The **MET** Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target

Carla Boccaccio and Paolo M. Comoglio

Abstract

The **MET** oncogene, a crucial regulator of the genetic program known as “invasive growth” or “epithelial–mesenchymal transition,” has recently emerged as a functional marker of glioblastoma stem cells. Here, we review findings that associate **MET** expression and activity with a specific, genetically defined glioblastoma stem cell subtype, and data showing how **MET** sustains the stem cell phenotype in glioblastoma and other tumors. Finally, we discuss issues related to identification of tumorigenic clones driven by **MET** in the context of genetically heterogeneous tumors and strategies aimed at eradicating cancer stem cells. *Cancer Res; 73(11); 3193–9.* ©2013 AACR.

Glioblastoma: A Model for the Quest of Tumor Genetic Determinants and Tumorigenic Cell Hierarchies

Glioblastoma, the most common type of brain tumor, is relatively rare but virtually incurable, with a median survival of 12 to 15 months attained through combination of surgery, radiotherapy, and chemotherapy with the DNA alkylating/methylating agent temozolomide (1). This multimodal protocol often fails because the locally infiltrative nature of the tumor may limit surgical resection, brain side effects restrain the dose of radiotherapy, expression of the DNA repair enzyme O-6 methyl-guanine methyltransferase (MGMT) confers resistance against temozolomide, and the blood–brain barrier blocks alternative chemotherapeutic agents (2, 3). With the exception of antiangiogenic agents, inhibitors of tyrosine kinase receptors, or signal transducers controlling cell proliferation, did not provide any benefit in clinical trials (4). Recurrence has been associated with innate DNA repair activity and radioresistance of the “cancer stem cell” subpopulation (5). Glioblastoma is indeed one of the first solid tumors in which a cell hierarchy including tumorigenic (stem) and non-tumorigenic (nonstem) cancer cells has been identified by the *in vivo* transplantation assay (6, 7).

At the same time, a comprehensive picture of the glioblastoma genomic landscape has been provided (reviewed in ref. 8). Genes recurrently altered—and thus likely to play a significant pathogenic role—frequently impinge on three main signaling circuits: (i) the receptor tyrosine kinase/Ras/phosphoinositide 3-kinase (PI3K) pathway, controlling cell proliferation and survival [This includes the EGF receptor (**EGFR**, amplified and/or mutated in 45% cases, the most frequent mutation being deletion of the extracellular domain, also known as **EGFRvIII** deletion). Other affected genes are the PI3K inhibitor **PTEN** (inactivated in 36% of cases) and the Ras inhibitor **NF1** (inactivated in 23% of cases); (ii) the p53 pathway, controlling apoptosis and senescence, where **TP53** is mutated in 35% of cases; and (iii) the RB pathway, controlling cell-cycle progression, where the cell-cycle inhibitors **CDKN2A** (p16/INK4A) and **CDKN2B** are alternatively inactivated in about 50% of cases. Overall, about 75% of patients harbor at least one gene alteration in each of the above three pathways (2, 8). Another recently emerged pathway is NF-κB, with deletion of **NF1/RAS** affecting about 25% of patients (9). Quite unexpectedly, a relatively high frequency of mutations was also found in the Krebs cycle enzymes isocitrate dehydrogenase 1 and 2 (IDH1/2). These mutations are preferentially associated with “secondary glioblastoma,” that is, glioblastoma progressing from lower grade gliomas, where they affect 80% of cases, with a significant pathogenetic role (10).

As the inventory of glioblastoma-driving genes enlarges, the connectivity among the crucial players is becoming clearer. However, the dynamics by which mutations accumulate is still obscure, particularly in “primary glioblastomas,” that is, tumors diagnosed at their onset as “high-grade” (10). Intratumor genetic heterogeneity—the presence of different genetic lesions in distinct cell subsets—is a common cancer feature, and glioblastoma makes no exception (reviewed in ref. 11). Intriguingly, this heterogeneity might reflect coexistence of subclones sustained by genetically distinct cancer stem cells. Indeed, it has been proposed that cancer stem cells can be not only a source of tumor phenotypic heterogeneity (resulting from progeny pseudodifferentiation) but also the units of tumor genetic evolution, obeying the Darwinian laws of mutation and selection (12, 13). Studies in leukemias have shown that multiple, genetically distinct subclones of cancer stem cells may coexist (14). These subclones likely result from “divergent evolution” of a common ancestor cancer stem cell, which generates parallel lineages undergoing independent mutation accrual and clonal selection (12–14). Interestingly,
genetically distinct, but related, cancer stem cells have been isolated from different areas of the same glioblastoma (15), suggesting that, also in this tumor, divergent evolution and coexistence of different cancer stem cell subclones may occur, although a dominant subclone may prevail.

Concomitant analysis of genetic alterations and gene expression profiles of glioblastomas provided a molecular classification into four main subtypes (proneural, neural, classical, and mesenchymal; ref. 16). In this classification, some genetic alterations are preferentially associated with a specific gene expression profile. For instance, high-level amplification and/or mutation of EGFR gene, together with high expression of EGFR protein, are significantly more frequent in tumors displaying the classical or the neural profile, as compared with the proneural or mesenchymal ones. Platelet-derived growth factor (PDGF) receptor or IDH1/2 alterations define the proneural profile, whereas NFI deletion is mostly associated with the mesenchymal. Conversely, another frequent gene alteration such as PTEN inactivation may associate with any gene expression profile (16).

Interestingly, glioblastomas that relapse after undergoing the selective pressure of chemoradiotherapy usually display a mesenchymal profile (16). This suggests that, in the primary tumor, a mesenchymal subclone inherently resistant to therapies may coexist with a dominant classical or proneural subclone and drive relapse when such dominant clone is exterminated.

The MET Oncogene: A Marker of a Glioblastoma Stem Cell Subset

Besides EGFR, other receptor tyrosine kinase genes are altered in a significant fraction of glioblastomas: HER-2 (HER2, 8%), PDGF receptor A (13%), and MET (HGF receptor, 4%). Although its genetic alteration is relatively rare, MET is suspected to play a wide role in glioblastoma pathogenesis, as it is often overexpressed and coexpressed with its ligand, hepatocyte growth factor (HGF; refs. 17–19). The frequency of MET expression in primary glioblastoma, measured by immunohistochemical methods, varies from 100% (likely overestimated because of the different levels of intensity among samples; ref. 17) to approximately 30% of cases (20). Interestingly, MET is expressed also by endothelial cells and can significantly contribute to glioblastoma neoangiogenesis (19). Through gene expression profiling, MET turned out to be a "signature gene," specifically associated with the glioblastoma mesenchymal subtype (30% of primary glioblastomas; refs. 16, 21).

The study by De Bacco and colleagues associated MET expression with a subset of neurospheres endowed with specific genetic features (25). The study by Joo and colleagues shows that MET expression is heterogeneous within the same tumor, with dominant expression in two apparently unrelated regions: the proximities of blood vessels and the hypoxic edges (24). The first region may correspond to the "perivascular niche," a microenvironment required to maintain glioblastoma stem cell properties (26). Hypoxic areas, which are far from blood vessels and adjacent to necrotic areas, have been already functionally associated with MET in many tumors, since a transcriptional factor activated by hypoxia [hypoxia-inducible factor 1 (HIF-1)] directly promotes transcription of the MET gene (27). Prospective isolation of glioblastoma cell subpopulations with anti-MET antibodies showed that only cells expressing high levels of MET retained clonogenic, tumorigenic, and radioresistant properties—that is, a cancer stem cell phenotype (ref. 24; Fig. 1).

Interestingly, glioblastomas that relapse after undergoing the selective pressure of chemoradiotherapy usually display a mesenchymal profile (16). This suggests that, in the primary tumor, a mesenchymal subclone inherently resistant to therapies may coexist with a dominant classical or proneural subclone and drive relapse when such dominant clone is exterminated.

Concomitant analysis of genetic alterations and gene expression profiles of glioblastomas provided a molecular classification into four main subtypes (proneural, neural, classical, and mesenchymal; ref. 16). In this classification, some genetic alterations are preferentially associated with a specific gene expression profile. For instance, high-level amplification and/or mutation of EGFR gene, together with high expression of EGFR protein, are significantly more frequent in tumors displaying the classical or the neural profile, as compared with the proneural or mesenchymal ones. Platelet-derived growth factor (PDGF) receptor or IDH1/2 alterations define the proneural profile, whereas NFI deletion is mostly associated with the mesenchymal. Conversely, another frequent gene alteration such as PTEN inactivation may associate with any gene expression profile (16).

Interestingly, glioblastomas that relapse after undergoing the selective pressure of chemoradiotherapy usually display a mesenchymal profile (16). This suggests that, in the primary tumor, a mesenchymal subclone inherently resistant to therapies may coexist with a dominant classical or proneural subclone and drive relapse when such dominant clone is exterminated.

The MET Oncogene: A Marker of a Glioblastoma Stem Cell Subset

Besides EGFR, other receptor tyrosine kinase genes are altered in a significant fraction of glioblastomas: HER-2 (HER2, 8%), PDGF receptor A (13%), and MET (HGF receptor, 4%). Although its genetic alteration is relatively rare, MET is suspected to play a wide role in glioblastoma pathogenesis, as it is often overexpressed and coexpressed with its ligand, hepatocyte growth factor (HGF; refs. 17–19). The frequency of MET expression in primary glioblastoma, measured by immunohistochemical methods, varies from 100% (likely overestimated because of the different levels of intensity among samples; ref. 17) to approximately 30% of cases (20). Interestingly, MET is expressed also by endothelial cells and can significantly contribute to glioblastoma neoangiogenesis (19). Through gene expression profiling, MET turned out to be a "signature gene," specifically associated with the glioblastoma mesenchymal subtype (30% of primary glioblastomas; refs. 16, 21).

The study by De Bacco and colleagues associated MET expression with a subset of neurospheres endowed with specific genetic features (25). The study by Joo and colleagues shows that MET expression is heterogeneous within the same tumor, with dominant expression in two apparently unrelated regions: the proximities of blood vessels and the hypoxic edges (24). The first region may correspond to the "perivascular niche," a microenvironment required to maintain glioblastoma stem cell properties (26). Hypoxic areas, which are far from blood vessels and adjacent to necrotic areas, have been already functionally associated with MET in many tumors, since a transcriptional factor activated by hypoxia [hypoxia-inducible factor 1 (HIF-1)] directly promotes transcription of the MET gene (27). Prospective isolation of glioblastoma cell subpopulations with anti-MET antibodies showed that only cells expressing high levels of MET retained clonogenic, tumorigenic, and radioresistant properties—that is, a cancer stem cell phenotype (ref. 24; Fig. 1).

The study by De Bacco and colleagues associated MET expression with a subset of neurospheres endowed with specific genetic features (25). The study by Joo and colleagues shows that MET expression is heterogeneous within the same tumor, with dominant expression in two apparently unrelated regions: the proximities of blood vessels and the hypoxic edges (24). The first region may correspond to the "perivascular niche," a microenvironment required to maintain glioblastoma stem cell properties (26). Hypoxic areas, which are far from blood vessels and adjacent to necrotic areas, have been already functionally associated with MET in many tumors, since a transcriptional factor activated by hypoxia [hypoxia-inducible factor 1 (HIF-1)] directly promotes transcription of the MET gene (27). Prospective isolation of glioblastoma cell subpopulations with anti-MET antibodies showed that only cells expressing high levels of MET retained clonogenic, tumorigenic, and radioresistant properties—that is, a cancer stem cell phenotype (ref. 24; Fig. 1).
mesenchymal transition (EMT) and leading to cell invasion, proliferation, and survival in atypical tissue environments, including distant metastatic sites (reviewed in ref. 29). Recent evidence indicating that common molecular mechanisms control both EMT and "stemness" (30) suggests that MET may be involved in the concomitant regulation of both properties. Three recently published articles support the conclusion that MET is a functional marker of glioblastoma stem cells. Li and colleagues showed that MET stimulation by HGF sustains clonogenic properties of neurospheres and expression of a panel of transcription factors, including Sox2, c-Myc, Klf4, Oct4, and Nanog, capable of reprogramming differentiated cells into pluripotent stem cells (ref. 23; Fig. 1). The studies by Joo and colleagues (24) and De Bacco and colleagues (25) corroborate the ability of MET to sustain the glioblastoma stem cell phenotype in vitro and report a tight association between MET expression and tumorigenic properties in vivo. However, MET is not a universal marker of glioblastoma stem cells. Indeed, MET-negative neurospheres fully endowed with self-propagation and tumorigenic properties can be derived, mostly from glioblastomas harboring EGFR gene amplification/mutation (EGFR^{amp}/PTEN^{classical subtype}), whereas MET-positive neurospheres are strongly dependent on EGFR activation for their in vitro propagation and, likely, for their in vivo tumorigenic potential (25).

Figure 1. MET as a functional marker of glioblastoma stem cells. A, from glioblastomas, two subtypes of neurospheres (cultures enriched in stem and progenitor cells) can be isolated that alternatively lack or display MET expression (MET-negative or MET-positive, respectively). Lack of MET expression significantly correlates with EGFR gene amplification/mutation (EGFR^{amp}/PTEN^{classical subtype}), "wild-type" PTEN gene (PTEN^{wt}), and a classical gene expression profile (subtype). Conversely, MET expression preferentially associates with a "wild-type" EGFR gene (EGFR^{wt}), PTEN gene inactivation (PTEN^{loss}), and a mesenchymal or proneural gene expression profile. In MET-positive neurospheres, a cell hierarchy can be found. The MET^{high} subpopulation displays clonogenic and tumorigenic properties and radioresistance. MET^{high} cells self-renew and generate cells that downregulate MET expression (MET^{neg}) and lose stem/tumorigenic properties. MET^{high} cells can also be directly isolated from glioblastoma tissues. The cell hierarchy in MET-negative neurospheres is presently unknown. B, MET expression may be constitutive ("inherence," see text) but also increased by environmental factors ("expedience," see text). In MET^{high} cells, HGF drives a genetic program that sustains clonogenicity, invasiveness, tumorigenesis, and radioresistance.
Interestingly, MET-positive neurospheres do not homogeneously express MET and seem to be organized in a cell hierarchy featuring, at the apex, a cell subpopulation expressing high levels of MET (MET$^{\text{high}}$) and, at the base, a cell subpopulation that conversely expresses negligible levels of MET (MET$^{\text{neg}}$; Fig. 1). This conclusion is supported by data showing that upon isolation from neurospheres, (i) MET$^{\text{high}}$, but not MET$^{\text{neg}}$ cells, retain distinctive stem cell properties such as long-term propagation (clonogenic ability) and multipotential differentiation; (ii) MET$^{\text{high}}$, but not MET$^{\text{neg}}$ cells, can reconstitute a mixed MET$^{\text{high}}$.MET$^{\text{neg}}$ cell population, as found in the original neurosphere; and (iii) MET$^{\text{high}}$ have increased tumorigenic ability as compared with MET$^{\text{neg}}$ and are the only that form tumors containing both MET$^{\text{high}}$ and MET$^{\text{neg}}$ cells (25). Moreover, it was shown that when neurospheres undergo a differentiation program (e.g., by culture in serum) MET expression is downregulated, again suggesting that MET is specifically associated with the stem status (25).

Finally, in MET-positive neurospheres, HGF increases in vitro migration through extracellular matrices, a typical property of "mesenchymal" cells, predictive of invasive ability in vivo, thus suggesting that MET may concomitantly regulate stem and EMT/invasiveness (Fig. 1; ref. 25).

MET Expression and Function in Cancer Stem Cells: A Paradigm of "Inherence"

Together with leukemias, glioblastoma is a model for the genetic and phenotypic study of cancer stem cells in many tumor types. High incidence tumors, such as breast, lung, and colorectal carcinomas, underwent extensive genetic characterization, but investigation on how mutations affect the cancer stem cell phenotype has just begun. With the advent of targeted therapies, this knowledge is necessary to clarify: (i) whether a given target is expressed and functionally meaningful in the dominant stem cell subpopulation, which would determine whether the arising tumor will be sensitive or primarily resistant to target inhibition; and (ii) whether, in the same tumor, there are coexisting cell subclones with stem potential primarily resistant to, and therefore selectable by, therapy to become the driver of tumor recurrence. This is exemplified by a minor subset of MET-amplified cells resistant to EGFR inhibitors, which drives recurrence in non–small cell lung carcinoma after treatment with gefitinib (31).

There is little knowledge about expression and function of MET in cancer stem cells outside the brain; however, direct and indirect evidence points to an ample involvement in defining tumorigenic subpopulations. In colorectal cancer, this oncogene is frequently overexpressed, mostly in association with genetic and phenotypic study of cancer stem cells in many tumor types. High incidence tumors, such as breast, lung, and colorectal carcinomas, underwent extensive genetic characterization, but investigation on how mutations affect the cancer stem cell phenotype has just begun. With the advent of targeted therapies, this knowledge is necessary to clarify: (i) whether a given target is expressed and functionally meaningful in the dominant stem cell subpopulation, which would determine whether the arising tumor will be sensitive or primarily resistant to target inhibition; and (ii) whether, in the same tumor, there are coexisting cell subclones with stem potential primarily resistant to, and therefore selectable by, therapy to become the driver of tumor recurrence. This is exemplified by a minor subset of MET-amplified cells resistant to EGFR inhibitors, which drives recurrence in non–small cell lung carcinoma after treatment with gefitinib (31).

There is little knowledge about expression and function of MET in cancer stem cells outside the brain; however, direct and indirect evidence points to an ample involvement in defining tumorigenic subpopulations. In colorectal cancer, this oncogene is frequently overexpressed, mostly in association with genetic and phenotypic study of cancer stem cells in many tumor types. High incidence tumors, such as breast, lung, and colorectal carcinomas, underwent extensive genetic characterization, but investigation on how mutations affect the cancer stem cell phenotype has just begun. With the advent of targeted therapies, this knowledge is necessary to clarify: (i) whether a given target is expressed and functionally meaningful in the dominant stem cell subpopulation, which would determine whether the arising tumor will be sensitive or primarily resistant to target inhibition; and (ii) whether, in the same tumor, there are coexisting cell subclones with stem potential primarily resistant to, and therefore selectable by, therapy to become the driver of tumor recurrence. This is exemplified by a minor subset of MET-amplified cells resistant to EGFR inhibitors, which drives recurrence in non–small cell lung carcinoma after treatment with gefitinib (31).

There is little knowledge about expression and function of MET in cancer stem cells outside the brain; however, direct and indirect evidence points to an ample involvement in defining tumorigenic subpopulations. In colorectal cancer, this oncogene is frequently overexpressed, mostly in association with genetic and phenotypic study of cancer stem cells in many tumor types. High incidence tumors, such as breast, lung, and colorectal carcinomas, underwent extensive genetic characterization, but investigation on how mutations affect the cancer stem cell phenotype has just begun. With the advent of targeted therapies, this knowledge is necessary to clarify: (i) whether a given target is expressed and functionally meaningful in the dominant stem cell subpopulation, which would determine whether the arising tumor will be sensitive or primarily resistant to target inhibition; and (ii) whether, in the same tumor, there are coexisting cell subclones with stem potential primarily resistant to, and therefore selectable by, therapy to become the driver of tumor recurrence. This is exemplified by a minor subset of MET-amplified cells resistant to EGFR inhibitors, which drives recurrence in non–small cell lung carcinoma after treatment with gefitinib (31).

There is little knowledge about expression and function of MET in cancer stem cells outside the brain; however, direct and indirect evidence points to an ample involvement in defining tumorigenic subpopulations. In colorectal cancer, this oncogene is frequently overexpressed, mostly in association with genetic and phenotypic study of cancer stem cells in many tumor types. High incidence tumors, such as breast, lung, and colorectal carcinomas, underwent extensive genetic characterization, but investigation on how mutations affect the cancer stem cell phenotype has just begun. With the advent of targeted therapies, this knowledge is necessary to clarify: (i) whether a given target is expressed and functionally meaningful in the dominant stem cell subpopulation, which would determine whether the arising tumor will be sensitive or primarily resistant to target inhibition; and (ii) whether, in the same tumor, there are coexisting cell subclones with stem potential primarily resistant to, and therefore selectable by, therapy to become the driver of tumor recurrence. This is exemplified by a minor subset of MET-amplified cells resistant to EGFR inhibitors, which drives recurrence in non–small cell lung carcinoma after treatment with gefitinib (31).

Implications of MET Expression in Cancer Stem Cells for Diagnosis and Personalized Therapy of Glioblastoma (and Other Tumors)

The presence of different mutations in cancer stem cells, their accumulation over time in linear or in branching subclones, and the likely coexistence of genetically distinct subclones has important consequences: (i) the inter- and intratumor variegate genetics of cancer stem cells undermines the response to targeted therapies; (ii) the intratumor variability of cancer stem cells dictates the need to hit simultaneously different coexisting subclones; and (iii) the survival of any minor clone—unaffected by therapy—drives positive selection and recurrence.

A trivial explanation for failures of clinical trials with targeted therapies in glioblastoma may be the presence of the blood–brain barrier that opposes an obstacle to drug delivery. However, in glioblastoma as well as in other tumors not shielded by a blood–tissue barrier, a deeper interpretation of these failures is the heterogeneous and dynamic genetics of cancer stem cells. In glioblastoma, the high frequency of *EGFR* amplification/mutation fostered EGFR inhibitors. Despite initial success in patients displaying specific molecular features,
such as expression of EGFRvIII and PTEN integrity (41), subsequent trials failed (42). As result, therapy of glioblastoma with EGFR inhibitors was stopped. However, from these studies, it is difficult to draw a final negative conclusion, as a different outcome could arise from careful stratification of patients by considering the full spectrum of genetic alterations and recognizing the presence of coexisting subclones harboring genetic lesions other than EGFR.

Similar considerations must be taken into account in planning "personalized" targeted therapy against MET. As mentioned above, the oncogene is amplified only in a small subset of glioblastomas (4%), but it is expressed in a high percentage of cases, often in association with its ligand HGF, which is predictive of sensitivity to MET inhibition in mouse models (43). Moreover, as discussed, MET may contribute to sustain the stem cell phenotype of a fraction of glioblastomas by "oncogenic inheritance" (see above). However, as suggested also by a phase II clinical trial with the anti-HGF antibody AMG-102 (44), it is unlikely that MET targeting alone could provide a substantial benefit in glioblastoma therapy. On the other hand, preclinical studies have shown that MET inhibitors synergize with EGFR against xenografts of glioblastoma cell lines harboring both EGFRvIII mutation and PTEN deletion (45). Therefore, better identification of patients that will benefit from MET inhibitors could be achieved by (i) a careful analysis of the genetic alterations coexisting with MET amplification and/or expression and (ii) an accurate identification of the genetically distinct subclones coexisting in the tumor. This may not be an easy task but technology will help in the near future (e.g., "next generation" sequencing, cell sorting, identification of "surrogate markers," and co-clinical trials in "xenopatients"; refs. 46–48). Looking forward to achieving these technological breakthroughs, two state-of-the-art approaches are currently available: combination of MET targeted therapy with either radiotherapy or anti-angiogenic agents.

MET Inhibitors, Radiotherapy, and Antiangiogenesis

We recently showed that doses of ionizing radiation commonly used for tumor radiotherapy induce MET transcriptional upregulation in glioblastomas and other tumor types (38). The signaling pathway leading to MET overexpression starts with ATM kinase, involved in recognition of DNA damage, and ends with the transcription factor NF-κB that activates the MET promoter. Overexpression results in ligand-independent MET activation, sensitization to subliminal concentrations of HGF, protection against radiation-induced apoptosis, and, notably, induction of invasive growth. Vice versa, MET inhibition by small-molecule kinase inhibitors or monoclonal antibodies radiosensitizes tumor cells in vitro and in vivo (38). Interestingly, Joo and colleagues in their recent article showed that MET is induced by ionizing radiation in glioblastoma stem cells, and its inhibition counteracts their inherent radioresistance (24). Altogether, these findings strongly suggest that association of radiotherapy with MET inhibitors could increase the chance to eradicate the glioblastoma stem cell population (Fig. 1).

The anti-VEGF antibody bevacizumab, targeting tumor neoangiogenesis, and currently approved as single agent for recurrent glioblastoma, has provided only a modest therapeutic benefit (49). Indeed, bevacizumab induces a transient tumor regression, almost invariably ending in resistance and progression. In most cases, the tumor regains the ability to form blood vessels, while in the remaining cases (up to 30%), the tumor relapses with a seemingly infiltrative and angiogenic-independent pattern (50). Although lack of standardized imaging criteria to define relapse makes these findings controversial, an invasive response likely takes place after blood vessel inhibition (reviewed in ref. 51). Increasing experimental evidence points to MET as a major culprit. Indeed, reduced blood influx leads to decreased intracellular oxygen concentration and MET transcriptional upregulation by HIF-1 (see above; ref. 27). Further in this line, a recent article proposes that the invasive response to bevacizumab may also arise from the reversal by bevacizumab of VEGF-dependent MET receptor inhibition (52).

Although the role of stem cells in the response to bevacizumab remains unknown at this time, these findings predict that association of MET and angiogenesis inhibitors would be beneficial to prevent the tumor "proinvasive response" to blood deprivation.

Conclusions

Analysis of neurospheres and cells prospectively isolated from fresh tumors allowed to identify MET as a functional marker of glioblastoma stem cells. MET expression is significantly associated with specific genetic features, such as normal EGFR gene and PTEN inactivation, and with defined gene expression profiles (mesenchymal-proneural). Upon stimulation by its ligand, MET contributes to glioblastoma stem cell self-renewal, invasiveness, tumorigenesis, and radioresistance. Genetic heterogeneity of glioblastomas and neurospheres suggest that multiple stem cell subclones, with distinct genetic alterations and different expression of MET, coexist in the same tumor. These observations have important consequences for identification of patients that could benefit of targeted therapies against MET and/or other meaningful targets in glioblastoma and other tumors. MET involvement in resistance to ionizing radiation or antiangiogenic agents suggests that MET inhibition may be useful in combination with radiotherapy or antiangiogenic treatments such as bevacizumab.

Disclosure of Potential Conflicts of Interests

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: C. Boccaccio, P.M. Comoglio

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C. Boccaccio

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): C. Boccaccio, P.M. Comoglio

Writing, review, and/or revision of the manuscript: C. Boccaccio, P.M. Comoglio

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): C. Boccaccio, P.M. Comoglio

Study supervision: C. Boccaccio, P.M. Comoglio
Acknowledgments
The authors thank Daniela Gramaglia, Antonella Cignetto, and Francesca Natale for secretarial assistance.

Grant Support
The study was supported by Italian Association for Cancer Research (Investigator Grant no. 10416 and 11852, and Special Program Molecules.

References
The \textit{MET} Oncogene in Glioblastoma Stem Cells: Implications as a Diagnostic Marker and a Therapeutic Target

Carla Boccaccio and Paolo M. Comoglio

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-4039

Cited articles
This article cites 52 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/11/3193.full.html#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
/content/73/11/3193.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.