Highlights from Recent Cancer Literature

From Integrative Genomics to Therapeutic Targets
Rachael Natrajan and Paul Wilkerson

HER2 and Breast Cancer Stem Cells: More than Meets the Eye
Hasan Korkaya and Max S. Wicha

APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion
Roni Nowarski and Moshe Kotler

Immune Infiltrates Are Prognostic Factors in Localized Gastrointestinal Stromal Tumors
Sylvie Rusakiewicz, Michaela Semeraro, Matthieu Sarabi, Mélanie Desbois, Clara Locher, Rosa Mendez, Nadege Vimond, Angel Concha, Federico Garrido, Nicolas Isambert, Loic Chaigneau, Valerie Le Brun-Ly, Patrice Duhureil, Isabelle Cremer, Anne Caignard, Vichnou Poirier-Colame, Karim Chaba, Caroline Flamant, Niels Halama, Dirk Jäger, Alexander Eggemont, Sylvie Bonvalot, Frederic Commo, Philippe Terrier, Paule Opolon, Jean-François Emile, Jean-Michel Coindre, Guido Kroemer, Nathalie Chaput, Axél Le Cesne, Jean-Yves Blay, and Laurence Zitvogel

Kinetic Modeling-Based Detection of Genetic Signatures That Provide Chemoresistance via the E2F1-p73/DNp73-miR-205 Network
Julio Vera, Ulf Schmitz, Xin Lai, David Engelmann, Faiz M. Khan, Olaf Wolkenhauer, and Brigitte M. Pütz

Mathematical Modeling of Tumor Cell Proliferation Kinetics and Label Retention in a Mouse Model of Lung Cancer
Yanyan Zheng, Helen Moore, Alexandra Pirotinski, Trinidad Solis, and E. Alejandro Sweet-Cordero

Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings
Alessia Ricupito, Matteo Grioni, Arianna Calcinotto, Rodrigo Hess Michelini, Renato Longhi, Anna Mondino, and Matteo Bellone

MICROENVIRONMENT AND IMMUNOLOGY

Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings
Alessia Ricupito, Matteo Grioni, Arianna Calcinotto, Rodrigo Hess Michelini, Renato Longhi, Anna Mondino, and Matteo Bellone

PRICE: These findings encourage the prospective validation of immune biomarkers for optimal risk stratification of GIST, and they prompt clinical use of immunomodulators in conjunction with imatinib used to treat this disease.

PRICE: Experimental and in silico data were used with kinetic modeling to develop a model that can detect a genetic signature that confers aggressive phenotypes in cancer cells.

PRICE: Mathematical methods to quantitate the proportion and doubling time of cycling tumor cell subpopulations in tumors, which tend to respond relatively poorly to cytotoxic therapies, may provide a tool to assess preclinical models, in which direct observation of cell-cycle kinetics may not be readily experimentally accessible.

PRICE: Better understanding of immune-induced tumor dormancy may lead to insights into prognosis and improved therapy for example by tilting host innate or adaptive responses toward those that favor tumor elimination over immune escape.
A Novel Model for Evaluating Therapies Targeting Human Tumor Vasculature and Human Cancer Stem–like Cells
Daniela Burgos-Ojeda, Karen McLean, Shoumei Bai, Heather Pulaski, Yusong Gong, Ines Silva, Karl Skorecki, Maty Tzukerman, and Ronald J. Buckanovich

Precis: There remains a great need for preclinical models that can more accurately predict clinical responses to novel experimental therapeutic agents in development.

Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases

Precis: Targeting of diacylglycerol kinases offers a general approach to enhance the function of chimeric antigen receptor T cells (CART cells), a promising new strategy for cancer immunotherapy.

SOC3 Transactivation by PPARγ Prevents IL-17–Driven Cancer Growth
Hélène Berger, Frédérique Végran, Madjid Chikh, Federica Gialardi, Sylvain Ladoire, Hélène Bugaut, Grégoire Mignot, Fanny Chalmin, Mélanie Bruchard, Valentin Derangère, Angélique Chevriaux, Cédric Rébé, Bernhard Ryffel, Caroline Pot, Aziz Ichihami, Béatrice Desvergne, François Ghiringhelli, and Lionel Apetoh

Precis: This study reveals new mechanistic insights into how inflammation supports cancer, and how blocking certain inflammatory pathways can restrict cancer.

Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection
Jaikumar Duraiswamy, Karen M. Kaluza, Gordon J. Freeman, and George Coukos

Precis: Combined checkpoint blockade is synergistic and strongly augments the efficacy of vaccination to restore T-cell exhaustion and promote tumor rejection.

BMP-6 in Renal Cell Carcinoma Promotes Tumor Proliferation through IL-10–Dependent M2 Polarization of Tumor-Associated Macrophages
Jae-Ho Lee, Geun Taek Lee, Seung Hyo Woo, Yun-Sok Ha, Seok Joo Kwon, Wun-Jae Kim, and Isaac Yi Kim

Precis: Elevated IL-10 levels have been broadly associated with tumor tolerance and immune escape, but the basis for IL-10 upregulation and its critical cellular targets in tumors have not been fully clear.

Targeting ROR1 Inhibits Epithelial–Mesenchymal Transition and Metastasis
Bing Cui, Suping Zhang, Liguang Chen, Jiaqiang Yu, George F. Widhopf II, Jimmy Lin, Jueheng Wu, Mengfeng Li, and Jun Li

Precis: As a pivotal step in what converts curable benign tumors to untreatable malignant cancers, the cellular process of EMT and the key factors regulating it remain an important focus of attention in identifying cancer-specific therapies.

YAP/TEAD–Mediated Transcription Controls Cellular Senescence
Qi Xie, Jing Chen, Han Feng, Shengyi Peng, Ursula Adams, Yujie Bai, Li Huang, Ji Li, Junjian Huang, Songshu Meng, and Zengqiang Yuan

Precis: These findings offer general significance in cancers in which cellular senescence acts as a tumor suppressor, with implications for novel therapeutic approaches to stanch tumor growth.

ATF3 Suppresses Metastasis of Bladder Cancer by Regulating Gelsolin-Mediated Remodeling of the Actin Cytoskeleton
Xiangliang Yuan, Liang Yu, Junhua Li, Guohua Xie, Tingting Rong, Liang Zhang, Jianhua Chen, Qiaoqiong Meng, Aaron T. Irving, Die Wang, Elizabeth D. Williams, Jun-Ping Liu, Anthony J. Sadler, Bryan R.G. Williams, Lixong Shen, and Dakang Xu

Precis: Mechanistic findings identify a transcription factor that suppresses metastasis of bladder cancer cells, suggesting new markers and strategies to define and address aggressive bladder tumors.

Nkx2-8 Downregulation Promotes Angiogenesis and Activates NF-κB in Esophageal Cancer
Chuyong Lin, Libing Song, Hui Gong, Aibin Liu, Xi Lin, Jueheng Wu, Mengfeng Li, and Jun Li

Precis: These findings define a new tumor suppressor in esophageal cancer, the downregulation of which contributes to NF-κB activation and tumor angiogenesis.
DOG1 Regulates Growth and IGFBP5
in Gastrointestinal Stromal Tumors
Susanne Simon, Florian Grabellus,
Loretta Ferrera, Luis Galietta,
Benjamin Schwindenhammer,
Thomas Mühlenberg, Georg Taeger,
Grant Eilers, Juergen Treckmann,
Frank Breitenbuecher, Martin Schuler,
Takahiro Taguchi, Jonathan A. Fletcher, and
Sebastian Bauer

Precise: These findings reveal a novel oncogenic
mechanism in GIST that highlights the
importance of the tumor microenvironment as a
therapeutic target in this disease.

Pak1 Kinase Links ErbB2 to β-Catenin
in Transformation of Breast Epithelial Cells
Luis E. Arias-Romero, Olga Villamar-Cruz,
Min Huang, Klaus P. Hoeflich, and
Jonathan Chernoff

Precise: Important mechanistic insights suggest
new therapeutic strategies to treat breast cancers
that involve HER2 overexpression.

ATR Inhibition Broadly Sensitizes
Ovarian Cancer Cells to Chemotherapy
Independent of BRCA Status
Catherine J. Huntoon, Karen S. Flatten,
Andrea E. Wahner Hendrickson,
Amelia M. Huehls, Shari L. Sutor,
Scott H. Kaufmann, and Larry M. Karnitz

Precise: Findings that directly affect clinical
treatment of BRCA1/2-deficient cancer cells are
provided in this study, which addresses long-
standing questions of how to leverage these
conditions to improve effective therapeutic targeting.

Inhibition of c-Met Reduces Lymphatic
Metastasis in RIP-Tag2 Transgenic Mice
Barbara Sennino, Toshina Ishiguro-Oonuma,
Brian J. Schriver, James G. Christensen, and
Donald M. McDonald

Precise: VEGF inhibition increases expression of
c-Met, which can promote lymph node metastases,
with consequences for understanding how
resistance arises to antiangiogenic therapies.

Antioxidant Enzymes Mediate Survival
of Breast Cancer Cells Deprived of
Extracellular Matrix
Calli A. Davison, Sienna M. Durbin,
Matthew R. Thau, Victoria R. Zellmer,
Sarah E. Chapman, Justin Diener,
Connor Wathen, W. Matthew Leevy, and
Zachary T. Schafer

Precise: This study offers evidence that blocking
antioxidant enzymes may help kill cancer cells
that are poised to metastasize, a finding that is
counterintuitive in light of a large body of
literature encouraging antioxidant treatments to
prevent cancer.

FGFR1 Is Essential for Prostate Cancer
Progression and Metastasis
Feng Yang, Yongyou Zhang, Steven J. Ressler,
Michael M. Ittmann, Gustavo E. Ayala,
Truong D. Dang, Fen Wang, and David R. Rowley

Precise: Fibroblast growth factor signaling in
prostate cancer is emerging as an important area
of therapeutic potential, as shown in this study of
FGFR1, which suggests a rationale to attack
metastatic tumors.

Androgen Receptor-Independent
Function of FoxA1 in Prostate
Cancer Metastasis
Hong-Jian Jin, Jonathan C. Zhao, Irene Ogden,
Raymond C. Bergan, and Jindan Yu

Precise: This study may explain why recurrent
FoxA1 mutations that have been found to occur in
prostate cancer contribute to malignant
progression in this disease.

NF-κB Regulates Radioreistance
Mediated By β1 Integrin in Three-
Dimensional Culture of Breast
Cancer Cells
Kazi Mokim Ahmed, Hui Zhang, and
Catherine C. Park

Precise: The results of this study suggest a novel
approach to radiosensitize malignant breast
cancers by targeting a forward feedback cell
adhesion pathway.

ING5 Is a Tip60 Cofactor That
Acetylates p53 in Response
to DNA Damage
Nansong Liu, Jiadong Wang, and
Catherine C. Park

Precise: This study illuminates one of the
mechanisms through which cells determine
whether to undergo cell-cycle arrest or apoptosis
after p53 activation.

MTA1 Promotes STAT3 Transcription
and Pulmonary Metastasis in Breast
Cancer
Suresh B. Pakala, Suresh K. Rayala,
Rui-An Wang, Kazufumi Ohsuhiro,
Prakriti Mudvari,
Sirigiri Divijendra Natha Reddy, Yi Zheng,
Ricardo Pires, Sandra Casimiro,
M. Radhakrishna Pillai, Luis Costa, and
Rakesh Kumar

Precise: Endogenous levels of a prometastatic
transcriptional coregulator are sufficient to
support its function in metastasis, whether or not
it is overexpressed in cancer.
DDB2 Suppresses Epithelial-to-Mesenchymal Transition in Colon Cancer
Nilotpal Roy, Prashant V. Bommi, Uppoor G. Bhat, Shaumick Bhattacharjee, Indira Elangovan, Jing Li, Krushna C. Patra, Dragana Kopanja, Adam Blunier, Richard Benya, Srilata Bagchi, and Pradip Raychaudhuri

Précis: A nucleotide excision repair protein is found to function as an inhibitor of EMT, a phenotypic change in transformed epithelial cells that facilitates invasion and metastasis, suggesting a direct link between these processes during tumorigenesis.

GDNF–RET Signaling in ER-Positive Breast Cancers Is a Key Determinant of Response and Resistance to Aromatase Inhibitors
Andrea Morandi, Lesley-Ann Martin, Qiong Gao, Sunil Pancholi, Alan Mackay, David Robertson, Marketa Zvelebil, Mitch Dowsett, Ivan Plaza-Menacho, and Clare M. Isacke

Précis: This study addresses the clinical challenge of therapeutic resistance in oncology, in this case by defining an important tractable pathway of resistance to aromatase inhibitors used to fight ER-positive breast cancer.

Sox2 Requirement in Sonic Hedgehog-Associated Medulloblastoma
Julia Ahlfeld, Rebecca Favaro, Pierfrancesco Pagella, Hans A. Kretzschmar, Silvia Nicolis, and Ulrich Schüller

Précis: This study links a core pathogenic driver of an aggressive pediatric tumor to a central regulator of cancer stem-like function, with potential therapeutic implications.

ABOUT THE COVER
Inhibition of VEGF signaling reduces angiogenesis and slows tumor growth, but can also promote lymph node metastasis in some preclinical models. Studies of RIP-Tag2 transgenic mice revealed that inhibition of VEGF signaling by a function blocking anti-VEGF antibody or the receptor tyrosine kinase inhibitor sunitinib increased the number of intratumoral lymphatics, the proportion of lymphatics with tumor cells inside, and the incidence of lymph node metastasis. After the treatment, c-Met was upregulated in lymphatics in and around the tumors. Importantly, inhibition of c-Met by PF-04217903 administered with the angiogenesis inhibitor significantly reduced the abundance of intratumoral lymphatics, tumor cells inside lymphatics, and lymph node metastases. For details, see article by Sennino and colleagues on page 3692.