PPARδ Induces Estrogen Receptor-Positive Mammary Neoplasia through an Inflammatory and Metabolic Phenotype Linked to mTOR Activation

Hongyan Yuan, Jin Lu, Junfeng Xiao, Geeta Upadhyay, Rachel Umana, Bhaskar Kallakury, Yuhzi Yin, Michael E. Fant, Levy Kopelovich, and Robert I. Glazer

Abstract

The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease.

Cancer Res; 73(14); 4349–61. ©2013 AACR.

Introduction

The peroxisome proliferator-activated receptors (PPAR) represent a subfamily of ligand-dependent nuclear receptors that regulate the transcription of a multitude of processes associated with metabolism, angiogenesis, inflammation, and proliferation (1, 2). Of the 3 isotypes, PPARβ/δ alone was shown more than a decade ago to stimulate mitotic clonal expansion of progenitor cells (3, 4). It was conceivable, therefore, that the selective PPARδ agonist GW501516 (GW; ref. 5) would act as a tumor promoter in mammary carcinogenesis, which proved to be the case (ref. 6; reviewed in refs. 7 and 8). GW and related agonists enhance adenoma size and angiogenesis in APCmin mice (9, 10) and stimulate the growth of several lung (11), breast, and prostate cancer cell lines (12, 13), although results to the contrary have also been reported (14). Conversely, disruption of PPARδ expression in colon cancer cells by somatic cell knockout (15) or RNA aptamers (16) inhibited tumor cell growth. These findings are consistent with those showing that homozygous deletion of PPARδ reduces tumorigenesis in MMTV-Cox2 mice (17), intestinal adenosomas in APCmin mice (18), colon carcinogenesis (19), and pancreatic tumor xenograft growth and angiogenesis in stromal tissue (20). Clinically, PPARδ is an important prognostic marker, wherein 50% of invasive breast cancers expressed moderate to high levels of PPARδ protein (7), and 65% of invasive breast cancer expressed elevated levels of PPARδ mRNA whereas the reverse is true for normal breast (https://www.oncomine.org/resource/ TCGA database). That high expression of PPARδ mRNA was associated with poor survival in breast cancer patients regardless of subtype (21) emphasizes the importance of this nuclear receptor in this disease.

Obesity and inflammation are cancer risk factors (22), which ultimately result in the generation of endogenous PPARδ ligands (23). These include arachidonic acid metabolites prostaglandin PGI2 (24) synthesized via Cox2/Pges2 (25), 15-HETE...
and polyunsaturated fatty acids (27–29). GW increased arachidonic and linoleic acid levels in the mammary gland during carcinogenesis (30), which was associated with activation of PDK1 and Akt (30–32) and reduction of PTEN (11, 33), signaling pathways that facilitate mammary hyperplasia (30, 34, 35). Although, the aforementioned studies implicate PPARδ as a modulator of tumorigenesis, there is no conclusive evidence that PPARδ per se is oncogenic. In this study, we show that activation of PPARδ in the mammary gland functions as an unconventional oncogene by inducing tumorigenesis, an invasive, metabolic, and proliferative and inflammatory gene expression signature, a pronounced increase in phospholipid, lysophosphatidic acid (LPA) and phosphatidic acid (PA) bio-synthesis, and mTOR pathway activation. These results show that PPARδ functions as an initiator of mammary tumorigenesis, and suggest new therapeutic options for the prevention and treatment of this disease.

Materials and Methods

Materials

GW301516 was synthesized as previously described (36), and was provided by the Chemoprevention Branch, National Cancer Institute, NIH, Bethesda, MD.

Animals

MMTV-PPARδ mice were generated by pronuclear injection of FVB mouse embryos as previously described (37). The mouse PPARδ cDNA (38) was provided by Dr. Paul Grimaldi, INSERM (Faculté de Médecine, Nice, France), and amplified and cloned into the EcoRI site in MMTV-SV40-BssK provided by Dr. William Muller, McMaster University (Hamilton, Ontario, Canada). All inserts were confirmed by sequencing. The MMTV-PPARδ construct was digested with Sal I-Spe I, purified, and used for microinjection. Positive animals were identified by PCR using 3 primer pairs: (i) PPARδ-forward: TCT TCA TCG CCA TCA TT, and SV40PolyA-reverse: GTC GTA GCC TCA TCA TG, which ampli-

Statistical analysis

Statistical analyses were conducted using a 2-sided log-rank test using GraphPad Prism version 4.0. Differences were considered significant at \(P < 0.05 \).

Histopathology, immunohistochemistry, and Western blotting

Mammary tissue and tumors were excised, and formalin-fixed, paraffin-embedded sections were prepared for hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). Antigen retrieval was carried out by incubation of tissue sections in 10 mmol/L sodium citrate buffer (pH 6.0) for 20 minutes at a subboiling temperature in an electric steamer as previously described (6, 37). Endogenous peroxidase activity was quenched with 3% hydrogen peroxide for 10 minutes, and incubated for 30 minutes with blocking solution (10% goat serum in Tris-buffered saline), followed by incubation over-night at 4°C with the appropriate primary antibody diluted in blocking solution. Biotin-conjugated secondary antibodies were diluted in TBS containing 0.1% Tween-20 and incubated for 30 minutes at room temperature using the ABC Vectastain system (Vector Laboratories) detection system and diaminobenzidine (Pierce), and slides were counterstained with Harris-modified hematoxylin (Thermo-Fisher, Inc.), dehydrated and mounted in Permount (Thermo-Fisher, Inc.). Western blotting was carried out as previously described (6, 30, 37, 39, 40). Antibodies and their dilutions for IHC and Western blotting are listed in Supplementary Table S1.

Gene microarray analysis

Microarray analysis was carried out as previously described (6, 30, 37, 39, 40). Briefly, tissue was excised, washed in PBS, and homogenized in RNAlater (Ambion) at −20°C until RNA extraction. Tissue was snap-frozen in liquid nitrogen, pulverized in a mortar and pestle, and RNA extracted using an RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA purity was assessed by an A260/A280 ratio of ≥1.9, and by the integrity of 18S and 28S rRNA using an Agilent microfluidic chip. Array analysis was carried out on cRNA prepared from equal amounts of RNA (1 μg) pooled from 5 mice per group. Biotin-labeled cRNA was fragmented at 94°C for 35 minutes and hybridized overnight to an Affymetrix mouse 430A 2.0 GeneChip representing approximately 14,000 annotated mouse genes. GeneChip’s were scanned with an Agilent Gene Array scanner, and grid alignment and raw data generation with the Affymetrix GeneChip Operating software 1.1. A noise value (Q) based on the variance of low-intensity probe cells was used to calculate a minimum threshold for each GeneChip. Samples were averaged and data refined by eliminating genes with signal intensities <300 in both comparison groups, and heat maps were generated for ≥3-fold changes in gene expression normalized to control tissue using unsupervised hierarchical cluster analysis as previously described (41). Gene interaction and ontology analysis used Ariadne Pathway Studio version 9.1 (Supplementary Fig. S3). Datasets have been deposited in the GEO public database under accession no. GSE34109.

Quantitative real-time PCR

Total RNA was extracted as described earlier, and equal amounts of RNA (1 μg) were pooled from each group (5 samples per group) and reverse transcribed with the Omniscript RT Kit (Qiagen) in a total volume of 20 μl as
formate (C) at a flow rate of 0.5 mL/min. The gradient consisted of 98% A for 1.0 minutes then a ramp to 60% B from 1.0 to 4.0 minutes, then a ramp to 100% B from 4.0 to 7.0 minutes. The column consisted of 98% A for 1.0 minutes then a ramp to 60% B from 1.0 to 4.0 minutes, then a ramp to 98% A from 9.0 to 12.0 minutes. The column eluent was introduced directly into the mass spectrometer by electrospray. Mass spectrometry was done on a G2 quadrupole camera. Each ion in a cluster is represented by its monoisotopic mass. This mass is then used to compare ions across multiple experiments. The resulting ion list provides better coverage and more accurate identification of metabolites than those obtained by the traditional approach in which overlapping ions are selected on the basis of their ion mass and merged with those obtained on the basis of their monoisotopic mass calculated through ion annotation. Putative identifications for the resulting ion list were obtained through a mass-based search against 2 databases: Metlin, and Madison Metabolomics Consortium Database. The mass tolerance in the database search was set to 10 ppm for both positive and negative ion modes. The m/z values of annotated isotopes/adducts/neutral-loss fragments peaks were converted to the corresponding neutral monoisotopic mass before searching them against the databases. Identities of some putative metabolite identifications were verified by comparing their MS-MS fragmentation patterns and retention time with those of authentic standard compounds.

Results

PPARα transgene activation induces mammary tumorigenesis

Transgenic mice were generated that expressed the murine PPARα cDNA under the control of the MMTV 3'-LTR (45) as previously described (30, 35, 37). Two founder lines with germline transmission were identified and founder M-23 was used for further studies (Supplementary Fig. S1A–S1D). Transgenic animals exhibited increased ductal branching beginning at 6 weeks of age, which markedly increased after animals were administered a diet supplemented with the PPARα agonist GW (46) for as little as 1 week (Supplementary Fig. S1E). Maintenance on the GW diet for 6 to 11 weeks resulted in the appearance of abnormal nodules (Supplementary Fig. S1E) that were positive for Ki-67 (Supplementary Fig. 1F). Multiparous female transgenic mice at 12 months of age presented with multifocal moderate to well-differentiated infiltrating...
ductal carcinomas, and tumor latency was reduced to 5 months after administration of the GW diet (Fig. 1A and B). To obtain a sense of the stochastic changes associated with tumorigenesis, transgenic and wild-type mice were fed the GW diet for varying intervals (Fig. 1C). Administration of the GW diet for 1 to 6 weeks resulted in a progressive increase in ductal dilatation with inspissated protein and lipid secretions and areas of atypical ductal and lobular dysplasia. By 11 weeks,

![Figure 1. PPARδ activation promotes mammary neoplasia. A, tumor-free incidence in MMTV-PPARδ mice fed a standard or GW-supplemented diet. Tumor formation differed significantly between untreated or GW501516-treated PPARδ mice (PPARδ+GW) vs. untreated or GW-treated wild-type (WT) mice (WT+GW; P < 0.0001 by the χ² test). GW-treated PPARδ mice (PPARδ+GW) developed tumors more rapidly vs. untreated PPARδ mice (P < 0.0001 by the χ² test). Each time point represents tumor incidence as determined by histological examination postmortem. The number (N) of mice per group at each time point was: WT (N = 8), WT+GW (N = 8), PPARδ (N = 6), and PPARδ+GW (N = 7). B, tumor formation in situ. PPARδ mice fed a standard or GW-supplemented diet presented with multifocal moderate to well-differentiated infiltrating ductal carcinomas at 12 months or 5 months, respectively. Shown are representative mice from each group. H&E, magnification, ×400. C, H&E-stained tissue. GW-treated WT exhibited ductal dilatation and secretory changes after 6 weeks, and increased ductal branching after 11 weeks to 5 months. PPARδ mice presented with increased ductal branching after 6 weeks, lobular dysplasia after 11 weeks, and areas of neoplasia after 5 months. GW-treated PPARδ mice exhibited ductal dilatation with lipid droplets and proteinaceous secretions after 1 week, atypical lobular and ductal hyperplasia after 6 weeks, atypical ductal dysplasia bordering on ductal carcinoma in situ after 11 weeks, and infiltrating ductal carcinomas after 5 months. Magnification, ×400.]
lesions appeared that resembled ductal carcinoma in situ, and by 5 months animals presented with multifocal infiltrating ductal carcinomas (Fig. 1E). Wild-type animals fed the GW diet exhibited ductal hyperplasia at 11 weeks, but no other histological abnormalities (Fig. 1C; Supplementary Fig. S1E).

Previously we reported that GW increased PPARδ, pPDK1, and pT308Akt expression in the mammary gland of wild-type mice (30). To assess the progressive changes in this signaling pathway, mammary tissue and tumors were analyzed at varying intervals after administration of the GW diet (Fig. 2). Mammary tissue was positive for PPARδ, pT308Akt, pmTOR, and S6 phosphorylation (pS6), as well as the trophoblast protein Plac1, throughout treatment. Tumors were positive for estrogen receptor (ER) and progesterone receptor (PR), and negative for ErbB2, a rare phenotype for genetically engineered breast cancer mouse models (41).

mTOR activation and everolimus treatment

Because mTOR signaling paralleled tumorigenesis, animals maintained on the GW diet for 6 weeks were treated during the last 2 weeks on the diet with the mTOR inhibitor everolimus/RAD001 administered by daily gavage at doses of 10 and 20 mg/kg (Fig. 3). Everolimus reverted many of the aberrant premalignant changes in the mammary gland as assessed by whole mounts (Fig. 3A) and H&E staining (Fig. 3B), which correlated with inhibition of pS235/236S6 (Fig. 3C and D) and Ki-67 (Fig. 3D), but not with changes in pT308Akt, pS473Akt, pmTOR, pEBP, and pAMPKα1 (Fig. 3C). Administration of 20 mg/kg everolimus to mice maintained on the GW diet for 4 months resulted in similar histological changes toward a less malignant phenotype (results not shown).

Gene microarray analysis of everolimus-treated animals revealed several differences between PPARδ-responsive and everolimus-sensitive gene expression (Fig. 3E and F; Supplementary Table S3). Treatment with 10 mg/kg everolimus resulted in changes in 71 genes, of which 70% contained PPAR response elements (PPRE; Supplementary Table S3). Everolimus downregulated expression of PPRE-containing genes associated with differentiation (Krt79, Ltf, and Pvalb), inflammation...
(Saa1/2), invasion (Klk6/7/10 and Cst6), metabolism (Ppp1r3a, Eno3, Cox6a2, Apobec2, Pgam2, and Ckmt2), and motility (18 myosin-, actin-, and troponin-related genes), but did not significantly affect several proliferation- (Calm4, Mycl1, Sncg, and Plac1), transport- (Npr3), and transcription-associated (Zbtb16 and Foxi1) genes, including PPARδ.

Overall, many, but not all,
changes in the mammary gland elicited by PPARd activation are mediated by the mTOR-signaling pathway.

Differential gene expression by PPARd activation

To determine the progressive changes induced in gene expression, analyses were carried out with mammary tissue from transgenic and wild-type mice maintained for 1 or 11 weeks on the GW diet (Table 1). Both groups of animals exhibited a common 10 gene PPRE gene signature versus similarly treated wild-type mice, which encompassed inflammation, invasion, proliferation, and metabolism. The gene expression profile of transgenic mice fed the GW diet for 11 weeks is shown in Fig. 4A and B and Supplementary Table S4. Of the 34 genes upregulated in GW-treated PPARd mice, 70% contained PPREs, including genes associated with differentiation (Anxa8 and Krt14), inflammation (Saa1/2/3, S100A8/9, Il1b, Cci8, and Ptgs2), invasion (Klk6/7/11 and Mmp12), metabolism (Acs4 and Crabp1), proliferation (Plac1 and Ccnb1), and transport (Aqp3, Gpr172b, and Slc34a2). In contrast, the gene expression signature of 15-week-old age-matched transgenic mice fed a standard diet included >150 genes, of which 50% contained PPREs (Supplementary Table S5). Approximately

<table>
<thead>
<tr>
<th>Function</th>
<th>Gene symbol</th>
<th>WT</th>
<th>WT+GW</th>
<th>d</th>
<th>d-GW</th>
<th>d-GW/WT+GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW501516 diet for 1 week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 1 family, member 9, Il1f9</td>
<td>18</td>
<td>36</td>
<td>27</td>
<td>356</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>S100 calcium binding protein A8 (calgranulin A), S100a8</td>
<td>303</td>
<td>95</td>
<td>238</td>
<td>418</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Serum amyloid A1, Saa1</td>
<td>15</td>
<td>90</td>
<td>177</td>
<td>3,714</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>Serum amyloid A2, Saa2</td>
<td>6</td>
<td>47</td>
<td>102</td>
<td>2,401</td>
<td>51.1</td>
<td></td>
</tr>
<tr>
<td>Invasion/proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kallikrein-related peptidase 6, Klk6</td>
<td>72</td>
<td>112</td>
<td>61</td>
<td>1,255</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Kallikrein-related peptidase 11, Klk11</td>
<td>23</td>
<td>42</td>
<td>53</td>
<td>823</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>Placental-specific 1, Plac1</td>
<td>133</td>
<td>132</td>
<td>136</td>
<td>18,939</td>
<td>143.2</td>
<td></td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyl-CoA synthetase long-chain family member 4, Acs4</td>
<td>195</td>
<td>191</td>
<td>183</td>
<td>777</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Oleoyl-ACP-hydrolase, Olah</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1,717</td>
<td>286.2</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaporin 3, Aqp3</td>
<td>37</td>
<td>29</td>
<td>105</td>
<td>5,688</td>
<td>194.1</td>
<td></td>
</tr>
</tbody>
</table>

GW501516 diet for 11 weeks

<table>
<thead>
<tr>
<th>Function</th>
<th>Gene symbol</th>
<th>WT</th>
<th>WT+GW</th>
<th>d</th>
<th>d-GW</th>
<th>d-GW/WT+GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 1 family, member 9, Il1f9</td>
<td>58</td>
<td>61</td>
<td>56</td>
<td>629</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>S100 calcium binding protein A8 (calgranulin A), S100a8</td>
<td>431</td>
<td>342</td>
<td>415</td>
<td>4,266</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Serum amyloid A1, Saa1</td>
<td>2,715</td>
<td>1,742</td>
<td>730</td>
<td>14,810</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Serum amyloid A2, Saa2</td>
<td>1,626</td>
<td>980</td>
<td>409</td>
<td>12,963</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>Invasion/proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kallikrein-related peptidase 6, Klk6</td>
<td>142</td>
<td>106</td>
<td>101</td>
<td>18,338</td>
<td>173.1</td>
<td></td>
</tr>
<tr>
<td>Kallikrein-related peptidase 1, Klk11</td>
<td>36</td>
<td>70</td>
<td>164</td>
<td>722</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Placental-specific protein 1, Plac1</td>
<td>31</td>
<td>41</td>
<td>1,497</td>
<td>4,491</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyl-CoA synthetase long-chain family member 4, Acs4</td>
<td>230</td>
<td>366</td>
<td>372</td>
<td>1,287</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Oleoyl-ACP-hydrolase, Olah</td>
<td>21</td>
<td>227</td>
<td>237</td>
<td>1,361</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaporin 3, Aqp3</td>
<td>52</td>
<td>114</td>
<td>1,230</td>
<td>4,438</td>
<td>38.9</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Mice at 4 weeks of age were fed a diet containing 0.005% GW501516 for either 1 or 11 weeks. Shown are ≥3-fold changes in expression in mammary tissue of common PPRE-containing genes with a raw score ≥300 in GW501516-treated MMTV-PPARd (d-GW) vs. wild-type littermates treated with GW501516 (WT+GW).
Figure 4. Gene microarray and metabolomic analyses of GW-treated PPARδ mice. A, shown is a heat map of 34 genes whose expression in mammary tissue was changed >3-fold in PPARδ mice treated with GW for 11 weeks (PPARδ+GW) vs. similarly treated wild-type mice (WT+GW; see Supplementary Table S4). B, qRT-PCR analysis of representative genes presented in A. C, mirror plot of metabolites altered in MMTV-PPARδ mice treated as in A. Depicted are [-] and [+] ions whose intensities between groups were altered >5-fold with a P-value <0.01. Ions that were upregulated are represented as green circles above the plot, and those that were downregulated are represented as red circles below the plot. The size of each circle corresponds to...
phenotype, were not altered in PPAR4. 40% of the upregulated genes were associated with mitosis and invasion (Klk6), and in ion chromatograms are overlaid in gray in the background of the supplementary Table S6). Within this pro-

40% of the upregulated genes were associated with mitosis and proliferation, and although consistent with the oncogenic phenotype, were not altered in PPAR8 mice treated with GW for 11 weeks. Similarly treated wild-type mice exhibited changes in >130 genes, of which 55% contained PPREs (Supplementary Table S6). Within this profile, only the PPRE-containing motility-associated genes Ttn, Smpx, Myot, Myb4, Myh2, Trdn, and Ldb3 were common to the expression profile in untreated transgenic mice, suggesting that most of the changes in gene expression in GW-treated wild-type mice were ancillary to oncogenesis.

Metabolic analysis

To delineate the early metabolic consequences of transgene activation, metabolic analysis was carried out with mammary tissue from wild-type and transgenic mice maintained on the standard or GW-supplemented diets for 11 weeks (Table 2; Fig. 4C; Supplementary Fig. S2). GW-treated PPAR8 mice, in the log-fold change of the ion, and the shade of the circle represents the P-value, with brighter circles having a lower P-value. The retention time corrected total ion chromatograms are overlaid in gray in the background of the figure. Circles representing features with hits in the METLIN database are shown with a black outline. D, schematic of alterations in gene expression, metabolism, and mTOR signaling in MMTV-PPAR8 mice treated with GW for 11 weeks. We postulate that activation of PPAR8 leads to activation of PPRE-containing genes associated with metabolism (Olah, Ptg52, Pia2, Pid), proliferation (Placl), invasion (Kk6), and inflammation (Saat). Increased arachidonic acid (AA) synthesis generated by phospholipase A2 (Pla2) leads to generation of inflammatory prostaglandins. Phosphatidylcholine (PC) generates lysophosphatidylcholine (LPC) and lysophosphatic acid (LPA) through the actions of Pla2 and phospholipase D (Pld). LPA stimulates G protein-coupled receptor activation of mTOR through Akt, whereas PA directly activates mTOR. Presumably the net result of these processes contributes to genomic instability.
comparison to similarly treated wild-type mice, exhibited a marked increase in the levels of phosphatidylcholine (PC) metabolites, arachidonic acid, LPA, and PA. These changes were consistent with the changes in PPARδ-regulated genes, including Pla2 and Ptg2 involved in prostaglandin biosynthesis (Supplementary Table S4), and LPA- and PA-mediated activation of mTOR (Fig. 4D).

Discussion

This study describes the first transgenic animal model in which activation of the nuclear receptor PPARδ induces mammary tumorigenesis. Infiltrating adenocarcinomas occurred in all animals within 12 months, and the oncogenic process was rapidly accelerated by activation of the receptor by the agonist GW. In the latter instance, ductal and lobular hyperplasia, dysplasia, and DCIS-like lesions occurred in a stochastic manner over several weeks. Although, the potency of the synthetic ligand likely contributed to the shorter latency of tumor formation, it may also have reflected production of endogenous ligands, including prostaglandins, phospholipids, and unsaturated fatty acids (26, 27, 29, 47) generated downstream of PPARδ activation as noted previously (30, 47) and in this study (Table 2; Fig. 4C). Although, our studies were carried out with one founder line that exhibited high transgene expression, random transgene insertion and activation of another locus may have contributed to the phenotype. However, we consider this possibility unlikely because tumorigenesis was accelerated by the PPARδ ligand GW, which resulted in similar protein and gene expression profiles in unstimulated and stimulated animals. Off-target effects of GW may also have contributed to the observed phenotype, but this would not appreciably affect the interpretation of our data for 2 reasons. First, the dose of GW (6) is equivalent to a daily oral dose of 5 mg/kg that was previously shown to specifically enhance PPARδ-dependent metabolism (48), and its congener, GW7042, did not alter gene expression in PPARδ knockout mice (49). Second, the gene expression pattern elicited by GW in transgenic mice was unique in comparison to similarly treated wild-type animals.

A signature feature of MMTV-PPARδ mice was the development of ER+/PR+/ErbB2− tumors, characteristics that define the luminal subtype of breast cancer (50). Luminal breast cancer has been further defined by gene expression profiling into subtypes A and B, where type B denotes lower ER expression, higher Ki-67 staining, and a higher histologic grade. By these criteria, tumors arising in PPARδ transgenic mice resemble more the luminal B subtype. Because ER mRNA levels were relatively low in comparison to immunochemical staining, these results also suggest that posttranscriptional regulation of ER may be an important factor in ER expression in PPARδ mice, for example by mTOR-mediated ER phosphorylation (51). In addition, we previously noted increased ER− mammary tumors following carcinogenesis in dominant-negative MMTV-Pax8PPARγ transgenic mice (37) and in wild-type FVB mice treated with the irreversible PPARY inhibitor GW9662 (52), which supports the concept that PPARY and PPARδ, either by direct competition (53), cofactor competition (54) and/or ligand-dependent activation and repression (55), have opposing actions that ultimately influence the expansion of the ER+/PR− mammary progenitor lineage. Because other MMTV transgenic mouse models, with the exception of MMTV-AIB1 transgenic mice (56, 57), lack the ER− luminal phenotype (41), this suggests that the PPARδ transgene, rather than the MMTV promoter, drives expansion of the ER− progenitor lineage. This conclusion is further implied by the similarity between MMTV-AIB1 and MMTV-PPARδ mice in activating the Akt/mTOR signaling axis (56, 57), suggesting a scenario where ligand-dependent co-activator recruitment to PPARδ leads to ER− progenitor cell expansion and oncogenesis.

The progressive histopathologic changes resulting from PPARδ activation were associated with upregulation of Plac1, a microvillous membrane protein expressed primarily in trophoblasts and not in other somatic tissues except for low levels in the testes (58). Plac1 expression occurred in transgenic mice, but not to wild-type mice, as early as 1 week after administration of GW (Fig. 1; Table 1), and correlated with the early onset of oncogenesis. Plac1 was reported to be re-expressed in several malignancies (59–61), and reduction of Plac1 in breast cancer cells inhibited proliferation and invasion (59). This suggests that Plac1 may serve as an early marker of oncogenesis or possibly a therapeutic target, as suggested by the more favorable prognosis of colorectal cancer patients expressing Plac1 autoantibodies (62). Analysis of a limited set of paired breast cancer specimens indicated that Plac1 was elevated in all tumor specimens (unpublished results), confirming previous results of changes in Plac1 RNA levels (59, 60). Our data suggest that Plac1 transcription is regulated by PPARδ, but not by mTOR, although everolimus did reduce protein levels. Many of the transcription factors driving transcription of human Plac1 are associated with C/EBPα and C/EBPβ (63), which is consistent with their role as coactivators in complex with PPARδ (64). Although, the human and mouse Plac1 promoter regions were reported to be upregulated by LXR and RXRα (65), neither PPARδ agonists nor co-expression with PPARδ were tested, leaving open the question of the direct involvement of PPARδ in the regulation of Plac1 transcription.

PPARδ activation was associated with Akt and mTOR activation as denoted by enhanced pT308Akt and pS6. These results agree with previous studies showing that pAkt and pS6 (66–68), but not p4EBP (69), were the best surrogate markers of everolimus activity in experimental tumor models and patients. Everolimus resolved many of the early aberrant histopathologic changes resulting from PPARδ activation that may have resulted from indirect or direct mTOR activation by LPA and PA, respectively (refs. 70 and 71; Table 2; Fig. 4D). This was unexpected in view of the positive effect of PPARδ on fatty acid oxidation in skeletal muscle and fat (72, 73). Gene expression and metabolic profiling, however, suggest that PPARδ upregulates genes essential for promoting a lipogenic phenotype that lead to increased PC, LPA, and PA biosynthesis, which presumably drive activation of the mTOR axis directly (71) and indirectly through G protein–coupled receptors (74). Because long-term testing of everolimus has not been evaluated thus far, we do not know whether mTOR signaling is a major contributor to the malignant changes stemming from PPARδ activation. From a transcriptional standpoint, the mTOR
promoter does not contain PPREs, but the promoter regions of Akt2 and Akt3, but not Akt1, do contain these response elements. Akt can activate mTOR directly (75) and indirectly through activation of Tsc and inhibition of Rheb (76). In addition, the ability of PPARδ to activate Akt is a prerequisite for its growth promoting and antiapoptotic effects (11, 32, 33), including the wound-healing response (77, 78). Thus, modulation of this pathway by PPARδ seems to be a key event in the tumorigenic phenotype exhibited in this mouse model.

Finally, the inflammatory factors Saal, Sau2, S100a8, and S100a9, as well as several members of the kallikrein gene family were selectively increased in GW-treated PPARδ mice (Table 1), and have been reported to be elevated in ER+ breast cancer (79, 80). S100A8 and S100A9 act as ligands for Ager (advanced glycation end-product receptor) and mediate acute and chronic inflammation, tumor development, and metastasis (81, 82), processes previously associated with GW-dependent gastric carcinogenesis (83) and psoriasis (84). This paradigm is consistent with GW-induced activation of Ptg2 and Ptg2/Cox-2 expression (85, 86), which initiate the biosynthesis of arachidonic acid and phospholipid metabolites that can serve as PPARδ ligands (Fig. 4D). Because overexpression of Ptg2 in the mammary gland is oncogenic (87), one would expect that PPARδ and inflammation would contribute cooperatively to the development of tumorigenesis in this model.

In summary, we describe a novel ER+/PR−/ErbB2+ breast cancer model that is dependent on the activation of PPARδ and its ability to elicit an inflammatory, invasive, metabolic, and proliferative response that culminates in Akt/mTOR activation, which could potentially drive genomic instability (Supplementary Fig. S3). This animal model should prove useful for delineating the role of PPARδ in tumor initiation and progression, and as a possible target for early intervention.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: J. Xiao, L. Kopelovich, R.I. Glazer
Development of methodology: H. Yuan, J. Xiao, G. Upadhyay, Y. Yin, R.I. Glazer
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): H. Yuan, J. Xiao, B.V.S Kalakkary, M. Fant, R.I. Glazer
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): H. Yuan, J. Lu, J. Xiao, B.V.S Kalakkary, L. Kopelovich, R.I. Glazer
Writing, review, and/or revision of the manuscript: H. Yuan, J. Lu, B.V.S Kalakkary, L. Kopelovich, R.I. Glazer
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H. Yuan, R. Umans, R.I. Glazer
Study supervision: R.I. Glazer

Grant Support
This work was supported by grant 1R01 CA111482 and contract N01-CN-68202/1A19 from the National Cancer Institute, NIH, and award 1P30 CA051008 from the National Cancer Institute, NIH to the Lombardi Comprehensive Cancer Center. This investigation was conducted using the Animal Research, Genomics and Epigenomics, and Microscopy and Imaging Shared Resources of the LCCC, and by an animal facilities construction grant from the NIH.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 4, 2013; revised April 18, 2013; accepted April 29, 2013; published OnlineFirst June 27, 2013.

References

66. O'Reilly T, McSheehy PM. Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001); processes, limitations, and further proposals. Transl Oncol 2010;3:65–79.

PPAR\(\delta\) Induces Estrogen Receptor-Positive Mammary Neoplasia through an Inflammatory and Metabolic Phenotype Linked to mTOR Activation

Hongyan Yuan, Jin Lu, Junfeng Xiao, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-13-0322

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2013/05/31/0008-5472.CAN-13-0322.DC1

Cited articles
This article cites 86 articles, 35 of which you can access for free at:
http://cancerres.aacrjournals.org/content/73/14/4349.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/73/14/4349.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.