Endothelial Cell Protein C Receptor Opposes Mesothelioma Growth Driven by Tissue Factor

Shiva Keshava¹, Sanghamitra Sahoo¹, Torry A. Tucker², Steven Idell², L. Vijaya Mohan Rao¹, and Usha R. Pendurthi¹

Abstract

The procoagulant protein tissue factor (F3) is a powerful growth promoter in many tumors, but its mechanism of action is not well understood. More generally, it is unknown whether hemostatic factors expressed on tumor cells influence tissue factor-mediated effects on cancer progression. In this study, we investigated the influence of tissue factor, endothelial cell protein C receptor (EPCR, PROCR), and protease activated receptor-1 (PAR1, F2R) on the growth of malignant pleural mesothelioma (MPM), using human MPM cells that lack or express tissue factor, EPCR or PAR1, and an orthotopic nude mouse model of MPM. Intrapleural administration of MPM cells expressing tissue factor and PAR1 but lacking EPCR and PAR2 (F2RL1) generated large tumors in the pleural cavity. Suppression of tissue factor or PAR1 expression in these cells markedly reduced tumor growth. In contrast, tissue factor overexpression in nonaggressive MPM cells that expressed EPCR and PAR1 with minimal levels of tissue factor did not increase their limited tumorigenicity. More importantly, ectopic expression of EPCR in aggressive MPM cells attenuated their growth potential, whereas EPCR silencing in nonaggressive MPM cells engineered to overexpress tissue factor increased their tumorigenicity. Immunohistochemical analyses revealed that EPCR expression in tumor cells reduced tumor cell proliferation and enhanced apoptosis. Overall, our results enlighten the mechanism by which tissue factor promotes tumor growth through PAR1, and they show how EPCR can attenuate the growth of tissue factor-expressing tumor cells. Cancer Res; 73(13); 3963–73. ©2013 AACR.

Introduction

It has been well recognized for many decades that tumors dramatically increase the risk for hemostatic abnormalities such as disseminated intravascular coagulation, pulmonary, and venous thromboembolism (1–3). Previous studies have also established that hemostatic factors play a major role in cancer biology, particularly in tumor dissemination and metastasis (4–6). Tumor cell-associated tissue factor (TF) is known to contribute to tumor growth and progression either directly by TF-FVIIa or tissue factor cytoplasmic tail-mediated cell signaling (7–9), or indirectly through generation of thrombin that leads to activation of platelets, fibrin deposition, and activation of PAR1-mediated cell signaling (10–13).

Recent studies showed promotion of tumor growth by tissue factor, independent of its role in coagulation (14–17). Selective inhibition of TF-FVIIa signaling using a specific monoclonal antibody that blocks tissue factor signaling, but not tissue factor-mediated coagulation, was shown to reduce breast tumor growth (14). Blockade of PAR2 but not PAR1 cleavage by specific antibodies attenuated tumor growth. Consistent with the hypothesis that PAR2-mediated signaling contributes to tumor growth in breast cancer, mice lacking PAR2 but not PAR1, exhibited reduced tumor growth in a model of spontaneous mammary tumors (18). Our recent studies on progression of malignant pleural mesothelioma (MPM) showed that MPM cells that express tissue factor generated large tumors within the pleural cavity, and inhibition of tumor cell tissue factor by overexpression of tissue factor pathway inhibitor (TFPI) in tumor cells blocked tumor growth and invasion (19). It is unknown at present whether TF-FVIIa-PAR2-mediated cell signaling contributes to growth of MPM as observed in breast cancer (14, 18).

Recent studies from our laboratory and others have established that FVIIa, the protein that initiates the coagulation upon binding to tissue factor, also binds to endothelial cell protein C receptor (EPCR; refs. 20–22). FVIIa binding to EPCR on the endothelium was shown to activate PAR1-mediated cell signaling providing protective barrier effect (23). Disse and colleagues reported that EPCR promoted PAR1 and PAR2 cleavage by FXa in the ternary complex of TF-FVIIa-FXa (24). Studies in cell model systems implicated that EPCR may promote tumor metastasis as EPCR-activated protein C (APC)–mediated PAR1 signaling was shown to promote cancer cell migration, invasion, and angiogenesis (25, 26). In vivo studies gave conflicting data as...
EPCR-APC signaling decreased lung metastasis in melanoma model by preventing tumor cell migration through enhancement of endothelial barrier function (27, 28), whereas EPCR overexpression increased metastasis in lung adenocarcinoma by promoting tumor cell survival (29). To date, there is no information on whether EPCR directly influences tumor growth.

In the present study, we show that MPM cells that express tissue factor and PAR1 but not PAR2 generate large tumors in the thoracic cavity. Suppression of either tissue factor or PAR1 reduces tumor growth in this model. However, overexpression of tissue factor in less aggressive MPM cells that lack tissue factor but express PAR1 failed to induce an aggressive phenotype. Interestingly, we found no EPCR expression in aggressive MPM cells whereas abundant EPCR expression was found in nonaggressive MPM cells. Introduction of EPCR expression to aggressive MPM cells by EPCR knockin completely attenuated their tumorigenicity, whereas the knockdown of EPCR expression in nonaggressive MPM cells engineered to overexpress tissue factor markedly increased their tumorigenicity. The present study is the first to report that EPCR suppresses tissue factor-driven tumor growth of mesothelioma.

Materials and Methods

Cell lines

REN cells were from S. Albeda (University of Pennsylvania, Philadelphia, PA), MS-1 cells were from S-M. Hsu (The University of Texas Health Science Center at Houston, Houston, TX), and M9K cells were from B. Gerwin (NIH, Bethesda, MD). All 3 MPM cell types were obtained from the above investigators before 2008. Characterization of these cells when they were first used in our tumorigenesis model showed an epitheloid phenotype in culture and retained classical MPM markers, confirming their MPM origin (29, 30). For detailed methods, see Supplemental Material.

Generation of stable transfectants of MPM cells expressing/lacking tissue factor, EPCR, or PAR1

Tissue factor or PAR1 expression in REN MPM cells was selectively knocked down by specific short hairpin RNA (shRNA) constructs cloned into pSilencer 2.1 U6-Puro expression vector. For generation of EPCR-expressing REN cells, REN MPM cells were transfected with pZeoSV plasmid containing human EPCR cDNA (20). MS-1 and M9K MPM cells were stably transfected with pcDNA 3.1 containing tissue factor cDNA. To suppress EPCR expression in MS-1 and M9K cells, native MS-1 and M9K cells or MS-1 and M9K cells engineered to overexpress tissue factor were stably transfected with EPCR-specific shRNA constructs.

Tissue factor activity

The procoagulant activity of tissue factor on intact cell surface of wild-type and stable transfectants was measured in a factor X activation assay (31).

Measurement of cytosolic Ca2+ release

Fluorescence microscopy was used for measurement of cytosolic Ca2+ release, as described earlier (32).

Orthotopic murine model of thoracic human MPM

One-hundred microliters of MPM cell suspension containing 1 × 10^6 cells were injected into the pleural cavity of nude mice as described earlier (30) with a few minor modifications. Mice were sacrificed between 28 and 30 days following tumor cell implantation, and tumor growth was evaluated as described earlier (30).

Histology and immunohistochemistry

Tissues were processed for thin sectioning using standard procedures. Rehydrated tissue sections were processed for hematoxylin and eosin (H&E), elastin, collagen staining, or immunostaining for tissue factor, EPCR, Ki67 or TUNEL staining.

Statistical analysis

Nonparametric statistical tests, Kruskal–Wallis or Mann–Whitney test, were used for determination of statistical significance.

Results

Status of tissue factor, EPCR, PAR1, PAR2, thrombomodulin, and TFPI expression levels in MPM cells

Tissue factor expression was markedly higher in REN cells compared with MS-1 and M9K cells (Fig. 1A and B). Tissue factor expression was barely detectable in MS-1 and M9K cells. REN cells express very little EPCR, whereas both MS-1 and M9K cells abundantly express EPCR, at levels found in endothelial cells (Fig. 1C). As reported earlier (19), REN cells lack TFPI expression, whereas both MS-1 and M9K cells express TFPI (Fig. 1D). Thrombomodulin expression was not detectable in REN cells and barely detectable in MS-1 cells, but abundant in M9K cells (Fig. 1E). Western blot analysis revealed that all 3 MPM cell types express PAR1, whereas PAR2 expression was undetectable (Fig. 1F). Consistent with the antigen data, a PAR1 but not PAR2 agonist peptide induced intracellular Ca2+ release in REN cells (Fig. 1G). A similar pattern of Ca2+ release was observed in MS-1 and M9K cells, i.e., respond to PAR1, but not to PAR2 agonist peptide (data not shown).

REN MPM cells generate large invasive tumors and knockdown of tissue factor reduces tumorigenicity of REN cells

As reported previously (30), implantation of REN cells into the thoracic cavity of nude mice resulted in multiple large tumors (>2 mm) within the thoracic cavity (Fig. 2A). The number of large tumors in each mouse varied from 6 to 18. Some of the tumors were approximately the size of the heart (Fig. 2B). All tumors were limited to the thoracic cavity. These tumors were highly invasive and often penetrated deep into intercostal tissues on which they were attached (Fig. 2C and D). There was no evidence for metastasis as we found no tumors in distant organs such as liver. A variable number of very small tumors (<2 mm) found in the thoracic cavity may reflect dispersed initial seeding of tumor cells rather than pleural metastases. In contrast to REN, intrapleural administration of MS-1 and M9K cells produced relatively few tumors; some of the mice developed no tumors at all. Most of the tumors that
were generated from these cells barely reached the 2 mm size. None of the tumors grew as large as those found in mice injected with REN cells. Furthermore, MS-1 and M9K cell-derived tumors were loosely attached to the tissue and remained noninvasive. Intrathoracic lavage of these animals showed small granular white spheroids. We found no significant differences in cell growth potential among REN, MS-1, and M9K cells, as measured in factor X activation assay (significance levels between the groups were determined by Kruskal–Wallis test and Dunn posttest was used to calculate statistical significant differences between REN and MS-1 or M9K; ***P < 0.001). C–F, immunoblots for EPCR (C), TFPI (D), thrombomodulin (TM; E), or PAR1 and PAR2 (F). Cell extracts of MDA231 tumor cells, human mesothelial cells (HMC) or human umbilical vein endothelial cells (HUVEC) were included in blots as controls. G, intracellular Ca²⁺ release in REN cells in response to control vehicle, PAR1 agonist peptide (50 μM), or PAR2 agonist peptide (50 μM). Arrow indicates the time when the control vehicle or PAR peptide agonist was added to the cells. The y-axis indicates mean fluorescence (Fl). GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

To investigate the role of tissue factor on aggressiveness exhibited by REN tumors, we knocked down tissue factor expression in REN cells by stably transfecting with tissue factor-specific shRNA [REN(-TF)]. As a control, REN cells were stably transfected with a noneffective scrambled shRNA in pSilencer vector [REN(p)]. As shown in Fig. 3A and B, tissue factor antigen expression and cell surface tissue factor activity was reduced by about 70% in REN(-TF) cells compared with that measured in naïve REN or REN(p) cells. Mice injected with naïve REN and REN(p) cells developed a similar number of large tumors (Fig. 3C), and no significant differences were found between them in their tumor growth or burden (Fig. 3D and E). In contrast, mice injected with REN(-TF) cells developed fewer numbers of large tumors (Fig. 3C). Although a few of the tumors in mice injected with REN(-TF) grew as large as those found in mice injected with naïve REN or REN(p) cells, most of the tumors were smaller. The total tumor volume and burden was significantly lower in mice injected with REN(-TF) cells in comparison with mice injected with naïve REN or REN(p) cells (Fig. 3D and E). In contrast to the tumors originating from naïve REN and REN(p) cells, tumors that originated from REN(-TF) cells were less invasive (data not shown). Immunohistochemical analysis of tissue sections using anti-tissue factor antibodies showed abundant expression of tissue factor in tumors that developed in mice injected with naïve REN or REN(p) cells. In contrast, little expression of tissue factor was found in tumors from mice injected with REN(-TF) (Fig. 3F). In vitro cell proliferation studies showed that FVIIa increased the cell proliferation rate in the presence of 1% serum was about 2.5- to 3.5-fold higher over the cells cultured in the absence of serum. In all 3 cell types, the cell proliferation rate in the presence of 1% serum was reduced by about 70% in REN(-TF) cells compared with that measured in naïve REN or REN(p) cells (Fig. 3D).

Tissue Factor, EPCR, and Tumor Growth
Overexpression of tissue factor in less aggressive MS-1 and M9K cells does not increase the tumorigenicity

To determine whether difference in tissue factor expression alone is responsible for marked differences in the tumor growth between aggressive REN cells and less aggressive MS-1 or M9K cells, we stably transfected similar levels of cell surface tissue factor functional activity as to that found in REN cells (Fig. 5B) were selected for in vivo studies. Surprisingly, overexpression of tissue factor in either MS-1 or M9K cells failed to alter their tumorigenicity. The number of tumors formed in the pleural cavity of nude mice injected with MS-1(+TF) or M9K(+TF) cells was comparable with those formed in the mice injected with naive MS-1 and M9K cells, and these were markedly less than the number of tumors produced by injection of naive MS-1 and M9K cells (Fig. 5C). The tumors formed in nude mice injected with naive or tissue factor overexpressing MS-1 or M9K cells were small and barely reached the 2 mm size threshold to be included in the total tumor count. Furthermore, these small tumors, in contrast to the tumors formed in mice injected with REN cells, were loosely adhered to the pleura. No significant differences were observed in the tumor volume (Fig. 5D) or tumor burden (Fig. 5E) among mice injected with naive and tissue factor overexpressing MS-1 or M9K cells, which were significantly lower (P < 0.001) compared with tumor volume and burden in mice injected with naive REN cells. Immunohistochemical analysis of tumor sections revealed that MS-1 (Fig. 5F) and M9K cells (data not shown) stably transfected with tissue factor continued to express tissue factor in the tumor environment in vivo. Analysis of tumor tissue lysates for tissue factor by Western blot analysis and the functional activity assay confirmed the expression of tissue factor in small tumors generated by MS-1(+TF) and M9K(+TF) cells (data not shown). These data eliminate the possibility that loss of tissue factor expression in tumors in vivo may be responsible for the inability of tissue factor to promote tumor growth in these cell types.

EPCR regulates tissue factor-driven tumor growth of MPM

As REN cells do not express EPCR, whereas MS-1 and M9K cells express abundant EPCR (Fig. 1C), we postulated that absence of EPCR in REN cells is responsible for their aggressive tumorigenicity. Therefore, we investigated the potential effect of tumor cell-associated EPCR on suppression of MPM tumor growth. REN MPM cells were stably transfected to express EPCR (Fig. 6A). EPCR-stable transfectants expressing levels of tissue factor activity similar to that of naive REN cells or REN cells stably transfected with a control vector were selected for intrapleural injection (Fig. 6B). Introduction of EPCR expression to REN cells markedly reduced the number of tumors formed in the thoracic cavity (Fig. 6C), and the few tumors that were formed remained very small (Fig. 6F). Thus, the total tumor volume and burden in mice injected with REN(+EPCR) cells was strikingly lower than that was observed with control REN(z) cells (Fig. 6D and E). Although in vitro studies showed no measurable differences in cell proliferation between REN and REN(+EPCR) in the presence or absence of various ligands (Supplementary Fig. S4), analysis of tumor tissue sections showed a dramatic decrease in the percentage of proliferating tumor cells in tumors derived from REN(+EPCR) cells compared with REN(z) cells (Fig. 6G). A higher percentage of tumor...
cells were found to be apoptotic in tumors developed from REN (+EPCR) cells compared with tumors derived from REN(æ) cells (Fig. 6H).

Consistent with our hypothesis that EPCR plays the critical role in suppressing tumor growth in MPM, knockdown of EPCR expression in tissue factor overexpressing MS-1 and M9K cells (Fig. 7A–C) dramatically increased the tumorigenicity of these nonaggressive MPM cells (Fig. 7D–F). Mice injected with EPCR knocked-down MS-1(+TF) and M9K(+TF) cells developed enormous tumor burden (Fig. 7F). These MPM cell types formed not only large nodular tumors but they grew on lung pleura and diaphragm forming large coalescing tumors that tightly attached the bottom of lungs to diaphragm and esophagus, creating a large thick mass containing tumor cells, organs, and extracellular matrix (Fig. 7G and H). In addition, small tumors on pericardial membrane and parietal pleura were clearly visible. Invasion of tumor cells into the intercostal space and along the ribs is also visible in all the mice injected with EPCR knocked-down MPM cells. The thoracic cavities of these mice were filled with bloody fluid (hemotherax). Finally, some of the mice injected with EPCR knockdown of MS-1 (+TF) or M9K(+TF) cells lost about as much as 25% body weight in the last week. Analysis of thrombomodulin and/or TFPI levels in M9K(+TF) and MS-H(+TF) cells and their corresponding EPCR knocked-downs showed no significant differences in their expression levels (Supplementary Fig. 5). In contrast to the increased tumor production obtained with EPCR knocked-down MS-1(+TF) and M9K(+TF) cells, EPCR knocked-down in parental MS-1 or M9K cells produced similar low tumorigenicity of parental cells (Fig. 7D–F). Overall, our data clearly illustrate that EPCR suppresses tissue factor-driven tumor growth in MPM.

In vitro cell proliferation studies showed no significant differences in cell growth pattern among MS-1 and M9K cells expressing EPCR or EPCR knocked-downs (Supplementary Fig. S6A and S6B). However, evaluation of tumor tissues by immunohistochemistry for the presence of nuclear proliferation antigen Ki67 revealed that EPCR knockdown of tissue factor expressing MS-1 and M9K cells markedly increased the percentage of proliferating tumor cells in the tumor bed (Fig. 7I). TUNEL staining showed that EPCR knockdown of tissue factor expressing MS-1 and M9K cells significantly decreased tumor cell apoptosis (Fig. 7J).

Discussion

The increased expression of tissue factor in tumor cells has been shown to associate with various aspects of tumor progression, including tumor growth, angiogenesis, invasion, and metastasis (7–9). Tumor cell tissue factor-induced activation of the coagulation pathway is believed to be primarily responsible for tumor cell dissemination and metastasis as downstream coagulation activation results in thrombin-, platelet-, and fibrin-dependent pathways (6, 11, 12). In contrast, a direct tumor cell tissue factor-mediated cell
Recent studies have provided evidence that tissue factor is required for tumor growth in other types of cancers. Our present observations that REN cells expressing tissue factor (D) and burden (E) were measured (n = 7–9 mice/group, data from 2 independent experiments carried out with a single REN(-PAR1) clone was combined). Statistical significance between the 2 groups was determined by Mann-Whitney test; *** P < 0.001. F, a representative photograph showing differences in tumor growth in mice injected with REN(p) or REN(-PAR1) cells. Arrows indicate tumors. H, heart; L, lung.

signaling was shown to be responsible for tumor growth (14). Although regulators of coagulation, such as EPCR and thrombomodulin, were also shown to influence metastatic potential (27, 28, 33), their role in tumor growth was either unexplored or not completely understood (34). In the present study, we used MPM cells that express or lack tissue factor, EPCR, PAR1, and PAR2, and a novel orthotopic murine model of MPM to investigate the influence of tissue factor and EPCR on MPM tumor growth. The data provided herein show that tissue factor promotes MPM tumor growth as observed with other cancers but tissue factor-driven tumor growth in MPM does not require PAR2 but rather is dependent on PAR1. Interestingly, our data also reveal that tissue factor expression in tumor cells in itself does not fully control tumor growth, as overexpression of tissue factor in nonaggressive MPM cells expressing PAR1 failed to promote tumor growth. More importantly, our studies show for the first time that EPCR on tumor cells, at least in MPM cells, can suppress tissue factor-driven tumor growth.

Recent studies have provided evidence that tissue factor actively contributes to tumor growth through a nonhemostatic, tissue factor-dependent signaling mechanism in melanoma (16) and breast cancer (14, 18). Tissue factor was shown to support tumor growth in breast cancer via TF-FVIIa-PAR2–mediated cell signaling, independent of PAR1 (14, 18). However, it remains unclear at present whether such a mechanism is required for tumor growth in other types of cancers. Our present observations that REN cells expressing tissue factor and PAR1, but not PAR2, generate large primary tumors compared with MS-1 and M9K cells that express PAR1 but lack tissue factor, and tissue factor knockdown suppresses tumor growth of REN cells strongly suggest that tissue factor drives tumor growth in MPM by a mechanism that does not involve PAR2. These data support the possibility that tissue factor may promote tumor growth in different cancers by different mechanisms.

Similar to tissue factor knockdown, PAR1 knockdown also markedly suppressed REN MPM tumor growth. The extent of tumor growth suppression in PAR1 knockdown seemed to be very similar to that observed with tissue factor knockdown cells, which is consistent with the hypothesis that tissue factor supports MPM tumor growth via a PAR1-dependent mechanism. However, it is unclear at present whether a direct TF-PAR1–mediated signaling or thrombin-induced PAR-1–mediated signaling is responsible for this tumor growth. Here, it is interesting to note that although overall reduction in tumor growth as measured in tumor volume and burden is similar in both tissue factor- and PAR1 knockdowns, mice injected with PAR1 knockdown cells developed fewer tumors in total compared with mice injected with tissue factor knockdown cells (average 21 tumors/mouse). These data suggest, albeit indirectly, that tissue factor-mediated PAR1 signaling may primarily drive tumor growth, whereas thrombin-mediated PAR1 signaling may contribute to tumor cell adhesion and initial seeding of tumor cells.
Earlier studies showed that tissue factor expression levels determine the metastatic potential of tumor cells. Melanoma cells constitutively expressing high levels of tissue factor were shown to be highly metastatic, whereas melanoma cells that lack tissue factor failed to metastasize (35). Transfection of tissue factor into nonmetastatic melanoma cells positively transformed their metastatic potential (35). Similarly, transfection of Chinese hamster ovary cells with tissue factor enhanced tumor cell metastasis (36). A number of clinical studies found a correlation between tissue factor expression and invasiveness/c clinical stage of cancer (9). On the basis of these observations, we predicted that transfection of nonaggressive MS-1 or M9K cells with tissue factor would increase their tumor growth potential. Therefore, it is quite surprising to find that transfection of tissue factor into these cells to similar levels of tissue factor found in REN cells failed to increase their tumor growth potential. Our earlier studies revealed that while REN cells lack TFPI, both MS-1 and M9K cells express abundant TFPI (19). However, it is unlikely that suppression of tissue factor activity by TFPI on tumor cells is the reason for the failure of MS-1 or M9K cells expressing tissue factor to generate large tumors since tissue factor expression levels on the transfected cells far exceed TFPI levels as we selected stable transfec tants based on tissue factor functional activity levels. It is important to note here that tissue factor functional activity in MS-1 or M9K cells stably transfected with tissue factor was similar to that of REN cells. Moreover, we found similar tissue factor activity levels in tumors excised from mice injected with MS-1 or M9K cells expressing tissue factor and REN cells. Overall, our data indicate that although tissue factor plays a crucial role in tumor growth in MPM, tissue factor expression alone could not establish the tumor growth potential.

One additional difference between aggressive REN cells and nonaggressive MS-1/M9K cells is the expression of EPCR. Both MS-1 and M9K cells express EPCR levels similar to that found in endothelial cells, whereas REN cells express no or very little EPCR. This raises an interesting possibility that EPCR acts as a tumor growth suppressor. Unlike numerous published studies correlating tissue factor expression levels with tumor burden/metastasis and cancer survival, information on EPCR expression levels in cancer is very limited. Although EPCR expression was shown in some cancer tissues (37–39), these studies were not conducted systematically as they were not related to tumor grade. It seems that expression of EPCR in tumor cells is a rare exception.
event (39) and more EPCR+ tumors could be found in stage pT1 than in pT2. Although we are not aware of any studies in the literature that investigated the influence of EPCR on tumor growth, a number of studies reported that EPCR-APC signaling exerts antipapoptotic effects on a variety of cell types (40–45). Recently, Anton and colleagues (29) showed that APC/EPCR axis conferred a significant advantage to cell survival of lung adenocarcinoma cells, and this was responsible for robust prometastatic activity of lung adenocarcinoma. By extrapolation of these data, one would speculate that EPCR, as with tissue factor, may promote tumor growth. However, the data presented in this study show clearly that EPCR, in fact, suppresses, tumor growth. This is an unexpected and novel finding, which runs contrary to the known functions of EPCR. At present, it is unknown whether tumor growth suppressive property of EPCR requires a specific pleural microenvironment or is specific to MPM cell types. Answering this requires extensive studies that involve deployment of other tumor growth models and tumor cell types, which are beyond the scope of the present work.

It is unknown, at present, whether the protective effect of EPCR on MPM tumor growth we observed is mediated by its anticoagulant function or cell signaling function. EPCR plays a key role in suppressing thrombin generation by promoting the activation of anticoagulant protein C to APC by thrombin–thrombomodulin complex. EPCR on tumor cells may simply inhibit the tumor growth by inhibiting thrombin generation, and thereby reducing thrombin-mediated PAR1-dependent tumor growth. However, it may be pertinent to note here that REN cells do not express thrombomodulin, a cofactor needed for thrombin activation of EPCR-bound protein C. Nonetheless, overexpression of EPCR in REN cells markedly reduced tumor growth. EPCR, in addition to supporting APC-mediated cell signaling, was shown to promote TF-FVIIa-FXa ternary complex signaling of PAR1 and PAR2 (24). It is unlikely that EPCR suppresses MPM tumor growth through its interaction with TF-FVIIa-FXa ternary signaling complex, as this would presumably promote, and not suppress, tumor growth because upregulation of tissue factor–dependent signaling in tumor cells may in general lead to activation of proangiogenic and protumor growth pathways (7–9). Similar to tissue factor, PAR1 signaling is also believed to contribute to cancer progression (13). However, at present, we cannot exclude the possibility of PAR1 involvement in
mediating the EPCR’s protective effect, as EPCR was shown to switch specificity of PAR1 signaling from damaging to protective signaling (46, 47). For example, it had been shown that cleavage of PAR1 by thrombin initiates proinflammatory responses in endothelial cells in the absence of EPCR ligation, whereas when EPCR was ligated by protein C, the cleavage of PAR1 by thrombin initiates antiinflammatory response (47). Thus, it is conceivable that activation of PAR1 by thrombin or APC in tumor cells lacking EPCR could result in protumor growth signaling, whereas activation of PAR1 by thrombin in tumor cells expressing EPCR may initiate proapoptotic cell signaling.

At present, molecular mechanisms by which EPCR suppresses tumor growth are unclear. In our in vitro cell proliferation studies, we found no significant differences in cell proliferation between MPM cells lacking EPCR expression and MPM cells expressing EPCR in the absence or presence of FVIIIa, APC, or thrombin. However, analysis of tumor cell proliferation in tumor tissues showed that EPCR expression in MPM cells suppresses tumor cell proliferation. Consistent
with the finding that EPCR inhibits tumor cell proliferation in vivo. EPCR knockdown markedly increased tumor cell proliferation in MS-1 and M9K cells overexpressing tissue factor. In addition to inhibiting tumor cell proliferation in vivo, EPCR expression in tumor cells also promoted tumor cell apoptosis. These data were somewhat surprising because EPCR is known to primarily activate cytoprotective signaling pathways, including antiapoptotic signaling pathways (45, 48). At present, it is unclear how EPCR suppresses tumor cell proliferation and promotes tumor cell apoptosis in vivo. A number of studies have shown that EPCR-mediated signaling pathway inhibits NF-kB–mediated proinflammatory pathways in monocytes and endothelial cells (41, 45, 47, 49). It is well-accepted now that tumor-associated inflammatory responses play a critical role in enhancing tumorigenesis and cancer progression (50–52). Thus, it is very tempting to speculate that EPCR’s protective effect against tumor growth comes through its anti-inflammatory effect in tumor microenvironment. Notable differences in EPCR’s effect on tumor cell proliferation in vitro and in vivo indicate that host factors may significantly influence the mode of EPCR action.

Finally, our present data provide impetus for developing novel therapeutic strategies in treating patients with cancer, particularly patients with MPM. If EPCR is found to suppress MPM tumor growth through enhancement of APC generation, then administration of exogenous APC may restrict the progression of this tumor. If EPCR-mediated cell signaling in tumor cells is found to be responsible for curtailing tumorigenicity, then transduction of EPCR in tumor cells by gene therapy may become a viable option. MPM is an attractive target for gene therapy because of the paucity of conventional therapies, accessibility of the tumors in the pleural space for delivery of experimental therapeutics, and previous experience derived from gene therapy trials in patients with MPM (53, 54).

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: S. Keshava, L.V.M. Rao, U.R. Pendurthi
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Keshava, S. Sahoo, U.R. Pendurthi
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Keshava, S. Sahoo, T.A. Tucker, S. Idell, L.V.M. Rao, U.R. Pendurthi
Writing, review, and/or revision of the manuscript (i.e., reporting or organizing data, constructing databases): S. Keshava, U.R. Pendurthi
Study supervision: U.R. Pendurthi

Acknowledgments
The authors thank Dr. Chuck Eson for providing EPCR and TM antibodies and Dr. George Broze for providing TFPI antibodies. The authors also thank Janet Arras for her technical help and Dr. Barry Starcher for his help in elastin and collagen staining.

Grant Support
This work was supported by grants HL65550 (U.R. Pendurthi), HLPO1076406 (S. Idell), and HL107483 (L.V.M. Rao) from the NIH.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 7, 2012; revised March 18, 2013; accepted March 20, 2013; published OnlineFirst March 28, 2013.

References

Endothelial Cell Protein C Receptor Opposes Mesothelioma Growth Driven by Tissue Factor

Shiva Keshava, Sanghamitra Sahoo, Torry A. Tucker, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-12-1690

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/03/28/0008-5472.CAN-12-1690.DC1

Cited articles
This article cites 54 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/13/3963.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/73/13/3963.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.