding of ALCAM was defined for the selected tumor area as the presence of the intracellular domain of ALCAM and the absence of the extracellular domain of ALCAM (Fig. 4). Immunofluorescent staining for each domain was completed simultaneously on sections from paraffin-embedded CRC tissue, which were digitally scanned and quantitatively assessed using ImageJ (Supplementary Fig. S5; see Materials and Methods for details on procedure). Shedding was defined as the loss of the extracellular domain and retention of the cytoplasmic domain. Shedding data are presented graphically in Fig. 4A and B. Quantitatively ALCAM shedding is the fraction of detectable ALCAM from which the extracellular domain is absent [(total ALCAM – intact ALCAM)/total ALCAM]. In normal colonic mucosa, detection of the extracellular and intracellular domains overlaps extensively, showing the predominant presence of intact ALCAM (yellow) and little ALCAM shedding (teal; Fig. 4A, last). Conversely, in tumor sections the intracellular domain of ALCAM remains detectable, whereas the extracellular ALCAM is frequently absent, indicating that ALCAM is shed (Fig. 4B, last).

ALCAM shedding corresponds with reduced patient survival

Because ALCAM shedding is clearly elevated in tumors, we hypothesized that ALCAM shedding can be an accurate prognostic marker for CRC. To evaluate this, histologic detection of ALCAM shedding was conducted on specimens from 105 patients with CRC and 12 healthy controls (see Supplementary Table S2 for patient demographics). For each specimen, ALCAM shedding was quantified as described for Fig. 4. For each patient, the mean value across 3 specimens was used to evaluate the correlation between ALCAM shedding and patient survival. ALCAM shedding is clearly elevated in tissue from CRC (Fig. 5A). Shedding is already increased in some patients with stage I CRC and is significantly increased for stage II, III, and IV patients. Indeed, ANOVA analysis confirms significant elevation across the increasing stages (mean fraction shed =

![Figure 5](image-url)
Bootstrapping was conducted as an internal validation to assess the reliability of the observed associations. ALCAM shedding was an independent predictor of survival in stage II patients (Fig. 5E), and it correlates with worse overall survival in stage II patients. Although ALCAM shedding does not correlate with overall survival in stage II patients (Fig. 5E), it correlates strongly with disease-related death showing significant survival benefit in the stage II patients with low ALCAM shedding (Fig. 5F; P = 0.01; HR, 3.0).

Multivariate analysis was restricted to stage II patients as they were the emphasis of our investigation and the cohort biased to this population. Multivariable analysis with logistic regression of stage II patients found that ALCAM shedding and age at time of diagnosis were both independent predictors of overall survival after adjusting for gender and race [ALCAM shedding, adjusted OR, 9.972; 95% confidence interval (CI), 1.17–84.9; P = 0.035; age; OR, 1.079; 95% CI, 1.027–1.133; P = 0.009]. An analysis of disease-specific survival found that only ALCAM shedding was an independent predictor of survival after adjusting for age at time of diagnosis, race, and gender (ALCAM shedding OR, 29.02; 95% CI, 2.165–389.08; P = 0.011). Bootstrap was conducted as an internal validation to confirm these results and found that ALCAM shedding continued to be an independent predictor of survival in stage II patients (overall survival, P = 0.002; disease-specific survival, P = 0.023).

Discussion

The main goal of this study was to determine if ALCAM shedding corresponds to patient outcome in CRC. As cancer treatments evolve toward individualized therapies, they rely increasingly on the availability of prognostic and predictive markers to determine the patient’s status and facilitate treatment decisions. Some published studies evaluating ALCAM detection as a biomarker for CRC suggest clinical use, but others have been inconclusive and contradictory (10, 11, 18–20). This ambiguity in the literature may be explained by the fact that detection of ALCAM shedding within the tumor tissue is extremely variable. Knowing that ALCAM is shed by the protease ADAM17 (28), we speculated that in CRC, ALCAM is expressed and shed by ADAM17 into the circulation. Indeed, the irregular pattern of expression reported here for ALCAM was previously observed for ADAM17 in glandular tissue of patients with early to advanced gastric cancer (34) and CRC (29). Unfortunately, serum levels of ALCAM in controls (cancer-free age + sex-matched individuals: 45–95 ng/mL) overlap with circulating levels in patients with CRC pre- or post-therapy (45–125 and 50–110 ng/mL respectively; Fig. 1E). This compromises the accuracy and specificity of a blood test for ALCAM (refs. 17, 35; Fig. 1). Nevertheless, the lack of specificity for tumor-derived ALCAM detection in the circulation does not negate the fact that ALCAM shedding within the tumor tissue corresponds with disease progression.

The detection of ALCAM shedding within the tumor tissue itself greatly increases the specificity of ALCAM as a prognostic factor. Our primary aim was to devise a method to stratify at-risk patients using ALCAM shedding as an indicator of disease progression and poor patient outcome, and not as a diagnostic tool. Indeed, the strong correlation between ALCAM shedding and poor patient outcome in early-stage disease suggests that molecular progression can occur in a cancer that seems histologically more benign.

An important disparity becomes apparent when we correlate clinical outcome (survival) with ALCAM gene transcription (mRNA), protein expression (based on detection of intact ALCAM), and ALCAM shedding. Elevated ALCAM transcription is associated with poor outcome, yet elevated levels of intact ALCAM protein (through detection of colocalized extracellular domain and intracellular domain) are associated with improved outcome (Supplementary Fig. S6A vs. S6B). This disparity could be rectified if we consider that the extracellular domain of ALCAM is shed leaving the mistaken impression that ALCAM protein is lost during tumor progression. Indeed, our analysis of ALCAM shedding (summarized in Supplementary Fig. S6C) shows that ALCAM shedding rather than loss of expression corresponds with patient outcome. This observation can explain why 5 independent evaluations of ALCAM in CRC have given conflicting results (10, 11, 18–20).

Although ADAM17 is responsible for proteolytic cleavage of several tumor-associated proteins, few studies have analyzed ectodomain shedding for prognostic purposes. A rare study attempted to look at shedding used monoclonal antibodies specific for the cleavable form of ErbB4 (36) but was unable to look at shedding directly. The dual staining of ALCAM we presented here is then a novel approach to detect molecular behavior (shedding) rather than the molecular identity. Indeed, our results suggest that detection of molecular behavior...
correlates more specifically with the disease than gene expression itself. Given that the disruption of ALCAM–ALCAM interactions promotes tumor cell motility and metastasis (26), ALCAM shedding may predict malignant progression at a molecular level. The clinical correlation between ALCAM shedding and patient outcome (Fig. 5) suggests that detection of disease progression at a molecular level can predict long-term patient outcome. The presence of this correlation in early-stage disease (stage II; Fig. 5) emphasizes that this molecular progression is present before pathologic and clinical progression. Detection of this molecular progression allows for stratification of patients according to their risk for poor long-term outcome. Considering that ALCAM is altered in a number of malignancies (30, 37–40), the clinical correlation of ALCAM shedding to patient outcome is likely to extend beyond CRC to other cancers.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: A.G. Hansen, A. Zijlstra
Development of methodology: A.G. Hansen
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A.G. Hansen, T.J. Freeman, A. Starchenko, C.R. Jones-Paris, M.A. Gilger, R.D. Beauchamp
Analysis and interpretation of data (e.g., statistical analysis, bioinformatics, computational analysis): A.G. Hansen, S.A. Arnold, A. Starchenko, M.A. Gilger, M.K. Washington, K.-H. Fan, Y. Shyr, R.D. Beauchamp, A. Zijlstra
Writing, review, and/or revision of the manuscript: A.G. Hansen, A. Starchenko, M.K. Washington, R.D. Beauchamp, A. Zijlstra
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A.G. Hansen, A. Zijlstra
Study supervision: A. Zijlstra

Acknowledgments
The authors thank Tatiana Ketova, Frank Revetta, and Joseph Roland for excellent technical assistance and Guido Swart as well as Josh Smith for critical reading of the article. 1G3A1 was produced in the Vanderbilt Antibody and Protein Resource (VAPR) under the direction of Rob Carnahan.

Grant Support
This work was primarily supported by U.S. Public Health Services grants CA12071 and CA143081 (A. Zijlstra). A.G. Hansen was supported by T32 HL007751 and the VUMC Breast SPORE P50CA98131. C.R. Jones-Paris and A. Starchenko were supported by F31 CA166228 and T32 CA09952, respectively. T.J. Freeman was supported by T32 GM07347 and R.D. Beauchamp received support from USPHS grants CA904917 and CA158472. Additional support was provided by the VUMC GI Cancer SPORE P50CA95103. Digestive Disease Center Grant P38DK59840, and CTSA award No. ULTR000445 from the National Center for Advancing Translational Sciences.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 31, 2012; revised February 8, 2013; accepted February 21, 2013; published OnlineFirst March 28, 2013.

References
Elevated ALCAM Shedding in Colorectal Cancer Correlates with Poor Patient Outcome

Amanda G. Hansen, Tanner J. Freeman, Shanna A. Arnold, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-2052

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/03/28/0008-5472.CAN-12-2052.DC1

Cited articles
This article cites 39 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/10/2955.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/73/10/2955.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.