Breaking Advances

Highlights from Recent Cancer Literature

3481

Reviews

From Integrative Genomics to Therapeutic Targets
Rachael Natrajan and Paul Wilkerson

3483

HER2 and Breast Cancer Stem Cells: More than Meets the Eye
Hasan Korkaya and Max S. Wicha

3489

Perspective

APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion
Roni Nowarski and Moshe Kotler

3494

Clinical Studies

Immune Infiltrates Are Prognostic Factors in Localized Gastrointestinal Stromal Tumors

3499

Integrated Systems and Technologies

Kinetic Modeling-Based Detection of Genetic Signatures That Provide Chemoresistance via the E2F1-p73/DNp73-miR-205 Network
Julio Vera, Ulf Schmitz, Xin Lai, David Engelmann, Faiz M. Khan, Olaf Wolkenhauer, and Brigitte M. Pitzer

3511

Mathematical Modeling of Tumor Cell Proliferation Kinetics and Label Retention in a Mouse Model of Lung Cancer
Yanyan Zheng, Helen Moore, Alexandra Piryatinska, Trinidad Solis, and E. Alejandro Sweet-Cordero

3525

Tumor–Immune Dynamics Regulated in the Microenvironment Inform the Transient Nature of Immune-Induced Tumor Dormancy
Kathleen P. Wilkie and Philip Hahnfeldt

3544

Microenvironment and Immunology

Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings
Alessia Ricupito, Matteo Grioni, Arianna Calciniotto, Rodrigo Hess Michelini, Renato Longhi, Anna Mondino, and Matteo Bellone

3545

Precis: These findings encourage the prospective validation of immune biomarkers for optimal risk stratification of GIST, and they prompt clinical use of immunomodulators in conjunction with imatinib used to treat this disease.
A Novel Model for Evaluating Therapies Targeting Human Tumor Vasculature and Human Cancer Stem–like Cells

BMP-6 in Renal Cell Carcinoma

Dual Blockade of PD-1 and CTLA-4

Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases

SOCS3 Transactivation by PPAR

Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases

YAP/TEAD–Mediated Transcription Controls Cellular Senescence

ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton

Nkx2-8 Downregulation Promotes Angiogenesis and Activates NF-κB in Esophageal Cancer

Targeting ROR1 Inhibits Epithelial–Mesenchymal Transition and Metastasis

As a pivotal step in what converts curable benign tumors to untreatable malignant cancers, the cellular process of EMT and the key factors regulating it remain an important focus of attention in identifying cancer-specific therapies.
TUMOR AND STEM CELL BIOLOGY

3692
Inhibition of c-Met Reduces Lymphatic Metastasis in RIP-Tag2 Transgenic Mice
Barbara Sennino, Toshina Ishiguro-Oonuma, Brian J. Schriver, James G. Christensen, and Donald M. McDonald
 préc: VEGF inhibition increases expression of c-Met, which can promote lymph node metastases, with consequences for understanding how resistance arises to antiangiogenic therapies.

3704
Antioxidant Enzymes Mediate Survival of Breast Cancer Cells Deprived of Extracellular Matrix
 préc: This study offers evidence that blocking antioxidant enzymes may help kill cancer cells that are poised to metastasize, a finding that is counterintuitive in light of a large body of literature encouraging antioxidant treatments to prevent cancer.

3716
FGFR1 Is Essential for Prostate Cancer Progression and Metastasis
Feng Yang, Yongyou Zhang, Steven J. Ressler, Michael M. Ittmann, Gustavo E. Ayala, Truong D. Dang, Fen Wang, and David R. Rowley
 préc: Fibroblast growth factor signaling in prostate cancer is emerging as an important area of therapeutic potential, as shown in this study of FGFR1, which suggests a rationale to attack metastatic tumors.

3725
Androgen Receptor-Independent Function of FoxA1 in Prostate Cancer Metastasis
Hong-Jian Jin, Jonathan C. Zhao, Irene Ogden, Raymond C. Bergan, and Jindan Yu
 préc: This study may explain why recurrent FoxA1 mutations that have been found to occur in prostate cancer contribute to malignant progression in this disease.

3737
NF-κB Regulates Radioresistance Mediated by β1 Integrin in Three-Dimensional Culture of Breast Cancer Cells
Kazi Mokim Ahmed, Hui Zhang, and Catherine C. Park
 préc: The results of this study suggest a novel approach to radiosensitize malignant breast cancers by targeting a forward feedback cell adhesion pathway.

3749
ING5 Is a Tip60 Cofactor That Acetylates p53 in Response to DNA Damage
Nansong Liu, Jiadong Wang, Jifeng Wang, Rukai Wang, Zhongle Liu, Yao Yu, and Hong Lu
 préc: This study illuminates one of the mechanisms through which cells determine whether to undergo cell-cycle arrest or apoptosis after p53 activation.

3761
MTA1 Promotes STAT3 Transcription and Pulmonary Metastasis in Breast Cancer
 préc: Endogenous levels of a prometastatic transcriptional coregulator are sufficient to support its function in metastasis, whether or not it is overexpressed in cancer.
DDB2 Suppresses Epithelial-to-Mesenchymal Transition in Colon Cancer
Nilotpal Roy, Prashant V. Bommi, Uppoor G. Bhat, Shaumick Bhattacharjee, Indira Elangovan, Jing Li, Krushna C. Patra, Dragana Kopanja, Adam Blunier, Richard Benya, Srilata Bagchi, and Pradip Raychaudhuri

Précis: A nucleotide excision repair protein is found to function as an inhibitor of EMT, a phenotypic change in transformed epithelial cells that facilitates invasion and metastasis, suggesting a direct link between these processes during tumorigenesis.

GDNF–RET Signaling in ER-Positive Breast Cancers Is a Key Determinant of Response and Resistance to Aromatase Inhibitors
Andrea Morandi, Lesley-Ann Martin, Qiong Gao, Sunil Pancholi, Alan Mackay, David Robertson, Marketa Zvelebil, Mitch Dowsett, Ivan Plaza-Menacho, and Clare M. Isacke

Précis: This study addresses the clinical challenge of therapeutic resistance in oncology, in this case by defining an important tractable pathway of resistance to aromatase inhibitors used to fight ER-positive breast cancer.

Sox2 Requirement in Sonic Hedgehog-Associated Medulloblastoma
Julia Ahlfeld, Rebecca Favaro, Pierfrancesco Pagella, Hans A. Kretzschmar, Silvia Nicolis, and Ulrich Schuller

Précis: This study links a core pathogenic driver of an aggressive pediatric tumor to a central regulator of cancer stem-like function, with potential therapeutic implications.

ABOUT THE COVER

Inhibition of VEGF signaling reduces angiogenesis and slows tumor growth, but can also promote lymph node metastasis in some preclinical models. Studies of RIP-Tag2 transgenic mice revealed that inhibition of VEGF signaling by a function blocking anti-VEGF antibody or the receptor tyrosine kinase inhibitor sunitinib increased the number of intratumoral lymphatics, the proportion of lymphatics with tumor cells inside, and the incidence of lymph node metastasis. After the treatment, c-Met was upregulated in lymphatics in and around the tumors. Importantly, inhibition of c-Met by PF-04217903 administered with the angiogenesis inhibitor significantly reduced the abundance of intratumoral lymphatics, tumor cells inside lymphatics, and lymph node metastases. For details, see article by Sennino and colleagues on page 3692.