BREAKING ADVANCES

Highlights from Recent Cancer Literature

REVIEWS

The Dormancy Dilemma: Quiescence versus Balanced Proliferation
Alan Wells, Linda Griffith, Jakob Z. Wells, and Donald P. Taylor

Optimal Targeting of HER2–PI3K Signaling in Breast Cancer: Mechanistic Insights and Clinical Implications
Brent N. Rexer and Carlos L. Arteaga

CLINICAL STUDIES

Combination of Protein Coding and Noncoding Gene Expression as a Robust Prognostic Classifier in Stage I Lung Adenocarcinoma
Ichiro Akagi, Hirokazu Okayama, Aaron J. Schetter, Ana I. Robles, Takashi Kohno, Elise D. Bowman, Dickran Kazandjian, Judith A. Welsh, Naohide Oue, Motonobu Saito, Masao Miyashita, Eiji Uchida, Takahiro Takizawa, Seiichi Takenoshita, Jun Yokota, and Curtis C. Harris

INTEGRATED SYSTEMS AND TECHNOLOGIES

Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse
Triantafyllis Stylianopoulos, John D. Martin, Matïja Smuderl, Fotios Mpekris, Saloni R. Jain, and Rakesh K. Jain

MICROENVIRONMENT AND IMMUNOLOGY

Avirulent Toxoplasma gondii Generates Therapeutic Antitumor Immunity by Reversing Immunosuppression in the Ovarian Cancer Microenvironment
Jason R. Baird, Barbara A. Fox, Kiah L. Sanders, Patrick H. Lizotte, Juan R. Cubillos-Ruiz, Uciane K. Scarlett, Melanie R. Rutkowski, Jose R. Conejo-Garcia, Steven Fiering, and David J. Bzik

Critical Role of STAT3 in IL-6–Mediated Drug Resistance in Human Neuroblastoma
Tasnim Ara, Rie Nakata, Michael A. Sheard, Hiroyuki Shimada, Ralf Buettner, Susan G. Grosen, Liangyun Ji, Hua Yu, Richard Jove, Robert C. Seeger, and Yves A. DeClerck

Synergistic Induction of Adaptive Antitumor Immunity by Codelivery of Antigen with α-Galactosylceramide on Exosomes
Ulf Gehrmann, Stefanie Hiltbrunner, Anna-Maria Georgoudaki, Mikael C. Karlsson, Tanja I. Näsland, and Susanne Gabrielsson

Melanoma-Educated CD14+ Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2–Dependent Mechanisms
Yuneng Mao, Isabel Poschke, Erik Wennerberg, Yago Pico de Coaña, Suzanne Eghazi Brage, Inkeri Schultz, Johan Hansson, Giuseppe Masucci, Andreas Lundqvist, and Rolf Kiessling

Précis: These results reveal how immune suppression by myeloid-derived suppressor cells can be initiated in the tumor microenvironment of human melanoma.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3888</td>
<td>Identification of Two Distinct Carcinoma-Associated Fibroblast Subtypes with Differential Tumor-Promoting Abilities in Oral Squamous Cell Carcinoma</td>
<td>Daniela Elena Costea, Allison Hills, Amani H. Osman, Johanna Thurlow, Gabriela Kalma, Xiaohong Huang, Claudia Pena Murillo, Himalaya Parajuli, Salwa Suliman, Keerthi K. Kulasekara, Anne Chr. Johannessen, and Max Partridge</td>
<td>Precis: Cancer-associated fibroblasts sustain the tumor microenvironment, and unraveling their heterogeneity may point to targetable weaknesses.</td>
</tr>
<tr>
<td>3902</td>
<td>Myeloid Cell Receptor LRP1/CD91 Regulates Monocyte Recruitment and Angiogenesis in Tumors</td>
<td>Nicole D. Staudt, Minji Jo, Jingjing Hu, Jeanne M. Bristow, Donald P. Pizzo, Alban Gaultier, Scott R. VandenBerg, and Steven L. Gonias</td>
<td>Precis: A signaling system that controls recruitment of tumor-associated macrophages may have a very important role in determining the amount of VEGF that is secreted into the tumor microenvironment.</td>
</tr>
<tr>
<td>3913</td>
<td>miR-124 Inhibits STAT3 Signaling to Enhance T Cell–Mediated Immune Clearance of Glioma</td>
<td>Jun Wei, Fei Wang, Ling-Yuan Kong, Shao Xu, Tiffany Doucette, Sherise D. Ferguson, Yuhui Yang, Wei Qiao, Nicholas B. Levine, Frederick F. Lang, Ganesh Rao, Gregory N. Fuller, George A. Calin, and Amy B. Heinberger</td>
<td>Precis: This study highlights approaches to plumb the untapped potential of microRNA in generalized immunotherapeutic strategies to treat cancer.</td>
</tr>
<tr>
<td>3927</td>
<td>Dynamic Mast Cell–Stromal Cell Interactions Promote Growth of Pancreatic Cancer</td>
<td>Ying Ma, Rosa F. Hwang, Craig D. Logsdon, and Stephen E. Ullrich</td>
<td>Precis: Mast cells are being ascribed unexpected but important roles in the cancer microenvironment, increasing interest in targeting them for therapeutic purposes.</td>
</tr>
<tr>
<td>3938</td>
<td>Membrane versus Soluble Isoforms of TNF-α Exert Opposing Effects on Tumor Growth and Survival of Tumor-Associated Myeloid Cells</td>
<td>Shidrokh Ardestani, Bin Li, Desirae L. Deskins, Huiyun Wu, Pierre P. Massion, and Pampee P. Young</td>
<td>Precis: Controversies about the role of TNF-α in cancer progression may be explained by the findings from this study, which offer a basis to understand its contradictory effects on tumor progression.</td>
</tr>
<tr>
<td>3951</td>
<td>SENP1 deSUMOylates and Regulates Pin1 Protein Activity and Cellular Function</td>
<td>Chun-Hau Chen, Che-Chang Chang, Tae Ho Lee, ManLi Luo, Pengyu Huang, Pei-Hsin Liao, Shao Wei, Fu-An Li, Ruey-Hwa Chen, Xiao Zhen Zhou, Hsiu-Ming Shih, and Kun Ping Lu</td>
<td>Precis: Unraveling Pin1 regulation may improve strategies to attack cancer, given that Pin1 controls the function of numerous oncogenes and tumor suppressor genes.</td>
</tr>
<tr>
<td>3963</td>
<td>Endothelial Cell Protein C Receptor Opposes Mesothelioma Growth Driven by Tissue Factor</td>
<td>Shiva Keshava, Sanghamitra Sahoo, Torry A. Tucker, Steven Idell, L. Vijaya Mohan Rao, and Usha R. Pendurthi</td>
<td>Precis: This study enhances our understanding of how the procoagulant protein tissue factor drives the growth of many human cancers.</td>
</tr>
<tr>
<td>3974</td>
<td>Mitogenic Insulin Receptor-A Is Overexpressed in Human Hepatocellular Carcinoma due to EGFR-Mediated Dysregulation of RNA Splicing Factors</td>
<td>Hamza Chettouh, Laetitia Fartoux, Lynda Asoudehane, Dominique Wendum, Audrey Clapéron, Yves Chrétien, Colette Rey, Olivier Scatton, Olivier Soubrane, Filomena Conti, François Praz, Chantal Houssset, Olivier Rosmorduc, and Christèle Desbois-Mouthon</td>
<td>Precis: Increased expression of a specific insulin receptor isoform may mediate adverse effects of hyperinsulinemia on liver cancer development.</td>
</tr>
<tr>
<td>3987</td>
<td>Dysregulated Expression of FOXM1 Isoforms Drives Progression of Pancreatic Cancer</td>
<td>Xiangyu Kong, Lei Li, Zhaochen Li, Xiangdong Le, Chen Huang, Zhiliang Jia, Jiujie Cui, Suyun Huang, Liwei Wang, and Keping Xie</td>
<td>Precis: This study identifies a class of FOXO family transcription factors as key effectors in a program of pancreatic cancer development driven by the transcription factors Sp1 and KLH4, with potential implications for understanding the pathophysiology of other cancers in which these FOXO isoforms have been implicated.</td>
</tr>
</tbody>
</table>
The Steroid Receptor Coactivator-3 Is Required for the Development of Castration-Resistant Prostate Cancer

Jean C-Y. Tien, Zhaoliang Liu, Lan Liao, Fen Wang, Yixiang Xu, Ye-Lin Wu, Niya Zhou, Michael Ittmann, and Jianming Xu

Précis: These findings offer a preclinical proof of concept to therapeutically target a transcriptional coactivator in castration-resistant prostate cancer, the development of which is responsible for nearly all prostate cancer deaths.

Tid1-L Inhibits EGFR Signaling in Lung Adenocarcinoma by Enhancing EGFR Ubiquitinylation and Degradation

Chi-Yuan Chen, Chia-Ing Jan, Jeng-Fan Lo, Shuenn-Chen Yang, Yih-Leong Chang, Szui-Hua Pan, Wen-Lung Wang, Tse-Ming Hong, and Pan-Chyr Yang

Précis: The clinical validation of EGFR targeting approaches in lung non–small cell lung carcinoma, also known as lung adenocarcinoma, has increased the significance of studies to understand EGFR downregulation in this setting.

Impact of Body Mass Index on the Risk of Colorectal Adenoma in a Metabolically Healthy Population

Kyung Eun Yun, Yoosoo Chang, Hyun-Suk Jung, Chan-Won Kim, Min-Jung Kwon, Sung Keun Park, Eun Ju Sung, Hocheol Shin, and Seungho Ryu

Précis: Excess weight confers an increased risk of developing colorectal adenomas, independent of whether an individual is metabolically healthy or not, suggesting a potential causal link between excess adipose tissue and colorectal cancer risk.

Genome-Wide Association Study of Genetic Predictors of Overall Survival for Non–Small Cell Lung Cancer in Never Smokers

Xifeng Wu, Liang Wang, Yuanqing Ye, Jeremiah A. Aakre, Xia Pu, Ge-Chen Chang, Pan-Chyr Yang, Jack A. Roth, Randolph S. Marks, Scott M. Lippman, Joe Y. Chang, Charles Lu, Claude Deschamps, Wu-Chou Su, Wen-Chang Wang, Ming-Shyan Huang, David W. Chang, Yan Li, V. Shane Pankratz, John D. Minna, Wauk Ki Hong, Michelle A.T. Hildebrandt, Chao Agnes Hsiung, and Ping Yang

Précis: Although most patients with lung cancer were smokers, the much smaller numbers of never-smokers with lung cancer are less understood with regard to the biologic underpinnings of their clinical outcomes.

MEK1/2 Inhibition Decreases Lactate in BRAF-Driven Human Cancer Cells

Maria Falck Miniotis, Vaitha Arunan, Richard Marais, Paul Workman, Martin O. Leach, and Mounia Beloueche-Babari

Précis: The use of magnetic resonance spectroscopy to measure lactate depletion could provide a simple, noninvasive metabolic biomarker for evaluating pharmacodynamic responses to the many BRAF/MEK inhibitors currently in clinical trials.

Enhanced Inhibition of ERK Signaling by a Novel Allosteric MEK Inhibitor, CH5126766, That Suppresses Feedback Reactivation of RAF Activity

Nobuya Ishii, Naoki Harada, Eric W. Joseph, Kazuhiro Ohara, Takaaki Miura, Hiroshi Sakamoto, Yutaka Matsuda, Yasushi Tomii, Yukako Tachibana-Kondo, Hitoshi Ikura, Yoshio Aoki, Nobuo Shimma, Mikio Arisawa, Yoshio Sowa, Pouliokis I. Pouliokakis, Neal Rosen, Yuko Aoki, and Toshiyuki Sakai

Précis: A novel class of MEK inhibitor described in this preclinical study causes MEK to function as a dominant negative inhibitor of RAF, enhancing its therapeutic action in tumors driven by mutant RAS or RAF.

Targeting Transmembrane TNF-α Suppresses Breast Cancer Growth

Mingxia Yu, Xiaoxi Zhou, Lin Niu, Guohong Lin, Jin Huang, Wenjing Zhou, Hui Gan, Jing Wang, Xiaodan Jiang, Bingjiao Yin, and Zhuoya Li

Précis: TNF antibody that specifically binds transmembrane TNF but not soluble TNF is highly effective in cancer treatment, with the capability to address patients who do not respond to existing TNF antagonists as a result of the ligand being shed by tumors.

Conditional Loss of ErbB3 Delays Mammary Gland Hyperplasia Induced by Mutant PIK3CA without Affecting Mammary Tumor Latency, Gene Expression, or Signaling

Christian D. Young, Adam D. Pfefferle, Philip Owens, Maria G. Kubia, Brent N. Rexer, Justin M. Balko, Violeta Sánchez, Hailing Cheng, Charles M. Perou, Jean J. Zhao, Rebecca S. Cook, and Carlos L. Arteaga

Précis: These findings suggest a rationale to combine inhibitors against PI3K and ErbB receptors in treating breast cancers that harbor PIK3CA activating mutations.
TUMOR AND STEM CELL BIOLOGY

Th-MYCN Mice with Caspase-S Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis
Tal Teitz, Madoka Inoue, Marcus B. Valentine, Kejin Zhu, Jerold E. Rehg, Wei Zhao, David Finkelstein, Yong-Dong Wang, Melissa D. Johnson, Christopher Calabrese, Marcelo Rubinstein, Razqallah Hakem, William A. Weiss, and Jill M. Lahti

Précis: An in vivo model of neuroblastoma that undergoes bone marrow metastasis will be useful to enable better studies of dissemination processes and therapeutic candidates.

miR-214 Coordinates Melanoma Progression by Upregulating ALCAM through TFAP2 and miR-148b Downmodulation
Elisa Penna, Francesca Orso, Daniela Cimino, Irene Vercellino, Elena Grassi, Elena Quaglino, Emilia Turco, and Daniela Taverna

Précis: By establishing a critical pathway to coordinate metastatic dissemination in melanoma, this study offers an initial preclinical proof of concept for targeting its elements as a rational approach to block or reverse this deadly process.

Cancer Stem–like Cell Marker CD44 Promotes Bone Metastases by Enhancing Tumorigenicity, Cell Motility, and Hyaluronan Production
Toru Hiraga, Susumu Ito, and Hiroaki Nakamura

Précis: This important study provides an initial glimpse of the functional meaning of a cell surface protein widely associated with stem-like cell properties in human cancer.

Stress-Response Protein RBM3 Attenuates the Stem-like Properties of Prostate Cancer Cells by Interfering with CD44 Variant Splicing
Yu Zeng, Dana Wodzenski, Dong Gao, Takumi Shiraiishi, Naoki Terada, Youqiang Li, Donald J. Vander Griend, Jun Luo, Chuize Kong, Robert H. Getzenberg, and Prakash Kulkarni

Précis: This study focuses on a little-studied family of stress regulators in cancer, the cold shock proteins, offering new perspectives on how stress alters RNA splicing for a modulator of stem cell-like character in malignant disease.

CORRECTIONS

Correction: Cell Surface Expression of Epidermal Growth Factor Receptor and Her-2 with Nuclear Expression of Her-4 in Primary Osteosarcoma

Correction: Helicobacter pylori Cytotoxin-Associated Gene A Activates the Signal Transducer and Activator of Transcription 3 Pathway In Vitro and In Vivo

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org

vi Cancer Research

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2013 American Association for Cancer Research.
ABOUT THE COVER

CD44, a cancer stem-like cell marker, has been implicated in cancer cell migration, invasion, and metastasis. This study shows that CD44 expression in cancer cells promotes bone metastases by enhancing tumorigenicity, cell migration and invasion, and production of hyaluronan, the primary ligand for CD44. Using a mouse model of bone metastasis, it was found that 4-methylumbelliferone, an inhibitor of hyaluronan synthesis, inhibited bone metastases of MDA-MB-231 human breast cancer cells with reduced number of osteoclasts. For details, see article by Hiraga and colleagues on page 4112.