Tumor MMP-1 Activates Endothelial PAR1 to Facilitate Vascular Intravasation and Metastatic Dissemination
Anna Juncker-Jensen, Elena I. Deryugina, Ivo Rimann, Ewa Zajac, Tatjana A. Kupriyanova, Lars H. Engelholm, and James P. Quigley
Précis: Therapeutic targeting of a newly unraveled tumor pathway with connections to a thrombin receptor on endothelial cells is effective in preventing carcinoma cell intravasation, the earliest step of tumor metastasis.

VEGF-C and VEGF-D Blockade Inhibits Inflammatory Skin Carcinogenesis
Annamari K. Alitalo, Steven T. Proulx, Sinem Karaman, David Aebischer, Stefania Martino, Manuela Jost, Nicole Schneider, Maija Bry, and Michael Detmar
Précis: These findings show that less-studied isoforms of VEGF shape the inflammatory tumor microenvironment and support the use of VEGF-C/D antagonists to inhibit both early and late stages of tumor growth.

Intestinal Bacteria Modify Lymphoma Incidence and Latency by Affecting Systemic Inflammatory State, Oxidative Stress, and Leukocyte Genotoxicity
Mitsuko L. Yamamoto, Irene Maier, Angeline Tilly Dang, David Berry, Jared Liu, Paul M. Ruegger, Jue-in Yang, Philip A. Soto, Laura L. Presley, Ramune Reliene, Aya M. Westbrook, Bo Wei, Alexander Loy, Christopher Chang, Jonathan Braun, James Borneman, and Robert H. Schiestl
Précis: This potentially seminal study reveals the powerful effects that intestinal microbiota can exert on lymphoma penetration in genetically susceptible mice, with possible implications for preventing this cancer in individuals who are at risk of disease.

Evaluation of LDH-A and Glutaminase Inhibition In Vivo by Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy of Tumors
Prasanta Dutta, Anne Le, David L. Vander Jagt, Takashi Tsukamoto, Gary V. Martinez, Chi V. Dang, and Robert J. Gillies
Précis: This is the first study to report the ability to monitor biomarkers of antimetabolic therapy in real time, paving the way for clinical development of imaging biomarkers to monitor metabolic pharmacodynamics.

Bone Marrow–Derived CD11b+ Jagged2+ Cells Promote Epithelial-to-Mesenchymal Transition and Metastasization in Colorectal Cancer
Francisco Caiado, Tânia Carvalho, Isadora Rosa, Leonor Remédio, Ana Costa, João Matos, Beate Heissig, Hideo Yagita, Koichi Hattori, João Pereira da Silva, Paulo Fidalgo, António Dias Pereira, and Sérgio Dias
Précis: These findings suggest that quantifying the number of circulating bone marrow cells expressing JAG2 might define metastatic development in colorectal cancer patients.
Rb1 Haploinsufficiency Promotes Telomere Attrition and Radiation-Induced Genomic Instability
Iria Gonzalez-Vasconcellos, Natasa Anastasov, Bahar Sanli-Bonazzi, Olena Klymenko, Michael J. Atkinson, and Michael Rosemann

Precis: These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may act beyond simply deregulating cell-cycle control.

Extracellular DNA in Pancreatic Cancer Promotes Cell Invasion and Metastasis
Fushi Wen, Alex Shen, Andrew Choi, Eugene W. Gerner, and Jiaqi Shi

Precis: This study offers a provocative set of observations, suggesting that the accumulation of extracellular DNA in the microenvironment of pancreatic tumors triggers a feed-forward inflammatory signal that strongly promotes invasive and metastatic behavior.

Radioresistant Cancer Cells Can Be Conditioned to Enter Senescence by mTOR Inhibition
Hae Yun Nam, Myung Wool Han, Hyo Won Chang, Yoon Sun Lee, Myungjin Lee, Hyung Ju Lee, Byoung Wook Lee, Hee Jin Lee, Kyung Eun Lee, Min Kyo Jung, Hyesung Jeon, Seung-Ho Choi, Neung Ihwa Park, Sang Yoon Kim, and Seong Who Kim

Precis: By revealing that mTOR inhibition can promote cellular senescence in radio-resistant cancer cells through activation of the RB pathway, this study provides a novel mechanistic perspective on how mTOR inhibitors can be used combinatorially to improve cancer therapy.

PML-RARe and Its Phosphorylation Regulate PML Oligomerization and HIPK2 Stability
Yutaka Shima, Yuki Honma, and Issay Kitabayashi

Precis: These findings offer mechanistic insights into the basis for the most common prodifferentiation therapies used to treat acute promyelocytic leukemia in the clinic.

HMGA2 Is a Driver of Tumor Metastasis
Asahiro Morishita, M. Raza Zaidi, Akira Mitoro, Devipriya Sankarasharma, Matthias Szabolcs, Yasunori Okada, Jeanine D’Armito, and Kiran Chada

Precis: These results define a key function in cancer invasion and metastasis for a nonhistone chromatin-binding protein that activates EMT by upregulating the TGFβ signaling pathway.

ATR-Dependent Phosphorylation of FANCM at Serine 1045 Is Essential for FANCM Functions
Thiyam Ramsing Singh, Abdullah Mahmood Ali, Manikandan Paramasivam, Arun Pradhan, Kebola Wahengbam, Michael M. Seidman, and Anom RuhiKanta Meetei

Precis: These findings help unravel the intricacies of a central pathway of DNA damage response and repair.

Autophagy Plays a Critical Role in the Degradation of Active RHOA, the Control of Cell Cytokinesis, and Genomic Stability
Amine Belaid, Michael Cerezo, Abderrahman Chargui, Elisabeth Corcelle–Termeau, Florence Pedentour, Sandy Giuliano, Marius Ilie, Isabelle Ribera, Michel Tauc, Sophie Barale, Corinne Bertolotto, Patrick Brest, Valérie Vouret-Craviari, Daniel J. Klionsky, Georges F. Carle, Paul Hofman, and Baharia Mograbi

Precis: Autophagy may act in part as a safeguard mechanism in cancer cells by maintaining RHOA levels at the midbody needed for faithful completion of cytokinesis and genome inheritance.

Integration of High-Resolution Methylome and Transcriptome Analyses to Dissect Epigenomic Changes in Childhood Acute Lymphoblastic Leukemia
Stephan Busche, Bing Ge, Ramon Vidal, Jean-François Spinella, Virginie Saillour, Chantal Richer, Jasmine Healy, Shu-Huang Chen, Arnaud Droit, Daniel Simnett, and Tomi Pastinen

Precis: A multilevel genome-wide profiling approach defines key biomarkers and driver elements in major subtypes of childhood pre-B acute lymphoblastic leukemia.

Loss of ARF Sensitizes Transgenic BRAFV600E Mice to UV-Induced Melanoma via Suppression of XPC
Chi Luo, Jinghao Sheng, Miaofen G. Hu, Frank G. Haluska, Rutao Cui, Zhengping Xu, Philip N. Tsichlis, Guo-Fu Hu, and Philip W. Hinds

Precis: Mutations in p19ARF and BRAFV600E cooperate to suppress DNA repair during melanoma formation, promoting disease beyond effects on p53 function and senescence, which are minimally affected.
4349 PPARα Induces Estrogen Receptor-Positive Mammary Neoplasia through an Inflammatory and Metabolic Phenotype Linked to mTOR Activation
Hongyan Yuan, Jin Lu, Junfeng Xiao, Geeta Upadhyay, Rachel Umans, Bhaskar Kallakury, Yuhzi Yin, Michael E. Fant, Levy Kopelowich, and Robert I. Glazer
Precis: These findings identify a targetable transcription factor that drives the pathogenesis of breast cancer through mTOR activation, with implications for new therapeutic approaches to prevent and treat this disease.

4362 Structure-Specific Endonucleases Xpf and Mus81 Play Overlapping but Essential Roles in DNA Repair by Homologous Recombination
Precis: These findings address gaps in knowledge concerning how DNA repair mediated by homologous recombination can influence the sensitivity of cancer cells to genotoxic chemotherapeutic agents, with potential therapeutic implications.

4372 The Exomes of the NCI-60 Panel: A Genomic Resource for Cancer Biology and Systems Pharmacology
Precis: Making whole exome sequence data part of the NCI-60 tumor cell line database will provide the ability to quickly identify expression correlates of anticancer drug response, with immediate relevance to translational and clinical research.

4383 Therapeutic Destruction of Insulin Receptor Substrates for Cancer Treatment
Hadass Reuveni, Efrat Flashner-Abramson, Lilach Steiner, Kirill Makedonski, Renduo Song, Alexei Shir, Meenhard Herlyn, Menashe Bar-Eli, and Alexander Levitzki
Precis: This important study offers preclinical proof of concept for a family of small-molecule inhibitors that cause destruction of insulin receptor substrates as broad-acting drugs for cancer treatment, including deadly melanomas that become resistant to BRAF inhibitors.

4384 4-Hydroxytamoxifen Induces Autophagic Death through K-Ras Degradation
Latika Kohli, Niroop Kaza, Tatjana Coric, Stephanie J. Byer, Nicole M. Brossier, Barbara J. Klocke, Mary-Ann Bjornsti, Steven L. Carroll, and Kevin A. Roth
Precis: A novel mechanism of autophagic death triggered by tamoxifen in tumor cells may make this common breast cancer drug more broadly useful in cancer therapy.

4395 KEAP1 is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer Cells
Yong Xu, Fang Fang, Sumitra Miriyala, Peter A. Crooks, Terry D. Oberley, Lukasana Chaiswing, Teresa Noel, Aaron K. Holley, Yanning Zhao, Kelley K. Kinningham, Daret K. St. Clair, and William H. St. Clair
Precis: These findings establish a principle through which it is possible to develop agents that can radiosensitize tumor cells but radioprotect normal cells, with important implications for the development of cancer-specific drugs.

4406 A Survivin-Associated Adaptive Response in Radiation Therapy
David J. Grdina, Jeffrey S. Murley, Richard C. Miller, Helena J. Mauceri, Harold G. Sutton, Jian Jian Li, Gayle E. Woloschak, and Ralph R. Weichselbaum
Precis: Very low-dose radiation used increasingly in imaging tumors subjected to irradiation is reported in this study to trigger adaptive responses that could adversely affect treatment outcomes, a possibility requiring attention by radiation oncologists.

4418 Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism
Precis: These results suggest a strategy to improve upon the powerful anticancer effects of metformin, a widely used diabetes drug, through a coordinate inhibition of glutamine metabolism.

4429 MEK Inhibitors Induce ERα/ERβ-Positive Mammary Neoplasia in Mice through a K-Ras Degradation Mechanism
Tatsuo Fukagawa, Jeroen Essers, Roland Kanaar, and Matthew C. Whitby
Precis: This study reports a model for breast cancer treatment, including deadly melanomas that become resistant to BRAF inhibitors.

4430 MEK Inhibitors Induce ERα/ERβ-Positive Mammary Neoplasia in Mice through a K-Ras Degradation Mechanism
Tatsuo Fukagawa, Jeroen Essers, Roland Kanaar, and Matthew C. Whitby
Precis: This study reports a model for breast cancer treatment, including deadly melanomas that become resistant to BRAF inhibitors.

4431 MEK Inhibitors Induce ERα/ERβ-Positive Mammary Neoplasia in Mice through a K-Ras Degradation Mechanism
Tatsuo Fukagawa, Jeroen Essers, Roland Kanaar, and Matthew C. Whitby
Precis: This study reports a model for breast cancer treatment, including deadly melanomas that become resistant to BRAF inhibitors.

4432 MEK Inhibitors Induce ERα/ERβ-Positive Mammary Neoplasia in Mice through a K-Ras Degradation Mechanism
Tatsuo Fukagawa, Jeroen Essers, Roland Kanaar, and Matthew C. Whitby
Precis: This study reports a model for breast cancer treatment, including deadly melanomas that become resistant to BRAF inhibitors.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>4439</td>
<td>Antitumor Activity of a Humanized, Bivalent Immunotoxin Targeting Fn14-Positive Solid Tumors</td>
<td>Hong Zhou, Walter N. Hittelman, Hideo Yagita, Lawrence H. Cheung, Stuart S. Martin, Jeffrey A. Winkles, and Michael G. Rosenblum</td>
<td>Précis: These findings offer a preclinical proof of concept for the use of an immune targeting principle that may be both highly specific to cancer and broadly applicable to many different disease types.</td>
</tr>
<tr>
<td>4451</td>
<td>Visualizing Inhibition of Nucleosome Mobility and Transcription by Cisplatin–DNA Interstrand Crosslinks in Live Mammalian Cells</td>
<td>Guangyu Zhu, Lina Song, and Stephen J. Lippard</td>
<td>Précis: A minor DNA adduct formed by cisplatin may confer the most significant effects of this drug on tumor cells, as revealed by this study of nucleosome structure and DNA transcription in live cells.</td>
</tr>
<tr>
<td>4461</td>
<td>CX3CL1 Promotes Breast Cancer via Transactivation of the EGF Pathway</td>
<td>Manuel Tardáguila, Emilia Mira, Miguel A. García-Cabazas, Anna M. Feijoo, Miguel Quintela-Fandino, Íñigo Arcoitia, Sergio A. Lira, and Santos Mañes</td>
<td>Précis: A chemokine that is induced by IL-1, a central proinflammatory cytokine in the tumor microenvironment, promotes HER2+ breast cancers by supporting expression of the EGF receptor.</td>
</tr>
<tr>
<td>4474</td>
<td>β-Catenin Signaling Is a Critical Event in ErbB2-Mediated Mammary Tumor Progression</td>
<td>Babette Schade, Robert Lesurf, Virginie Sanguin-Gendreau, Tung Bui, Geneviève Deblois, Sandra A. O’Toole, Ewan K.A. Millar, Sara J. Zardawi, Elena Lopez-Knowles, Robert L. Sutherland, Vincent Gigueré, Michael Kahn, Michael Hallett, and William J. Muller</td>
<td>Précis: A mouse model that faithfully recapitulates many genetic features of the basal subset of ErbB2-positive breast cancers identifies the Wnt pathway as an essential driver and candidate therapeutic target for this aggressive disease.</td>
</tr>
<tr>
<td>4488</td>
<td>EYA1 Phosphatase Function Is Essential to Drive Breast Cancer Cell Proliferation through Cyclin D1</td>
<td>Kongming Wu, Zhaoming Li, Shaoxin Cai, Lifeng Tian, Ke Chen, Jing Wang, Junbo Hu, Ye Sun, Xue Li, Adam Ertel, and Richard G. Pestell</td>
<td>Précis: The homolog of a fruitfly regulator of retinal development that is overexpressed in the luminal B subtype of breast cancers appears to be an essential pathogenic driver in this setting, with implications in other cancers where this regulator is also overexpressed.</td>
</tr>
<tr>
<td>4488</td>
<td>Microtubule-Associated Histone Deacetylase 6 Supports the Calcium Store Sensor STIM1 in Mediating Malignant Cell Behaviors</td>
<td>Ying-Ting Chen, Yih-Fung Chen, Wen-Tai Chiu, Kuan-Yu Liu, Yu-Lin Liu, Jang-Yang Chang, Hsien-Chang Chang, and Meng-Ru Shen</td>
<td>Précis: Targeting calcium-based cellular physiology offers an appealing general strategy to disrupt cancer cell function, if a disease-specific approach can be identified.</td>
</tr>
<tr>
<td>4521</td>
<td>The ShcA PTB Domain Functions as a Biological Sensor of Phosphotyrosine Signaling during Breast Cancer Progression</td>
<td>Byuhjin Ahn, Valerie Sabourin, Jacqueline R. Ha, Sean Cory, Gordana Maric, Young Kyuen Im, W. Rod Hardy, Hong Zhao, Morag Park, Michael Hallett, Peter M. Siegel, Tony Pawson, and Josie Ursini-Siegel</td>
<td>Précis: In the receptor tyrosine kinase adapter protein Shc, the phosphotyrosine-binding PTB domain rather than the SH2 domain appears to be the critical interaction for transmitting effector signals that control breast cancer development.</td>
</tr>
</tbody>
</table>
ETS Transcription Factor ESE1/ELF3 Orchestrates a Positive Feedback Loop That Constitutively Activates NF-κB and Drives Prostate Cancer Progression
Nicole Longoni, Manuela Sarti, Domenico Albino, Gianluca Civenni, Anastasia Malek, Erica Ortelii, Sandra Pinton, Maurizia Mello-Grand, Paola Ostano, Giacchino D'Ambrosio, Fausto Sessa, Ramon Garcia-Escudero, George N. Thalmann, Giovanna Chiorino, Carlo V. Catapano, and Giuseppina M. Carbone

Précis: In extending the importance of ETS transcription functions in prostate cancer, this study defines an important new mechanism connecting inflammatory signaling, NF-κB activation, and prostate cancer progression.

Gankyrin Activates IL-8 to Promote Hepatic Metastasis of Colorectal Cancer
Zhaofang Bai, Yanhong Tai, Weihua Li, Cheng Zhen, Weiting Gu, Zhao Jian, Qianyi Wang, Jieru E. Lin, Qing Zhao, Weili Gong, Bing Liang, Chenguang Wang, and Tao Zhou

Précis: This potentially seminal study suggests readily tractable targets to prevent or treat hepatic metastasis of colorectal cancer, the chief form of the advanced state in this disease.

Chromatin Regulator PRC2 Is a Key Regulator of Epigenetic Plasticity in Glioblastoma
Atsushi Natsume, Motokazu Ito, Keisuke Katsuhima, Fumiharu Okha, Akira Hatanaka, Keiko Shinjo, Shinya Sato, Satoru Takahashi, Yuta Ishikawa, Ichiro Takeuchi, Hiroki Shimogawa, Motonari Uesugi, Hideyuki Okano, Seung U. Kim, Toshikiko Wakabayashi, Jean-Pierre J. Issa, and Yutaka Kondo

Précis: A modifier complex that controls tumor cell plasticity may provide a target to restrict the functional heterogeneity in tumors, a core challenge to all cancer cell-centric drugs, given the huge reservoir of resistance mechanisms that such heterogeneity confers.

LETTERS TO THE EDITOR

Tumor Growth Control with IDO-Silencing Salmonella—Letter
Robert M. Hoffman

Tumor Growth Control with IDO-Silencing Salmonella—Reply
Edwin R. Manuel, Bruce R. Blazar, and Don J. Diamond

CORRECTION

Correction: Critical Role for the Receptor Tyrosine Kinase EPHB4 in Esophageal Cancers

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

β-catenin is a multifunctional protein that plays a vital structural role in cadherin-based cell adhesion and is an important transcriptional activator of canonical Wnt-mediated gene expression. Dysregulation or mutational activation of the β-catenin signaling is a critical event in the development of human cancer, including breast cancer. Immunofluorescence staining was used to visualize localization of β-catenin and activated β-catenin in human ERBB2-overexpressing ER-negative breast cancer cells (HCC202). The presence of nuclear-activated β-catenin in these breast cancer cells was correlated with a decrease in cell proliferation upon inhibition of β-catenin signaling. For details, see article by Schade and colleagues on page 4474.
Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/73/14

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>