Contents

BREAKING ADVANCES

3191 Highlights from Recent Cancer Literature

REVIEWS

3193 The \textit{MET} Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target
Carla Boccaccio and Paolo M. Comoglio

3200 Vesicle Trafficking and RNA Transfer Add Complexity and Connectivity to Cell–Cell Communication
Charles T. Roberts Jr and Peter Kurre

INTEGRATED SYSTEMS AND TECHNOLOGIES

3206 Application of Raman Spectroscopy to Identify Microcalcifications and Underlying Breast Lesions at Stereotactic Core Needle Biopsy
Ishan Barman, Narahara Chari Dingari, Anushree Saha, Sasha McGee, Luis H. Galindo, Wendy Liu, Donna Plecha, Nina Klein, Ramachandra Rao Dasari, and Maryann Fitzmaurice
\textit{Précis:} These findings illustrate a powerful noninvasive spectroscopic approach to detect microcalcifications and other cancer-associated lesions that offers real-time feedback to radiologists during biopsy procedures and thus could reduce nondiagnostic and false-negative biopsies.

3216 Manganese-Enhanced MRI Reveals Early-Phase Radiation-Induced Cell Alterations \textit{In Vivo}
Shigeo Saito, Sumitaka Hasegawa, Aiko Sekita, Rumiana Bakalova, Takako Furukawa, Kenya Murase, Tsume Saga, and Ichio Aoki
\textit{Précis:} This study reports a noninvasive method to monitor cell-cycle alterations in tumors based on manganese uptake and MRI offering a potentially useful tool for longitudinal studies to optimize radiotherapy.

MICROENVIRONMENT AND IMMUNOLOGY

3225 The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress
Felix Sahm, Iris Oezen, Christiane A. Opitz, Bernhard Radlwimmer, Andreas von Deimling, Tilman Ahrendt, Seray Adams, Helge B. Bode, Gilles J. Guillumin, Wolfgang Wick, and Michael Platten
\textit{Précis:} A downstream catabolite of the tryptophan degradation pathway of IDO- and TDO-dependent immune escape, which is elevated in the majority of human cancers, is found to be a key element in their therapeutic resistance, with implications to improve treatment.

3235 Hypoxia Triggers Hedgehog-Mediated Tumor–Stromal Interactions in Pancreatic Cancer
\textit{Précis:} These findings provide evidence for a novel molecular mechanism that explains the high levels of hypoxia and desmoplasia that contribute to therapy resistance in pancreatic cancer.

3248 Single Copies of Mutant K\textit{RAS} and Mutant PIK3CA Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation
\textit{Précis:} These findings suggest a paradigm that helps to explain how a single mutant \textit{Kras} allele can cooperate with mutant \textit{Pik3ca} to impart a transformed phenotype.

Molecular and Cellular Pathobiology

3235 Hypoxia Triggers Hedgehog-Mediated Tumor–Stromal Interactions in Pancreatic Cancer
\textit{Précis:} These findings provide evidence for a novel molecular mechanism that explains the high levels of hypoxia and desmoplasia that contribute to therapy resistance in pancreatic cancer.

3248 Single Copies of Mutant K\textit{RAS} and Mutant PIK3CA Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation
\textit{Précis:} These findings suggest a paradigm that helps to explain how a single mutant \textit{Kras} allele can cooperate with mutant \textit{Pik3ca} to impart a transformed phenotype.
Dachshund Binds p53 to Block the Growth of Lung Adenocarcinoma Cells
Ke Chen, Kongming Wu, Shaixin Cai, Wei Zhang, Jie Zhou, Jing Wang, Adam Ertel, Zhiping Li, Hallgeir Rui, Andrew Quong, Michael P. Lisanti, Aydin Tozeren, Ceylan Tanes, Sankar Addya, Michael Gormley, Chengliang Wang, Steven B. McMahon, and Richard G. Pestell
Précis: This report identifies a modifier of EGFR signaling and stem cell function as an important new regulator of p53 in the most common type of lung cancer.

3326

Lineage Relationship of Gleason Patterns in Gleason Score 7 Prostate Cancer
Irina V. Kovtun, John C. Cherille, Stephen J. Murphy, Sarah H. Johnson, Shahnam Zarei, Farhad Kosari, William R. Sukov, R. Jeffrey Karnes, and George Vasmatis
Précis: This work has important clinical implications because it demonstrates that changes associated with aggressive tumor behavior can be identified prior to the morphologic changes characteristic of aggressive prostate cancer.

3328

Collagen Prolyl Hydroxylases Are Essential for Breast Cancer Metastasis
Danielle M. Gilkes, Pallavi Chaturvedi, Saumendra Bajpai, Carmen C. Wong, Hong Wei, Stephen Pitcairn, Maimon E. Hubbi, Denis Wirtz, and Gregg L. Semenza
Précis: Although collagen prolyl hydroxylases have been implicated broadly in cancer pathophysiology, their precise contributions have not been well understood, an important gap in knowledge addressed by this study.

3327

Interleukin-1β Promotes Skeletal Colonization and Progression of Metastatic Prostate Cancer Cells with Neuroendocrine Features
Qingxin Liu, Mike R. Russell, Kristina Shahriri, Danielle L. Jernigan, Mercedes I. Lioni, Fernando U. Garcia, and Alessandro Fatatis
Précis: The identification of IL-1β as an important mediator of metastasis in prostate cancer should prompt immediate testing of anti-IL-1β strategies to treat advanced disease.

3329

3306

Colorectal Cancer Risk Associated with Hormone Use Varies by Expression of Estrogen Receptor-β
Anja Rudolph, Csaba Toth, Michael Hoffmeister, Wilfried Roth, Esther Herpel, Peter Schirmacher, Hermann Brenner, and Jenny Chang-Claude
Précis: Expression of estrogen receptor β, the predominant estrogen receptor in colon tissue, appears to be involved in the reduction of colorectal cancer risk that may arise with use of oral contraceptives or menopausal hormone therapy.

3307

Inhibition of Tumor Cell Migration by LD22-4, an N-Terminal Fragment of 24-kDa FGFR-2, Is Mediated by Neurophilin 1
Ling Zhang, Graham C. Parry, and Eugene G. Levin
Précis: Definition of a cell surface receptor for an inhibitor of cancer cell migration suggests a novel approach to tumor suppression.

3316

DNA Methylation-Mediated Repression of miR-886-3p Predicts Poor Outcome of Human Small Cell Lung Cancer
Jianzhong Cao, Yongmei Song, Nan Bi, Jie Shen, Wenyang Liu, Jing Fan, GuoGui Sun, Tong Tong, Jie He, Yuankai Shi, Xun Zhang, Ning Lu, Yinghua He, Hongyu Zhang, Kelong Ma, Xiaoying Lao, Lei Lx, Hui Deng, Jing Cheng, Jingde Zhu, Luhua Wang, and Qimin Zhan
Précis: These findings identify a little-studied microRNA the epigenetic downregulation of which strongly affects clinical outcomes and malignant cell behaviors in small-cell lung cancer.

3336

PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains
Sarah Picand, David Da Costa, Angeliki Thanasopoulou, Panagis Filippakopoulos, Paul V. Fish, Martin Philpott, Oleg Fedorov, Paul Brennan, Mark E. Bunnage, Dafydd R. Owen, James E. Bradner, Philippe Taniere, Brendan O’Sullivan, Susanne Muller, Juerg Schwaller, Tatjana Stankovic, and Stefan Knapp
Précis: This study suggests that it may be possible to target an important transcriptional regulatory domain that has been implicated in a broad number of aggressive blood cancers, as a generalizable therapeutic approach.

3347

Bevacizumab-Induced Normalization of Blood Vessels in Tumors Hampers Antibody Uptake
Précis: Bevacizumab treatment decreases tumor uptake of antibodies by vessel normalization, and this should be taken into account in the design of clinical trials that combine bevacizumab with other antibodies.
Threshold Levels of ABL Tyrosine Kinase Inhibitors Retained in Chronic Myeloid Leukemia Cells Determine Their Commitment to Apoptosis

Precise: By providing deeper insights into the pharmacodynamic requirements for the cytotoxic effects of the paradigm kinase inhibitor imatinib, this study may more broadly assist the development of maximally effective kinase inhibitors for cancer treatment.

Simultaneous Targeting of Tumor Antigens and the Tumor Vasculature Using T Lymphocyte Transfer Synergizes to Induce Regression of Established Tumors in Mice

Dhanalakshmi Chinnasamy, Eric Tran, Zhiya Yu, Richard A. Morgan, Nicholas P. Restifo, and Steven A. Rosenberg

Precise: This study offers proof of principle for using antiangiogenic drugs to enhance the efficacy of adoptive T-cell therapies for cancer treatment.

Hedgehog Signaling Alters Reliance on EGF Receptor Signaling and Mediates Anti-EGFR Therapeutic Resistance in Head and Neck Cancer

Precise: Preclinical results show that resistance to the widely used EGFR targeting drug cetuximab, which occurs widely in the clinic, could be prevented by administration of inhibitors of the hedgehog pathway, which appears to be emerging as a major factor in cancer drug resistance more broadly.

Elevation of Receptor Tyrosine Kinases by Small Molecule AKT Inhibitors in Prostate Cancer Is Mediated by Pim-1

Bo Cen, Sandeep Mahajan, Wenzuke Wang, and Andrew S. Kraft

Precise: This study provides a rationale to improve the efficacy of AKT inhibitors for cancer therapy.

miR145 Targets the SOX9/ADAM17 Axis to Inhibit Tumor-Initiating Cells and IL-6–Mediated Paracrine Effects in Head and Neck Cancer

Cheng-Chia Yu, Lo-Lin Tsai, Mong-Lien Wang, Chuan-Hang Yu, Wen-Liang Lo, Yun-Ching Chang, Guang-Yuh Chiou, Ming-Tung Chou, and Shih-Hwa Chiou

Precise: This mechanistically extensive study reveals a core pathway of support for cancer stem-like cells in head and neck squamous carcinomas, with implications for new treatment strategies in this setting.

Cytomegalovirus Contributes to Glioblastoma in the Context of Tumor Suppressor Mutations

Precise: A virus that infects a large proportion of humans is linked for the first time to formation of brain tumors in a mouse model.

Notch3 Functions as a Tumor Suppressor by Controlling Cellular Senescence

Hang Cui, Yahui Kong, Mei Xu, and Hong Zhang

Precise: These findings offer a novel mechanism to enhance our understanding of the tumor-suppressive function of Notch signaling in cancer, with implications in many solid tumor settings.
Dual Role of the Antioxidant Enzyme Peroxiredoxin 6 in Skin Carcinogenesis
Frank Rolfs, Marcel Huber, Florian Gruber, Friederike Böhm, Herbert J. Pfister, Valery N. Bochkov, Erwin Tschachler, Reinhard Dummer, Daniel Hohl, Matthias Schäfer, and Sabine Werner
Précis: Antioxidant functions do not contribute exclusively to tumor suppression, as widely believed, but can also promote tumor development depending on the stage of the disease.

Growth of Triple-Negative Breast Cancer Cells Relies upon Coordinate Autocrine Expression of the Proinflammatory Cytokines IL-6 and IL-8
Précis: Findings offer a preclinical proof of principle to improve therapy of triple-negative breast cancer, a particularly aggressive disease subtype lacking effective mechanism-based interventions.

ABOUT THE COVER
In gliomas, constitutive metabolism of the essential amino acid tryptophan leads to the accumulation of the tryptophan metabolite quinolinic acid. Quinolinic acid is used by tumor cells to generate NAD$, thus contributing to the resistance towards radiotherapy and chemotherapy by replenishing depleted intracellular NAD pools. Using Western blot analyses and immunohistochemistry, it was found that the key enzyme leading to accumulation of quinolinic acid, 3-hydroxyanthranilate oxygenate (3-HAO), is expressed by tumor-infiltrating monocytes. Thus, infiltrating monocytes contribute to resistance to cytotoxic therapies in malignant gliomas. For details, see article by Sahm and colleagues on page 3225.
73 (11)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/73/11</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>