Collagen Prolyl Hydroxylases Are Essential for Breast Cancer Metastasis

Daniele M. Gilkes1,2,4, Pallavi Chaturvedi1,2, Saumendra Bajpai4,5, Carmen C. Wong1,2, Hong Wei1,2, Stephen Pitcairn1,2, Maimon E. Hubbi1,2, Denis Wirtz4,5, and Gregg L. Semenza1,2,3,4

Abstract

The presence of hypoxia and fibrosis within the primary tumor are two major risk factors for metastasis of human breast cancer. In this study, we demonstrate that hypoxia-inducible factor 1 activates the transcription of genes encoding collagen prolyl hydroxylases that are critical for collagen deposition by breast cancer cells. We show that expression of collagen prolyl hydroxylases promotes cancer cell alignment along collagen fibers, resulting in enhanced invasion and metastasis to lymph nodes and lungs. Finally, we establish the prognostic significance of collagen prolyl hydroxylase mRNA expression in human breast cancer biopsies and show that ethyl 3,4-dihydroxybenzoate, a prolyl hydroxylase inhibitor, decreases tumor fibrosis and metastasis in a mouse model of breast cancer. Cancer Res; 73(11); 3285–96.

©2013 AACR.

Introduction

The majority of human breast cancers develop regions of severe intratumoral hypoxia (1, 2), leading to the activation of the hypoxia-inducible factors HIF-1 and HIF-2, which mediate adaptive transcriptional responses to reduced O2 availability as well as stimulating invasion and metastasis (3). The HIFs are heterodimeric proteins that consist of an O2-regulated HIF-1α or HIF-2α subunit and a constitutively expressed HIF-1β subunit (3, 4). Genetic manipulations decreasing HIF-1α expression impede tumor growth, angiogenesis, and metastasis in animal models (5–9). Immunohistochemical analyses of primary breast cancer biopsies have revealed that high HIF-1α expression is associated with significantly increased risks of treatment failure, disease relapse, distant metastasis, and patient mortality (10–14). Increased HIF-2α expression is also associated with increased risk of recurrence and mortality (15).

Cancer progression is also associated with an increase in extracellular matrix (ECM) deposition and stiffening, which enhances cell growth, survival, integrin signaling, and focal adhesion formation (16–21). Using mouse models that recapitulate the histologic progression of human breast cancer, mammary tumors exhibited a localized increase in collagen deposition (22, 23). As tumor size increased, collagen fibers straightened, bundled, and aligned (24). Several groups observed tumor cells preferentially invading along aligned collagen fibers (24–26). However, studies to date have not determined an underlying molecular mechanism for the increase in collagen fiber formation during tumor progression. In this study, we tested the hypothesis that HIF-1 is a direct regulator of increased collagen deposition, which in turn promotes invasion to drive the metastasis of hypoxic breast cancer cells.

Collagen biogenesis requires collagen prolyl 4-hydroxylase (P4H) activity to catalyze collagen proline hydroxylation. Three isoforms of the P4HA subunit (P4HA1, P4HA2, and P4HA3) form A2B2 tetramers with P4HB resulting in P4H1, P4H2, and P4H3 holoenzymes, respectively (27, 28). Proper hydroxylation is required for folding newly synthesized procollagen polypeptide chains into stable triple helical molecules, a prerequisite for extracellular secretion (29, 30). Following procollagen secretion, peptidases remove N- and C-terminal propeptides, and lysyl oxidase (LOX) cross-links triple-helical molecules to form mature collagen fibers.

Many studies have focused on the role of LOX family members in extracellular collagen crosslinking and tumor progression (9, 18, 31) without considering the rate-limiting step of collagen deposition. In this study, we determined that hypoxia-induced collagen prolyl hydroxylation expression promotes collagen deposition, which enhances invasion, leading to lymph node and lung metastasis. Elevated P4HA1 and P4HA2 mRNA levels in human breast cancers predict patient
mortality. Finally, we show that treating tumor-bearing mice with ethyl 3,4-dihydroxybenzoate (DHB), a hydroxylase inhibitor, decreases breast cancer fibrosis and metastasis.

Materials and Methods

Cell lines and culture

MDA-MB-231 and MDA-MB-435 cells were obtained from the National Cancer Institute (NCI) PS-OC Network Bioresource Facility and maintained in Dulbecco’s Modified Eagle Medium with 10% FBS and antibiotics in a 5% CO₂, 95% air incubator (20% O₂). The cells tested negative for mycoplasma using a PCR-based detection kit. The cell lines were authenticated by short tandem repeat profiling. Hypoxic cells were maintained in a modular incubator chamber flushed with a gas mixture containing 1% O₂, 5% CO₂, and 94% N₂.

shRNA, lentiviruses, and transduction

Vectors encoding short hairpin RNA (shRNA) targeting HIF-1α and HIF-2α and virus production methods were previously described (8). pLKO.1-puro vectors encoding shP4HA1 and shP4HA2 were purchased from Sigma-Aldrich. P4HA1 and P4HA2 lentiviral expression plasmids were generated by inserting cDNA for the coding sequence into a pENTR Gateway CMV/TO-Zeo-DEST vector.

Immunoblot assays

Aliquots of whole-cell lysates prepared in NP-40 buffer were fractionated by 8% SDS-PAGE. Conditioned medium was concentrated by ammonium sulfate precipitation at 4°C overnight followed by centrifugation. Antibodies against HIF-1α (BD Transduction Laboratory), P4HA1, P4HA2, HIF-2α, COL1A1 (Novus Biologicals), and β-actin (Santa Cruz) were used.

Orthotopic implantation and metastasis assays

Studies using 7- to 10-week-old female nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (NCI) were carried out according to protocols approved by the Johns Hopkins University Animal Care and Use Committee (Baltimore, MD). Mammary fat pad (MFP) injection, tumor growth measurement, and human genomic DNA extraction from mouse lungs were previously described (8). Mice were treated with DHB [in 5% ethanol and 95% normal saline (v/v)] at 40 mg/kg/d by an intraperitoneal injection.

Real-time reverse transcription quantitative PCR

RNA extraction and cDNA synthesis was carried out as previously described (8). The expression of each target mRNA relative to 18S rRNA was calculated on the basis of the threshold cycle (Ct) as 2−ΔΔCt, where ΔCt = Ct (target) − Ct (18S). For primer sequences, see Supplementary Table S1.

Fibrillar collagen staining

Tumor sections were stained with 0.1% picrosirius red (Direct Red 80, Sigma) and counterstained with Weigert hematoxylin to reveal fibrillar collagen. Sections were imaged with an Olympus IX51 fluorescence microscope fitted with an analyzer (U-ANT) and polarizer (U-POT). The percentage of collagen was quantified by calculating the area of red staining relative to the total area of the tumor section using MetaMorph analysis software.

Hydroxyproline content measurements

Cells were harvested and hydrolyzed in 6N HCl for 16 hours at 116°C. Tumor tissue was excised, dried in a vacuum, and hydrolyzed in 6N HCl for 16 hours at 116°C. Hydroxyproline content was determined by a colorimetric method (32). The total protein content was measured by the Bradford assay using a commercial kit (Bio-Rad).

Immunohistochemistry

Lungs and lymph nodes were fixed in 10% formalin and paraffin embedded. Sections were dewaxed and hydrated. LSAB+ System HRP Kit (DAKO) was used for P4HA1, P4HA2, and vimentin staining. HIF-1α staining was conducted as described previously (33). Inflated lung sections were stained with hematoxylin and eosin to visualize metastatic foci.

Statistical analysis

All statistical analysis was carried out using GraphPad Prism software. Bonferroni posttests were conducted for all ANOVAs. Data from The Cancer Genome Atlas was obtained from http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Oncomine data was obtained from the Richardson microarray dataset (34). Survival analysis data was obtained from the Pawitan microarray dataset (35) accessible through the National Center for Biotechnology Information GEO database.

Tumor stiffness measurements

Tumor stiffness measurements were conducted using a stepper motor (Harvard Apparatus) with a 1 mm diameter probe perpendicular to a freshly excised and immobilized tumor, with the corresponding force measured using a FlexiForce Load/Force Sensor (Tekscan). A constant impingement rate was maintained and force was recorded at 300 Hz using ELF software (TekScan). The slope of the indentation depth versus impingement force was used as an effective stiffness measurement.

Results

Inhibition of HIF-1α expression blocks hypoxia-induced P4HA1 and P4HA2 expression

The ECM is a critical factor in the tumor microenvironment (36–38). Analysis of MDA-MB-231 breast cancer cells exposed to 20% or 1% O₂ revealed that P4HA1 and P4HA2 mRNA were highly induced under hypoxia (Supplementary Fig. S1A). P4HA1 and P4HA2 protein levels were increased within 12 hours and remained elevated for 72 hours of continuous hypoxia (Supplementary Fig. S1B). To determine whether HIF-1α or HIF-2α was required for P4H expression under hypoxic conditions, we used MDA-MB-231 subclones stably transfected with an empty vector (EV) or expression vector(s) encoding shRNA targeting HIF-1α (sh1α), HIF-2α (sh2α), or HIF-1α, and HIF-2α (sh1/2α; ref. 8). Hypoxic induction of P4HA1 and P4HA2 mRNA (Fig. 1A) and protein (Fig. 1B)

[Page from Cancer Research, Volume 73, Issue 11, June 1, 2013]
expression was blocked when HIF-1α (but not HIF-2α) was silenced. Hypoxia-induced P4HA1 and P4HA2 mRNA expression was also blocked by treatment with digoxin (Supplementary Fig. S1A), which inhibits HIF-1α expression (39). P4HA1 and P4HA2 expression was also induced under hypoxic conditions in MCF-7 breast cancer cells and MCF10A immortalized breast epithelial cells (Supplementary Fig. S1C).

To assess hypoxic induction of collagen hydroxylases in vivo, we injected MDA-MB-231-shEV and -sh1/2α subclones into the MFP of NOD/SCID mice. P4HA protein levels were significantly decreased in tumors derived from sh1/2α

Figure 1. Knockdown of HIF-1α blocks P4HA1 and P4HA2 induction under hypoxic conditions. A, expression of P4HA mRNAs was analyzed by qRT-PCR in MDA-MB-231 subclones exposed to 20% or 1% O2 for 24 hours (mean ± SEM; n = 3; ANOVA); ***, P < 0.001 vs. shEV (20% O2); ###, P < 0.001 vs. shEV (1% O2). B, immunoblot assays were carried out using lysates from MDA-MB-231 subclones exposed to 20% or 1% O2 for 48 hours. C, immunoblot assays (Supplementary Fig. S1D) of tumor lysate were quantified by optical density and normalized to MDA-MB-231-shEV expression (mean ± SEM; n = 5; Student t test). **, P < 0.01; ###, P < 0.001 vs. shEV. D, immunohistochemical staining of serial sections from shEV and sh1/2α tumors. Scale bar, 150 μm. N, necrotic region. E, shEV images (D) were deconvoluted and pseudocolored to assess colocalization. Scale bar, 25 μm.
as compared with shEV cells (Fig. 1C and Supplementary Fig. S1D). Immunohistochemistry of tumor sections showed intense nuclear HIF-1α staining in perinecrotic (hypoxic) regions of the shEV tumors (Fig. 1D), which colocalized with P4HA1 and P4HA2 (Fig. 1D and E and Supplementary Fig. S1E). Staining of HIF-1α, P4HA1, and P4HA2 was attenuated in sh1/2α tumor sections. Residual expression of HIF-1α in sh1/2α tumors may reflect incomplete silencing of HIF-1α expression in cancer cells or host-derived stromal cells, which were not subjected to silencing, or both. Taken together, these data show that HIF-1 promotes collagen prolyl hydroxylase expression in hypoxic breast cancer cells both in vitro and in vivo.

Collagen prolyl hydroxylase knockdown inhibits breast cancer growth and metastasis

To determine whether prolyl hydroxylases are required for metastasis, we generated MDA-MB-231 subclones stably transfected with an empty vector (shLKO.1) or vector encoding either of 2 different shRNAs against P4HA1 (shHA1-1 and shHA1-2) or P4HA2 (shHA2-1 and shHA2-2). Immunoblot assays confirmed the knockdown of P4HA1 and P4HA2 (Fig. 2A). Primary tumor growth was attenuated by knockdown of either P4HA1 or P4HA2 (Fig. 2B and C). Differences in cell proliferation were observed in vitro (Supplementary Fig. S2A) but were enhanced in vivo where the ECM may play a more important role. More strikingly, spontaneous lung metastasis

Figure 2. Knockdown of P4HA1 or P4HA2 expression in MDA-MB-231 cells inhibits tumor growth and metastasis. A, immunoblot assays were conducted using lysates prepared from MDA-MB-231 subclones exposed to 20% or 1% O2 for 48 hours. B, tumor volume measured versus time (mean ± SEM; n = 5; ANOVA). C, final tumor weight (in grams; mean ± SEM; n = 5; ANOVA). D, lung sections (5 × 5 mm (left) or 0.2 × 0.2 mm (right)) were stained with hematoxylin and eosin. E, human genomic DNA content in mouse lungs was quantified using qPCR (mean ± SEM; n = 5; ANOVA). F, tumor volume versus time. G, human DNA content in mouse lungs determined by qPCR (mean ± SEM; n = 5; ANOVA). H, immunohistochemical staining of axillary lymph node sections for human vimentin. I, vimentin staining quantified by image analysis (mean ± SEM; n = 5; ANOVA). J, immunohistochemical staining of primary tumor sections for P4HA1 or P4HA2. Scale bar, 200 µm. **, P < 0.01; †††, P < 0.001 vs. shLKO.1.
was completely abrogated in mice bearing tumors derived from P4HA1 or P4HA2 knockdown cells (Fig. 2D). Genomic DNA was isolated from contralateral lungs and quantitative real-time PCR (qPCR) using human-specific primers demonstrated that P4HA1 or P4HA2 knockdown reduced metastasis by more than 99% (Fig. 2E).

To take into account differences in primary tumor growth rates, we repeated the MFP injection and isolated tumors, lungs, and lymph nodes when primary tumor volumes reached 600 mm². Control tumors reached 600 mm² in 39 days, whereas P4HA knockdown tumors required 55 days to reach the same tumor volume and weight (Fig. 2F and Supplementary Fig. S2B). Despite the additional residence time for P4HA knockdown cells, no lung metastases were observed (Supplementary Fig. S2C). Human genomic DNA content in the lungs indicated a 90% reduction in metastasis of P4HA knockdown cells (Fig. 2G). In addition, lymphatic metastasis was assessed using human vimentin immunohistochemical staining of ipsilateral axillary lymph nodes (Fig. 2H). The area of vimentin staining was used to assess breast cancer cell infiltration of mouse lymph nodes. Depletion of either P4HA1 or P4HA2 reduced lymphatic metastasis over 5-fold (Fig. 2I). Furthermore, the follicular lymph node morphology was maintained only in the knockdown mice. Immunohistochemical staining for P4HA1 and P4HA2 confirmed expression in the perinecrotic regions of control (shLKO.1) tumors and markedly decreased expression in knockdown tumors (Fig. 2J). These results were consistent with markedly reduced human-specific P4HA1 and P4HA2 mRNA expression, whereas mouse P4HA1 and P4HA2 mRNA expression was not changed (Supplementary Fig. S2D–S2G).

Thus, expression of P4HA1 and P4HA2 by breast cancer cells promotes primary tumor growth and lymphatic dissemination and is absolutely required for lung metastasis independent of tumor size.

To quantify the extent to which cancer cells contributed to collagen hydroxylase activity, we used primers specific for human, mouse, or human and mouse P4HA1 mRNA. In control (shLKO.1) tumors, human P4HA1 mRNA accounted for 87% ± 5% (mean ± SD) of total RNA, whereas mouse P4HA1 mRNA accounted for 9% ± 5% (Supplementary Table S2), suggesting the majority of P4HA1 activity originated from the MDA-MB-231 cells.

Collagen hydroxylase knockdown decreases collagen deposition in vitro and in vivo

The hydroxylation of collagen by prolyl hydroxylases is crucial for the folding, stability, and secretion of the collagen triple helix of all fibrillar collagens (30, 40). We found that secretion of type I collagen was abrogated by the knockdown of HIF-1α, P4HA1, or P4HA2 (Fig. 3A and B). We examined the localization of collagen deposition in tumor sections using picrosirius red staining, which detects all fibrillar collagen (including types I, II, III, V, XI, XXIV, and XXVII) when viewed under circularly polarized light (21). Overall collagen content was greatest in perinecrotic regions (Fig. 3C and D), corresponding to sites of highest HIF-1α and P4HA expression (Fig. 1D). Analysis of control tumors revealed highly aligned collagen fibers in the perinecrotic region of tumors, whereas the bulk of the tumor contained discontinuous, fragmented collagen fibers (Fig. 3D). The knockdown of P4HA expression in breast cancer cells resulted in a marked decrease in tumor collagen content (both by picrosirius red and Masson trichrome staining) and tumor stiffness in vivo (Fig. 3E and F and S3C). We confirmed a reduction in hydroxylase activity by measuring collagen hydroxyproline content in tumor lysates, which correlated with reduced P4HA1/2 mRNA expression (Fig. 3G and S2H). Differences in collagen content were also observed when we compared tumor sections from control shEV and sh1/2α subclones (Supplementary Fig. S3A and S3B), indicating that HIF-1-dependent expression of prolyl hydroxylases promotes collagen deposition in breast tumors. To confirm that our results were not cell line specific, we generated MDA-MB-435 subclones (Supplementary Fig. S4A). Primary tumor growth and metastasis were similar to the corresponding MDA-MB-231 subclones (Supplementary Fig. S4B). Lung metastasis was severely impaired by the P4HA knockdown and correlated with decreased tumor stiffness (Supplementary Fig. S4C–S4E).

Collagen hydroxylase expression promotes cancer cell invasion

Recent studies have shown that strength and aligned collagen fibers in tumor samples are predictive of patient mortality (41), presumably because collagen fibers provide directional cues that dictate cell morphology and promote cell migration (24, 42) as well as induce stiffness, which promotes tissue tension to enhance cancer progression (16, 18). To determine whether collagen hydroxylase expression by breast cancer cells promotes invasion in vivo, we analyzed control and P4HA knockdown tumor margins. Knockdown tumors showed no evidence of invasion into adjacent adipose tissue, whereas all control tumors showed evidence of extensive local invasion (Fig. 4A).

Because in vitro assays of invasion (such as Boyden chamber assays) do not test the contribution of ECM to invasion, we generated cell-free three-dimensional matrices from confluent cultures of MDA-MB-231 control or P4HA knockdown cells. We seeded naïve MDA-MB-231 cells on these cell-derived matrices and analyzed cell morphology. Compared with cells plated on tissue culture plastic or ECM derived from P4HA knockdown cells, cells seeded on ECM derived from shLKO.1 cells had a spindle-shaped mesenchymal morphology (Fig. 4B), which is required for cell motility and invasion (42, 43). To determine whether collagen deposited within tumors promotes an invasive cell phenotype, MDA-MB-231 cells were labeled with CMFDA (5-chloromethylfluorescein diacetate) and seeded onto control or hydroxylase knockdown tumor sections. Following 24 hours of cell seeding, sections were stained with picrosirius red and imaged for cell–collagen interactions (Fig. 4C). In control tumors, with abundant collagen content, the MDA-MB-231 cells aligned themselves along collagen fibers with a spindle-shaped morphology, which was quantified by calculation of the elliptical factor (Fig. 4C, bar graph). In contrast, the P4HA...
knockdown tumors did not contain sufficient collagen to promote cell elongation or directionality.

Collagen hydroxylases promote intravasation of breast cancer cells

We hypothesized that reduced cell invasion should result in reduced intravasation. To investigate the contribution of P4HA expression to intravasation, we determined the number of circulating tumor cells (CTCs) following MFP injection. To construct a standard curve, we extracted total RNA from 0.5 mL of whole blood from nontumor-bearing mice mixed with 0, 100, or 400 MDA-MB-231 cells and measured human-specific rRNA levels (Fig. 5A). Human-specific rRNA levels in whole blood of tumor-bearing mice were compared with the standard curve to quantify CTCs. P4HA knockdown significantly reduced the number of CTCs (Fig. 5B), suggesting that reduced invasion resulted in decreased intravasation of tumor cells.

To investigate the role of hydroxylase enzymes in premetastatic niche formation, we injected shEV-, shLOX-, shP4HA1-, or shP4HA2 subclones and assessed collagen crosslinking in the lung parenchyma [an early step in premetastatic niche formation that is mediated by LOX (9, 31, 44)]. Unlike LOX knockdown, P4HA1 or P4HA2 knockdown had no effect on premetastatic niche formation (Fig. 5C and Supplementary Fig. S5). This result is consistent with the role of collagen prolyl hydroxylase expression is associated with collagen content and tumor stiffness. A and B, immunoblot assay of collagen 1A1 from conditioned media of MDA-MB-231 subclones exposed to 20% or 1% O2 for 72 hours. Ponceau S (Ponc S) staining was used as a loading control. C and D, picrosirius red staining of control tumor sections imaged under circularly polarized light. The percentage of collagen in perinecrotic regions was compared with bulk tumor regions (white boxes) in C. Top scale bar, 1 mm; bottom scale bar, 0.1 mm; N, necrotic; M, tumor margin. E, picrosirius red staining quantified by image analysis (mean ± SEM; n = 5; ANOVA). F, the stiffness of freshly dissected control, shP4HA1, or shP4HA2 tumors was determined (mean ± SEM; one-way ANOVA). G, the hydroxyproline content of tumor tissue was determined per mg of total protein (mean ± SEM; n = 5; ANOVA). * *, P < 0.05; ** *, P < 0.001 vs. shLKO.1.
hydroxylases as intracellular, nonsecreted enzymes as compared with LOX, which is an extracellular enzyme that modifies collagen already present in the ECM.

Next, we assessed extravasation by directly injecting MDA-MB-231 subclones into the tail vein of mice. P4HA knockdown did not affect the ability of cells to extravasate (Fig. 5D and E). However, lung foci composed of P4HA knockdown cells were smaller (Fig. 5D) and contained less collagen (Fig. 5F) than control cell foci. Thus, P4HA knockdown significantly reduces intravasation but does not impair premetastatic niche formation or extravasation.

P4HA reexpression in HIF-deficient cells rescues collagen deposition and metastasis

To complement loss-of-function studies, MDA-MB-231-sh1/2α cells were transduced with lentiviral vectors encoding full-length P4HA1 (HA1) or P4HA2 (HA2), or with a control empty vector. MDA-MB-231-sh1/2α+HA1 (or +HA2) cells expressed P4HA levels comparable with MDA-MB-231-EV cells exposed to 1% O2 (Supplementary Fig. 6A). P4HA1 or P4HA2 overexpression in sh1/2α cells increased tumor growth (Supplementary Fig. S6B and S6C), promoted metastasis (Supplementary Fig. S6D–S6F), recovered collagen content, and enhanced intravasation (Supplementary Fig. S6G–S6I). These data indicate that P4HA1 and P4HA2 are critical components of the HIF-dependent transcriptional response to hypoxia that promotes breast cancer metastasis. P4HA1 or P4HA2 overexpression could not fully compensate for the loss of HIF activity with respect to metastasis, which is consistent with the role of HIFs in the regulation of multiple genes involved in metastasis (8, 9).
P4HA expression correlates with human breast cancer prognosis

To investigate whether collagen prolyl hydroxylase expression has clinical significance for breast cancer prognosis, we analyzed P4HA1 and P4HA2 gene expression in human breast cancer using the Oncomine database (34), which revealed that P4HA levels were significantly greater in breast cancer tissue than in normal breast tissue (Fig. 6A). Results from an analysis of The Cancer Genome Atlas (http://tcga-data.nci.nih.gov) data were similar (Fig. 6B). P4HA1 and P4HA2 expression showed highly significant associations with breast cancer stage, was independent of hormone receptor status, but correlated with HER2 expression (Fig. 6C and Supplementary Table S3). P4HA1 and P4HA2 mRNA levels (35) were also significantly associated with decreased patient survival (Fig. 6D). The survival prediction was enhanced by further stratifying patients using both P4HA1 and P4HA2 expression. Thus, expression levels of collagen hydroxylases are prognostic in breast cancer, which is consistent with their essential role in promoting metastasis in the orthotopic transplantation model.

Therapeutic efficacy of collagen prolyl hydroxylase inhibition by DHB

Collagen prolyl hydroxylases are members of a superfamily of dioxygenases that use O2 and α-ketoglutarate as substrates and are competitively inhibited by α-ketoglutarate analogs such as DHB (Fig. 7A; ref. 45). To evaluate the therapeutic efficacy of inhibiting collagen hydroxylases, we used DHB, which inhibits prolyl hydroxylase activity without affecting total protein synthesis or DNA replication (46). We found that DHB inhibited collagen secretion by cultured MDA-MB-231 cells in a dose-dependent manner (Fig. 7B). Treatment of MDA-MB-231 cells with DHB had only a modest inhibitory effect on cell proliferation in vitro (Supplementary Fig. S7A). Next, we established MFP tumors using MDA-MB-231-sh1/2α+/HA1 cells to mitigate any confounding effects of DHB on HIF-1α levels (which are negatively regulated by the HIF prolyl hydroxylase PHD2) while maintaining levels of P4HA1. Systemic treatment of mice with 40 mg/kg per day of DHB led to modestly decreased primary tumor growth (Fig. 7C), but significantly reduced collagen content (Fig. 7D and E) and lung metastasis (Fig. 7F and G) without affecting body weight (Supplementary Fig. S7B). These results suggest that DHB (and
possibly other prolyl hydroxylase inhibitors) may provide a novel pharmacologic strategy to inhibit metastasis, especially in patients with breast cancer with increased levels of P4HA mRNA demonstrable in tumor biopsies.

Discussion

Although several studies have reported increased collagen deposition during breast cancer progression (19, 41, 47), this is the first study to uncover a molecular mechanism linking intratumoral hypoxia, collagen deposition, and breast cancer invasion and metastasis. We showed that hypoxia-induced HIF-1 transcriptional activity upregulates collagen prolyl hydroxylase expression to dictate tumor collagen content, organization, density, and stiffness in breast cancer (Fig. 7H). We determined that collagen prolyl hydroxylases are essential for the metastasis of MDA-MB-231 and MDA-MB-435 breast cancer cells to the lungs of NOD/SCID mice by enhancing tissue invasion and intravasation. Moreover, we showed the prognostic significance of P4HA mRNA expression and identified a novel potential therapeutic intervention.

Collagen hydroxylases establish a tumor ECM that facilitates metastasis

Collagen content and organization have been shown to promote cancer progression by several mechanisms. Fibrillar collagen content affects the biophysical properties of the ECM (16–18). In our study, decreased P4HA expression reduced tumor stiffness and density by reducing the amount of collagen in the ECM. Increased breast cancer stiffness facilitates integrin clustering to promote focal adhesions, which drive invasion (18). Collagen fiber alignment has been shown to play a critical role in directing the migration of tumor cells in vivo (25). We found that aligned collagen fibers were localized to perinecrotic (hypoxic) regions of tumors. Furthermore, we determined that cancer cells aligned themselves along these fibers, adopting a spindle-shaped morphology. Cancer cells seeded on P4HA knockdown tumor sections, in which collagen deposition was significantly decreased, remained rounded and lacked directionality. Although the importance of collagen content in the tumor microenvironment has been well reported (48), this study is the first to highlight a pathophysiologic mechanism (i.e., intratumoral hypoxia) that leads to increased collagen deposition during breast cancer progression. Whereas prior studies have focused on the role of stromal cells, the present study shows that breast cancer cells may also make a critical contribution to ECM remodeling during cancer progression.

Collagen hydroxylases promote intravasation but not extravasation or premetastatic niche formation

P4HA1 or P4HA2 knockdown prevented cancer cells from invading adjacent fat tissue, decreased the number of CTCs, and blocked lung metastasis, showing the role of these collagen modifying enzymes in promoting hematogenous dissemination of breast cancer cells to the lungs and possibly other organs. In contrast, P4HA knockdown had no effect on the number of lung foci that formed after direct injection into the tail vein of the mice. Taken together, these data indicate that P4HA1 and P4HA2 play an important role in promoting intravasation by enhancing tissue invasion, whereas they do not affect extravasation. Unlike the secreted enzymes, LOX, LOXL2, and LOXIA, which have been shown to influence

Figure 6. P4HA expression is associated with poor prognosis in breast cancer. A and B, P4HA1 and P4HA2 mRNA levels in normal breast (bar N; n = 7) and breast cancer (bar C; n = 40) tissues (A) or paired adjacent normal (bar A) versus breast cancer (bar C) tissues from The Cancer Genome Atlas (n = 28; B) are shown. Box displays 25th through 75th percentiles and whiskers represent the range of the data. C, P4HA1 and P4HA2 mRNA levels in breast cancer (stage = I, II, III/IV) normalized to the mean level in adjacent normal (stage = TA) from The Cancer Genome Atlas, are plotted as described above (n = 458; Pearson’s correlation). D, Kaplan–Meier analysis of patient survival (n = 159) stratified by P4HA1 (left), P4HA2 (center), or both P4HA1 and P4HA2 (right) mRNA levels. High/low, gene expression above/below the median level.
metastatic sites by remodeling collagen before the arrival of cancer cells (9, 31), collagen hydroxylases did not affect pre-metastatic niche formation in the lung.

HIF-1 regulates multiple steps in collagen biogenesis

Prior studies focused on the late stages of collagen maturation and crosslinking mediated by the LOX family of extracellular enzymes (9, 31, 44, 49). The present study highlights the importance of the initial intracellular steps in collagen biogenesis, which control the amount of collagen available for crosslinking. Taken together, HIF-1 affects both early (intracellular) and late (extracellular) steps in collagen fibril formation. This is important because fibrotic breast cancers have the poorest prognosis and highest rate of recurrence (50) and in mouse models, increased type I collagen is associated with increased tumor growth and lung metastasis (19).

In addition to prolyl hydroxylation, the other major post-translational modification of procollagen prior to secretion is lysyl hydroxylation, which is also induced by hypoxia in a HIF-1-dependent manner and is required for breast cancer metastasis (51). Knockdown of prolyl hydroxylase expression in breast cancer cells blocks collagen deposition in the primary tumor, whereas knockdown of lysyl hydroxylase expression has no effect on collagen deposition but specifically impairs...
Inhibitors of collagen prolyl hydroxylases or HIF-1 as potential therapeutics for cancer

The MDA-MB-231 and MDA-MB-435 cell lines were derived from triple-negative breast cancers, which lack significant expression of the estrogen receptor, progesterone receptor, or HER2. A recent analysis of more than 500 samples of patients with breast cancer conducted by the Cancer Genome Atlas Network found a significant association between HIF-1 pathway activation and triple-negative breast cancers (53) highlighting the potential impact of inhibitors of collagen prolyl hydroxylases or HIF-1 on this patient subset, which responds poorly to currently available therapies (54).

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: D.M. Gilkes, G.L. Semenza

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): D.M. Gilkes, S. Bajpai, M.E. Hubbi, D. Wirtz, G.L. Semenza

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D.M. Gilkes, S. Bajpai, D. Wirtz, G.L. Semenza

Writing, review, and/or revision of the manuscript: D.M. Gilkes, M.E. Hubbi, G.L. Semenza

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): C.C. Wong

Study supervision: D. Wirtz, G.L. Semenza

Acknowledgments

The authors thank Jasper Chen for assistance with animal experiments, Haafuang Zhang for training and advice, and Karen Pedgott of Novus Biologicals for generous gifts of antibodies against HIF-2α, P4HA1, P4HA2, and COL1A1.

Grant Support

This work was supported in part by the Johns Hopkins Physical Sciences-Oncology Center through grant U54-CA143868 from the National Cancer Institute. D.M. Gilkes is the recipient of a Susan G. Komen Breast Cancer Foundation Post-Doctoral Fellowship Award.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 23, 2012; revised January 10, 2013; accepted February 23, 2013; published OnlineFirst March 28, 2013.

References

27. Annunen P, Helaakoski T, Myllyharju J, Veijola J, Pihlajaniemi T, Kivirikko KI. Cloning of the human prolyl 4-hydroxylase subunit isoform α(α) and characterization of the type II enzyme tetramer. The α(α) and α(β) subunits do not form a mixed α(α)β(β)2 tetramer. J Biol Chem 1997;272:17342–8.

Collagen Prolyl Hydroxylases Are Essential for Breast Cancer Metastasis

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-3963

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/03/28/0008-5472.CAN-12-3963.DC1

Cited articles
This article cites 54 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/11/3285.full.html#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
/content/73/11/3285.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.